Методы определения химического состава металлов

Обновлено: 05.10.2024

Аннотация научной статьи по прочим технологиям, автор научной работы — Наумкина В.А., Сафарова И.С., Аверина Юлия Михайловна

В статье приведен краткий обзор методов качественного контроля химического состава сплавов на промышленных предприятиях. Даны характеристики самых основных методов спектрального анализа : оптико-эмиссионные и рентгеновские. Показана прогрессивность и эффективность спектральных методов определения химического состава сплавов в области контроля производства.

Похожие темы научных работ по прочим технологиям , автор научной работы — Наумкина В.А., Сафарова И.С., Аверина Юлия Михайловна

Анализ химического состава исходного сплава при производстве постоянных магнитов из сплавов системы Sm-Co

DETERMINATION OF CHEMICAL COMPOSITION OF ALLOYS BY SPECTRAL METHODS

The article gives a brief review of methods for qualitative control of the chemical composition of alloys in industrial plants. The characteristics of the most basic methods of spectral analysis are given: optical emission and X-ray. Progressiveness and efficiency of spectral methods for determining the chemical composition of alloys in the field of production control are shown.

Текст научной работы на тему «ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОГО СОСТАВА СПЛАВОВ СПЕКТРАЛЬНЫМИ МЕТОДАМИ»

Наумкина В.А., Сафарова И.С., Аверина Ю. М.

ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОГО СОСТАВА СПЛАВОВ СПЕКТРАЛЬНЫМИ МЕТОДАМИ

Наумкина В. А. - студентка 4 курса РХТУ им. Д. И. Менделеева

Сафарова И.С. - инженер-рентгенолог 1 категории спектральной лаборатории предприятия АО НПО «Энергомаш» им. Академика В.П. Глушко

Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия 125047, Москва, Миусская пл., 9

В статье приведен краткий обзор методов качественного контроля химического состава сплавов на промышленных предприятиях. Даны характеристики самых основных методов спектрального анализа: оптико-эмиссионные и рентгеновские. Показана прогрессивность и эффективность спектральных методов определения химического состава сплавов в области контроля производства. Ключевые слова: сплав, спектральный анализ, контроль, химический состав

DETERMINATION OF CHEMICAL COMPOSITION OF ALLOYS BY SPECTRAL METHODS

Naumkina V.A., Safarova I.S., Averina Yu.M.

Mendeleev University of Chemical Technology of Russia, Moscow, Russia

The article gives a brief review of methods for qualitative control of the chemical composition of alloys in industrial plants. The characteristics of the most basic methods of spectral analysis are given: optical emission and X-ray. Progressiveness and efficiency of spectral methods for determining the chemical composition of alloys in the field ofproduction control are shown.

Key words: alloy, spectral analysis, control, chemical composition

В современной промышленности ни одно предприятие не может вести свою деятельность без контроля качества. Качество является одной из важных задач на предприятиях, которое необходимо постоянно контролировать на всех стадиях жизненного цикла продукции.

Основные показатели входного контроля качества являются химический состав, размеры и геометрия изделий, макро- и микроструктура; технологические свойства.

Контроль химического состава - это определение состава элементов в сталях и сплавах разными методами, такими как: химический метод, спектральный анализ. Оба этих метода тесно связаны между собой и дополняют друг друга.

Химический состав проверяют по техническим условиям. Затем решается, подлежит ли сплав дальнейшему использованию или бракуется.

Химические методы на сегодняшний день пользуются не очень большой популярностью. Они самые долгие, но и самые точные, которые не могут выдавать ошибок, в отличие от спектральных. Эти методы существуют до сих пор только для того, чтобы подтверждать химический состав металлов, если в спектральных методах обнаружат несоответствия элементов.

В настоящее время на промышленных предприятиях используют в основном спектральные

методы анализа для определения химического состава металлов и сплавов.

Спектральный анализ можно разделить на качественный анализ-установление элементов, присутствующих в пробе, и количественный анализ - определение количественного содержания этих элементов.

Количественный анализ основан на зависимости интенсивности спектральных линий элемента от концентраций в пробе. В количественном анализе используют интенсивность двух спектральных линий, принадлежащих, что позволяет снизить требования к постоянству условий возбуждения и регистрации спектров.

Качественный спектральный анализ позволяет в течение нескольких минут установить, какие элементы входят в состав испытуемой пробы. Качественный анализ широко используется для самых разнообразных задач; например, для определения чистоты металлов и сплавов, анализа различного рода образцов минералов и руд, установления качества материала различных деталей без повреждения их, анализ шихты, отходов производства и т.д.

Методов спектрального анализа существует достаточно много, но самыми основными являются оптико-эмиссионные и рентгеновские, которые в

свою очередь имеют также ряд преимуществ и недостатков.

К рентгеновским анализаторам относятся портативные рентгено-флуоресцентные аппараты, спектрометры, спектроскопы и множество других. Диапазон определяемых элементов таких приборов составляет от натрия (№) до урана (Ц), определяя при этом неорганические примеси, как сера и фосфор, но не могут определять углерод. Используются для цветных металлов и чугунов, сталей, но чистые металлы определяют с трудом.

Оптико-эмиссионные методы основаны на поглощении атомов спектров и на их регистрации с помощью специальных приборов (МФС-8, спектрограф и др.). Эмиссионные приборы, прежде всего, очень сильно зависят от погодных условий (температуры, влажности, давления), а также от состава сплава и концентрации. Принцип действия таких аппаратов основывается на свечении газа (пара) исследуемого вещества, в результате которого идет нагревание его до высоких температур болыпе1000°С. Главной составляющей всего этого спектра являются линейные спектры атомов металлов. Каждый элемент имеет определенный спектр излучения. Поэтому при исследовании спектра излучения плазмы, можно определить химический состав газа.

В этих методах используется газ аргон, образующий плазму при взаимодействии электрода с исследуемым образцом и имеющий ряд преимуществ, таких как: не ядовит, не взрывоопасен, не взаимодействует с другими элементами, самый доступный и относительно дешевый инертный газ.

Метод анализа рентгеновского аппарата основывается на испускании спектра флуоресцентного излучения образца, который образуется при сильном рентгеновском излучении. Химический состав прибор отображает за счет вторичного излучения сплава, потому что у каждого элемента имеются свои характеристические линии, которые указывают на качественный состав образца, а путем измерения относительной интенсивности получают количественный состав пробы.

Можно выделить несколько преимуществ спектральных методов:

• высокая чувствительность, позволяющая определить в анализируемых пробах самые ничтожные доли процента различных элементов;

• использование при спектральном анализе относительной интенсивности позволяет повысить его точность и упрощает технику измерения;

• на рентгенофлуоресцентных спектрометрах можно анализировать готовые детали и образцы различных размеров и форм, не повреждая поверхность, в отличие от оптико-эмиссионных, где происходит обжиг металла;

• быстрота и дешевизна анализа;

• способность определять примеси и неорганические элементы;

• высокая производительность и автоматизация всего анализа.

Широкое применение спектральные анализы получили в основном в металлургической и металлообрабатывающей промышленности, также используются в горнодобывающей

промышленности, авиации и машиностроении, археологии, в научных исследованиях, даже в медицине и фармацевтике.

Таким образом, спектральные методы определения химического состава сплавов являются одними из наиболее прогрессивных средств в области контроля производства. При решении ряда аналитических задач спектральные методы являются наиболее передовыми и технически эффективными, со значительным успехом замещая химические методы анализа.

1. Опыт применения энергодисперсионного рентгенофлуоресцентного спектрометра/Д.И. Митин, В.В. Глебов, А.Ю. Шурыгин// Приволжский научный вестник// 2013. №12(28), часть 2. С. 41-42.

Спектральный анализ химического состава металлов

Как провести спектральный анализ химического состава металлов?

спектральный анализ

Самый эффективный способ определения химического состава металлов по оптическим спектрам излучения атомов и ионов анализируемой пробы, возбуждаемых в источнике света.

В качестве источника света для оптико-эмиссионного анализа используется плазма электрической искры или дуги, которую получают с помощью источника возбуждения (генератора). Принцип основан на том, что атомы каждого элемента могут испускать свет определенных длин волн - спектральные линии, причем эти длины волн разные для разных элементов.

Для того чтобы атомы начали испускать свет, их необходимо возбудить электрическим разрядом. Электрический разряд в виде искры в атмосфере аргона способен возбудить большое количество элементов. Достигается высокотемпературная (более 10000 К) плазма, способная возбудить даже такой элемент, как азот.

В искровом штативе между вольфрамовым электродом и исследуемым образцом возникают искры с частотой от 100 до 1000 Гц. Искровой стол имеет световой канал, по которому полученный световой сигнал попадает в оптическую систему. При этом световой канал и искровой штатив продуваются аргоном. Попадание воздуха из окружающей среды в искровой штатив ведет к ухудшению пятна обжига и соответственно к ухудшению качества химического анализа пробы.

Современная оптическая система выполнена по схеме Пашена-Рунге. Спектральное разрешение оптической системы зависит от фокального расстояния, количества штрихов используемой дифракционной решетки, параметра линейной дисперсии и квалифицированном выполнении юстировки всех оптических компонентов. Для покрытия всех необходимых эмиссионных линий достаточно охватывать спектральную область от 140 до 680 нм. Для хорошей видимости спектра оптическая камера должна быть заполнена инертным газом (аргоном высокой частоты) или вакуумирована.

Прибор для спектрального анализа металла - анализатор М5000, В качестве регистрирующих элементов современные анализаторы металлов, оснащаются CCD детекторами (или ФЭУ), которые преобразуют видимый свет в электрический сигнал, регистрируют его и передают на компьютер. На экране монитора мы наблюдаем концентрации элементов в процентах.

анализатор М5000

Интенсивность спектральной линии анализируемого элемента, помимо концентрации анализируемого элемента, зависит от большого числа различных факторов. По этой причине рассчитать теоретически связь между интенсивностью линии и концентрацией соответствующего элемента невозможно. Вот почему для проведения анализа необходимы стандартные образцы, близкие по составу к анализируемой пробе. Предварительно эти стандартные образцы экспонируются (прожигаются) на приборе. По результатам прожигов для каждого анализируемого элемента строится градуировочный график, зависимость интенсивности спектральной линии элемента от его концентрации. Впоследствии, при проведении анализа проб, по этим градуировочным графикам производится пересчет измеренных интенсивностей в концентрации.

Следует иметь виду, что реально анализу подвергается несколько миллиграммов пробы с ее поверхности. Поэтому для получения правильных результатов проба должна быть однородна по составу и структуре, при этом состав пробы должен быть идентичным составу анализируемого металла. При анализе металла в литейном производстве для отливки проб рекомендуется использовать специальные кокили. При этом форма пробы может быть произвольной. Необходимо лишь, чтобы анализируемый образец имел достаточную поверхность и мог быть зажат в штативе. Для анализа мелких образцов, например прутков или проволоки, используются специальные адаптеры.

Химический анализ металлов и сплавов («chemical analysis»)

Анализ состава металла традиционными методами аналитической химии основан на способности к взаимодействию с реагентами. Процедура включает подготовку проб, взвешивание, титрование; требует усилий и времени. Сейчас химанализ металла классическим аналитическим исследованием на практике проводится редко. Определение состава, основанное на физических явлениях, проходит быстро и результативно. Так, часто используемый спектральный анализ сплавов имеют следующие достоинства:

  • • оперативность исполнения: • минимальное количество вспомогательных приспособлений; • максимальная точность значений; • простота осуществления; • возможность проведения в полевых и стационарных условиях.

Достоверный химический анализ металла проводят на современном спектральном оборудовании, регистрирующем интенсивность волн эмиссии. Надежны, удобны в работе, доступны по стоимости эмисcионные спектрометры отечественной марки. Спектральный анализ стали, других материалов имеет высокую точность, используется при сертификации.

Преимущества метода

Благодаря высокой избирательности, оказывается возможным быстро и с высокой чувствительностью определить химический состав анализируемого материала. Исследовать состав металла по спектру можно без нарушения его пригодности к использованию, т.е. можно проводить неразрушающий контроль образцов. Несмотря на громадное число аналитических методик, предназначенных для исследования различных объектов, все они основаны на общей принципиальной схеме: каждому химическому элементу принадлежит свой спектр.

Благодаря индивидуальности спектров имеется возможность определить химический состав тела. Сравнительная простота и универсальность спектрального анализа сделали метод основным методом контроля состава вещества в металлургии, машиностроении, атомной промышленности. С его помощью определяют химический руд и минералов, особое место в этой области занимает неразрушающий контроль металлов.

Суть, возможности атомно-эмисcионных измерений

Спектральный анализ металлов основан на способности атомов в результате возбуждения испускать волны. Процесс инициирует искровое, лазерное, дуговое, другие воздействия. Источник возбуждения расположен в генераторе – блоке спектрометра, который при необходимости легко подлежит замене. В эмисcионном анализаторе происходит измерение интенсивности оптических волн, испускаемых атомами после перехода в возбужденное состояние. По длине волны и величине пика на спектре автоматически идентифицируется химический элемент, рассчитывается его концентрация. Атомно-эмисcионная спектроскопия позволяет анализировать вещества в различных агрегатных состояниях. Для измерений требуется минимальное количество материала. Посредством анализа на стационарном или мобильном спектрометре устанавливают марку стали, степень чистоты металлов; делают химанализ металлических сплавов. Приборы могут определять массовые доли элементов с пределом детектирования 0,0001%

Спектральный анализ

Спектральный анализ относится к методам качественного и количественного контроля составов металлических объектов. Он основан на проведении изучения спектров взаимодействия металла с используемым излучением.

Исследованию подлежат спектры электромагнитного излучения, спектры распределения элементарных частиц по энергиям и массам, а также спектры акустических волн. Комплексный анализ перечисленных спектров позволит получить детальную картину о составе исследуемого образца.


Спектральный анализ – это современный метод анализа металлов и сплавов, который основан на излучении и поглощении атомами электромагнитных волн при переходе из одного энергетического уровня на другой. Чтобы перевести атомы вещества в возбужденное состояние, в котором они могут излучать характеристическое излучение, в спектральном анализе используются разные источники света.

Общим для всех используемых источников является использование плазмы (высоко- или низкотемпературной), кинетической энергии частиц которой достаточно, чтобы перевести атомы вещества в возбужденное состояние. С помощью специального регистратора фиксируются полученные спектры, которые обрабатываются посредством программного обеспечения на компьютерной технике.

Точность метода

Химический спектральный анализ относится к высокоточным методам, которые также отличаются и высокой чувствительностью к наличию примесей в исследуемых образцах.

Показатель точности для этого метода находится в пределах от 10-7 до 10-6%, а величина относительного стандартного отклонения составляет порядка 0,15…0,3.

Преимущества

  • простота проведения контроля исследуемых образцов;
  • потребность минимального количества исследуемого вещества;
  • возможность определения различных примесей;
  • высокая точность и надежность измерений;
  • возможность применения метода в условиях технологического процесса.

Дополнительные устройства для работы с оптико-эмисcионным оборудованием

Спектральный анализ металлов и сплавов с лазерным инициированием производится в атмосфере особо чистого аргона. Если степень очистки газа неудовлетворительна, его нужно доочищать. Лаборатория спектрального анализа металлов подлежит укомплектованию устройством для дополнительной очистки газов. Агрегат позволяет довести до идеального состояния не только аргон, но и гелий, азот, водород, необходимый для многих спектральных исследований. Для извлечения кислорода из рабочей камеры используются вакуумные насосы. Эффективно работает двухступенчатое пластинчато-роторное оборудование. Существует несколько видов эмисcионных спектрометров, часть их которых производит неразрушающий анализ. Образующийся на поверхности образца очаг эрозии с глубиной несколько микрон не мешает последующей эксплуатации объекта. В других ситуациях пробу нужно предварительно подготовить, для чего понадобятся специальные устройства.

Предлагаем купить нихромовую спираль

Эмиссионный химический анализ

Этот метод исследования металлов позволяет за короткий промежуток времени с высокой вероятностью определить истинный состав исследуемого металлического образца.

На сегодня существует несколько разновидностей этого метода, но наибольшую популярность имеет атомно-эмиссионный спектральный анализ. Именно он используется в научной и промышленной отрасли для экспрессного получения данных о составе исследуемых образцов.


Эти методы анализа металлов и сплавов основаны на том принципе, что кратковременный высокотемпературный нагрев металла приводит к тому, что атомы вещества переводятся в возбужденное состояние и излучают свет в определенном интервале частот. Для каждого химического элемента характерна своя частота, по которой его и можно идентифицировать.

Полихроматическое излучение, которое получается вследствие такого разогрева металлического образца, фокусируется с помощью специальной оптической системы, с последующим раскладыванием в спектр и фиксированием регистратором.

После этого полученные данные обрабатываются с помощью компьютерной техники, на которой установлено специализированное программное обеспечение, позволяющее, используя аналитические инструменты, провести качественный и количественный анализ.

Метод эмиссионного анализа отличается высокими показателями чувствительности, что позволяет определять даже малейшие концентрации примесей в металлах и сплавах.

Показатель чувствительности этого метода находится в пределах 10-5…10-7%.

Что касается точности, то метод позволяет получить показатель в пределах 5% при небольших концентрациях примесей и до 3% при более высоком содержании примесей.

К основным преимуществам современного эмиссионного анализа относятся:

  • возможность параллельного определения сразу 70-ти элементов в составе металла или его сплава;
  • высокая скорость проводимого анализа;
  • низкий порог обнаружения примесей;
  • высокая точность и чувствительность;
  • информативность полученных результатов;
  • относительная простота проведения эксперимента;
  • возможность исследования больших изделий без ущерба их поверхностям.

Рентгено-флуоресцентный спектрометр

Анализ химического состава металла можно проводить с участием рентгеновских лучей. После возбуждения первичными рентгеновскими лучами характеристическое излучение химических элементов образует спектр. Измерение интенсивности флуоресцентных линий дает информацию о концентрации. Существуют стационарные и мобильные спектрометры, которые проводят экспресс измерения образца без разрушения материала. На приборах с рентгено-флуорнсцентрым принципом действия выполняется спектральный анализ сталей, других сплавов, композитов, сложных веществ Таким методом можно узнать концентрацию 45 химических элементов. Маленькие атомы с порядковым номером до 11 после возбуждения флуоресцируют слабо, что мешает их идентификации. Эти элементы можно идентифицировать химически или другими физическими методами. РФА не рекомендован для анализа черных металлов, метод удобен для проведения сортировки лома с учетом ограниченных возможностей идентификации легких элементов Все результаты визуализируются на цветном дисплее, сохраняются в файле приборного компьютера Для расширения диапазона возможностей портативных рентгено-флуоресцентных спектрометров на них устанавливают дополнительные калибровки. Услуга может быть выполнена на заводе-изготовителе за небольшую цену или в сервисных центрах, имеющихся в Москве, других крупных городах.

Металлография.

Металлография — это наука о структуре металла и влиянии структуры на их физические свойства. Главной задачей металлографического исследования при проведении судебной металловедческой экспертизы является определение типа микроструктуры и выявление в металле различного рода дефектов микроструктуры таких как: пористость, неоднородность, неметаллические включения, усадочные раковины и т. д. Данные дефекты существенно снижают прочность металлических изделий и могут являться причиной их разрушения. Для сталей определенных видов характерны определенные эталонные структуры, регламентированные стандартами, поэтому металлографическому исследованию всегда предшествует определение химического состава металла, поскольку микроструктура металла определяется его химическим составом и проведенный термической обработкой. Проводятся металловедческие исследования на микрошлифах металла — специально подготовленных фрагментах металлического изделия, вырезанных из соответствующего места в изделии и прошедших шлифовку, полировку и травление.

Металлографическими методами также проводится исследование сварных швов, при этом выявляются такие дефекты как: непровары, свищи, шлаковые включения и т. п.

Следует обратить особое внимание на то, что производство металловедческой экспертизы в целом и каждое из описанных выше исследований в частности должны проводиться в аттестованной лаборатории, в противном случае результаты исследования будут являться недействительными суде.

Эксперты АНО «Центр технических экспертиз» готовы провести все виды описанных выше исследований, определить причины повреждения деталей машин и механизмов, металлоконструкций зданий, трубопроводов и других металлических изделий. При этом, все исследования будут проведены в соответствии с стандартизированным методиками на высокотехнологичном современном оборудовании.

Вид экспертизыСтоимость экспертизы
Экспертиза химического состава металлов и сплавовот 9 000
Определение химического состава органических соединенийот 22 500
Определение химического состава неорганических соединенийот 18 000
Установление идентичности лакокрасочного покрытия в случае ДТПот 18 000

ПРИМЕЧАНИЕ:
Цена химической экспертизы указана с учетом налогов. Транспортные расходы оплачиваются отдельно.

Задачи изучения спектров

Точность атомного спектрального анализа зависит, главным образом, от состава и структуры исследуемых объектов. Анализировать состав близких по своей структуре и составу образцов, можно с погрешностью ±1 – 3% по отношению к определяемой величине.

В металлургии и машиностроении спектральный анализ металлов стал в настоящее время основным методом неразрушающего контроля, перед которым ставятся следующие задачи:

  1. Исследование сплавов в процессе плавки с целью получения сплава нужного состава;
  2. Анализ готовых сплавов с целью определения марки сплава (сортировки), либо точное определение его состава или определение содержания вредных примесей;
  3. Контроль качества готовых изделий;
  4. Контроль правильности применения сплавов при монтаже готовых изделий;
  5. Проверка различного рода покрытий;
  6. Иногда необходимо определять распределение примесей и включений в металле.

Отливка стали

Проверка качества осуществляется непрерывно на всех этапах подготовительных и производственных процессов и особенно тщательно заводская лаборатория контролирует весь процесс литья для того, чтобы получить отливки определенного химического состава и механических свойств.

Все материальные ресурсы и покупные комплектующие изделия для литейного производства закупаются только у проверенных и надежных поставщиков. Но для 100% уверенности в качестве нашей продукции отдел контроля качества совместно с заводской лабораторией осуществляют входного контроль материальных ресурсов и покупных комплектующих изделий, устанавливая их соответствие закупочным ведомостям и конструкторско-технологической документации (КТД).

По результатам анализ требований покупателя во время технологической подготовки производства заводская лаборатория осуществляется подбор необходимого контрольно-измерительного, испытательного оборудования, методов измерений и анализа.

В процессе изготовления модельной оснастки специалисты отдела контроля качества оказывают техническую помощь литейному цеху в проверке размеров оснастки на соответствие требованиям КТД.

Приготовления формовочной смеси, изготовление литейных форм, плавка металла в сталеплавильной электропечи контролируется специалистами заводской лабораторий на соответствие заявленных в КТД параметров каждого процесса, применяя для этой цели современное лабораторное оборудование.

Заводская лаборатория оснащена современным оборудованием для определения химического состава сталей и сплавов, механических свойств металлов.

Определение химического состава сталей спектральным методом

Определение химического состава сталей мы осуществляем при помощи эмиссионного спектрометра ИСКРОЛАЙН-100 российского производства. Прибор внесен в Государственные реестры средств измерений России, Казахстана, Беларуси, Узбекистана, что позволяет нам подтверждать качество поставляемой продукции не только на Российском рынке, но и в странах СНГ.

Анализ состава сталей проводится в полном соответствии с ГОСТами на методы спектрального анализа. (ГОСТ Р 54153-2010, ГОСТ 18895-97).

Применение эмиссионного спектрометра позволяет нам:

  • проводить экспресс анализ химического состава выплавляемой стали;
  • осуществлять контроль химического состава готовой продукции по всем элементам, включая серу, фосфор и углерод;
  • определить на входном контроле состав закупаемых сплавов с точным определением марки с помощью функции встроенного марочника;
  • значительно сократить время анализа металла, находящегося в плавильной печи, без потери качества.

Испытания механических свойств металлов

Заводская лаборатория осуществляет испытания механических свойств металлов на соответствие ГОСТ и ТУ. В распоряжении наших специалистов есть всё необходимое оборудование для проведения испытаний:

  • Универсальная испытательная машина (испытания металлов на растяжение);
  • Маятниковый копёр;
  • Термостат для охлаждения образцов при испытании на ударный изгиб при пониженных температурах;
  • Твёрдомеры (для испытания металлов на твердость).

Испытания на растяжение по ГОСТ 1497-84 при комнатной температуре

Испытания на растяжение по ГОСТ 1497-84 при комнатной температуре проводят с целью определения способности материала сопротивляться пластической деформации. Испытания проводятся на стандартных образцах при помощи машины для испытания конструкционных материалов «УТС 110М-200 0-У» российского производства. Машина внесена в ГосРеестр средств измерений России.

    Технические характеристики машины:
  • наибольшая предельная нагрузка, кН: 200;
  • класс точности 1%;
  • соответствует требованием ГОСТ 28840.

В результате испытаний мы определяем следующие характеристики материала:

  • предел текучести σ_Т или условный предел текучести σ_0,2 – напряжение, при котором начинает развиваться пластическая деформация;
  • временное сопротивление (предел прочности) σ_В — напряжение,

выше которого происходит разрушение материала;

Испытания на ударный изгиб по ГОСТ 9454-78

Испытания на ударный изгиб по ГОСТ 9454-78 при комнатной и пониженной температуре до -40°С проводят с целью определения способности материала сопротивляться динамическим (ударным) нагрузкам. По температурной зависимости оценивают склонность к хрупкому разрушению при отрицательных температурах (хладноломкости). Испытания проводятся на образцах с U- и V-образным надрезом на маятниковом копре ТСКМ-300 российского производства. Копер внесен в ГосРеестр средств измерений России.

В результате испытаний определяют следующие характеристики:

  • работу удара (КU или KV);
  • ударную вязкость (KCU или KCV) – работу удара, отнесенную к начальной площади поперечного сечения образца в месте концентратора.

Технические характеристики копра маятникового ТСКМ-300:

  • максимальная энергия 300 Дж;
  • соответствует ГОСТ 10708.

Испытания на твёрдость по Бринеллю, Роквеллу

Твердость характеризуется способностью материала сопротивляться внедрению в него более твердого тела. Испытания проводятся по методам Бринелля (ГОСТ 9012-59), Роквелла (ГОСТ 9013-59) Для контроля по методу Бринелля применяется твердомер ТШ-2М, для контроля методом Роквелла – твердомер ТР-150Р, производства ООО «Импульс», Иваново, РФ. Твердомеры российского производства, внесены ГосРеестр средств измерений России.

При контроле твердости по методу Бринелля в поверхность образца под определенной нагрузкой внедряется закаленный стальной или твердосплавный шарик, производится выдержка под нагрузкой и замер получившегося отпечатка при помощи оптических приборов, далее по таблицам, приведенным в ГОСТ 9012-59, находится числовое значение твердости.

При контроле твердости по методу Роквелла в поверхность внедряется алмазный конус или стальной шарик. В отличие от метода Бринелля, метод Роквелла является методом прямого измерения, т.е. результат замера твердости сразу считывается с индикатора прибора.

Из литейного цеха отливка после контроля качества поступает в механической цех для дальнейшей обработки.

Химический анализ металлов и сплавов. Назначение и современные методы исследования

Анализ химического состава металлов и сплавов - неотъемлемая часть многих технологических процессов, используемых в различных отраслях промышленности. Исследование позволяет определить присутствия в образце примесей и включений, а также прогнозировать эксплуатационные характеристики готового изделия.

Для решения этой задачи используются анализаторы - надежные и эффективные приборы, способные работать как в производственных, так и лабораторных условиях.

Назначение

лаборатория спектрального анализа металлов

Химический анализ позволяет:

  • определить количественный состав;
  • исследовать образец на присутствие примесей и определить их концентрацию;
  • идентифицировать сплав;
  • выяснить соотношение примесей сплава для его маркировки.

Проведение исследования необходимо для:

  • экспертизы продукции для определения соответствия действующим стандартам;
  • непрерывного контроля технологического процесса;
  • входного контроля исходного сырья;
  • разработки и создания новых сплавов;
  • сертификации продукции;
  • освидетельствования чистых металлов.

Основные требования

Для проведения химического анализа металлов и сплавов могут быть использованы различные методы. Однако не все они удовлетворяют следующим требованиям:

  • максимальная оперативно;
  • высокая точность результатов;
  • использование неразрушающих методов;
  • простота эксперимента;
  • применение в производственных условиях.

Методы атомно-эмиссионного спектрального анализа

Атомно-эмиссионный спектральный анализ (АЭСА) металлов и сплавов получил наибольшее распространение в различных отраслях промышленности. С его помощью можно исследовать вещества в различных агрегатных состояниях на присутствие многих химических элементов. Он имеет низкий предел обнаружения элементов, отличается простотой и низкой себестоимостью, что делает целесообразным его использование в лабораториях спектрального анализа металлов, решающих различные аналитические задачи.

Спектрографический

спектроскоп для анализа химического состава металлов и сплавов

Проводится с использованием спектрографа, который позволяет относительно быстро получить надежные результаты. Метод предусматривает регистрацию атомных спектров на фотопластинку с последующей идентификацией их с помощью планшета или на спектропроекторе.

Спектрометрический

Для исследования пробы применяются приборы с фотоэлектрической регистрацией спектра. Этот вид химического анализа металлов и сплавов относится к объективным методам и позволяет оперативно получать информацию.

  • экспрессность;
  • высокая точность результатов;
  • полная автоматизация процесса;
  • обработка результатов на ЭВМ и их архивирование.
  • сложность эксплуатации оборудования;
  • возникновение проблем оптической и электрической стабильности;
  • нельзя одновременно регистрировать широкую область спектра.

Визуальный

Отличается от двух предыдущих субъективностью, так как приемником излучения служит человеческий глаз. Несмотря на ограниченные возможности, визуальный спектральный анализ широко используется в промышленности. Особенное значение визуальный метод приобретает при необходимости контроля химического состава легированных сталей в процессе их производства.

  • экспрессность;
  • простота;
  • проведения анализа в месте нахождения проб;
  • низкая стоимость оборудования.
  • невысокая точность результатов;
  • не позволяет определять неметаллические элементы.

Заключение

Атомно-эмиссионный спектральный анализ имеет ряд преимуществ по сравнению с другими методами химического анализа.

Читайте также: