На металлическую пластинку направили пучок света от лазера вызвав фотоэффект интенсивность лазерного

Обновлено: 06.05.2024

Задача №1
При изучении явления фотоэффекта исследовалась зависимость энергии Ефэ вылетающих из освещенной пластины фотоэлектронов от частоты падающего света. Погрешности измерения частоты света и энергии фотоэлектронов составляли соответственно 5×1013 Гц и 4×10–19 Дж. Результаты измерений с учетом их погрешности представлены на рисунке. Согласно этим измерениям, постоянная Планка приблизительно равна
1) 2×10–34 Дж×с
2) 5,0×10–34 Дж×с
3) 6,9×10–34 Дж×с
4) 9×10–34 Дж×с

Задача №2
Четырёх учеников попросили нарисовать общий вид графика зависимости фототока насыщения I от интенсивности J падающего света. Какой из приведённых рисунков выполнен правильно?
1)
2)
3)
4)
Задача №3
Какой график соответствует зависимости максимальной кинетической энергии фотоэлектронов Е от частоты v падающих на вещество фотонов при фотоэффекте?

Задача №4
Слой оксида кальция облучается светом и испускает электроны. На рисунке показан график изменения максимальной энергии фотоэлектронов в зависимости от частоты падающего света. Какова работа выхода фотоэлектронов из оксида кальция?

Задача №5
На металлическую пластинку падает электромагнитное излучение, выбивающее из неё электроны, кинетическая энергия которых принимает значения от 0 до 3 эВ. Работа выхода электронов из металла равна 5 эВ. Чему равна энергия фотонов, падающих на пластинку?
1) 5 эВ
2) 2 эВ
3) 3 эВ
4) 8 эВ

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10–19 Дж и стали освещать ее светом частоты 6×1014Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с

1) увеличилось в 1,5 раза
2) стало равным нулю
3) уменьшилось в 2 раза
4) уменьшилось более чем в 2 раза

Задача №7
В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10–19 Дж и стали освещать ее светом частоты 3×1014Гц. Затем частоту увеличили в 2 раза, оставив неизменным число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с
Задача №8
В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4×10– 19 Дж и стали освещать ее светом частоты 6×1014Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого максимальная кинетическая энергия фотоэлектронов

Задача №9
Металлическую пластину освещают светом с энергией фотонов 6,2 эВ. Работа выхода для металла пластины равна 2,5 эВ. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов?

Задача №10
Найдите задерживающую разность потенциалов U, при которой прекращается фототок в вакуумном фотоэлементе при облучении светом катода с работой выхода Aвых=2 эВ, если энергия фотонов равна 4,1 эВ.
Задача №11
Найдите задерживающую разность потенциалов U, при которой прекращается фототок в вакуумном фотоэлементе при облучении светом катода с работой выхода Aвых=2 эВ, если энергия фотонов равна 8,1 эВ.
Задача №12
При исследовании зависимости кинетической энергии фотоэлектронов от длины волны падающего света фотоэлемент освещался через различные светофильтры. В первой серии опытов использовался светофильтр, пропускающий только зелёный свет, а во второй – пропускающий только фиолетовый свет. В каждом опыте наблюдали явление фотоэффекта и измеряли запирающее напряжение. Как изменяются длина световой волны и запирающее напряжение при переходе от первой серии опытов ко второй?
Для каждой величины определите соответствующий характер её изменения:
1) увеличивается
2) уменьшается
3) не изменяется

На металлическую пластинку направили пучок света от лазера, вызвав фотоэффект. Интенсивность лазерного излучения плавно увеличивают, не меняя его частоты. Как меняются в результате этого число вылетающих в единицу времени фотоэлектронов и их максимальная кинетическая энергия?
Для каждой величины определите соответствующий характер изменения:

1) увеличивается
2) уменьшается
3) не изменяется

Кванты света с длиной волны 660 нм вырывают с поверхности металла фотоэлектроны, которые описывают в однородном магнитном поле с индукцией 1 мТл окружности максимальным радиусом 2 мм. Определите работу выхода электрона из металла.

Задача №15
Электроны, вылетевшие в положительном направлении оси OX под действием света с катода фотоэлемента, попадают в электрическое и магнитное поля (см. рисунок). Какой должна быть частота падающего света ν, чтобы в момент попадания самых быстрых электронов в область полей действующая на них сила была направлена против оси OY? Работа выхода для вещества катода 2,39 эВ, напряжённость электрического поля 3⋅102 В/м, индукция магнитного поля 10−3 Тл.

Рабочие листы и материалы для учителей и воспитателей

Более 3 000 дидактических материалов для школьного и домашнего обучения

21. Квантовая физика (изменение физических величин в процессах, установление соответствия)

На металлическую пластинку направили пучок света от лазера, вызвав фотоэффект. Интенсивность лазерного излучения плавно увеличивают, не меняя его частоты. Как меняются в результате этого число вылетающих в единицу времени фотоэлектронов и их максимальная кинетическая энергия?
Для каждой величины определите соответствующий характер изменения:
1) увеличится
2) уменьшится
3) не изменится
Запишите в ответ выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


При увеличении интенсивности увеличивается количество фотонов, следовательно, увеличивается количество вылетающих электронов.
Максимальная кинетическая энергия зависит от частоты падающего света и не зависит от его интенсивности
Уравнение Энштейна (фотоэффект): \[h\nu=A_>+E_k\]

При освещении металлической пластины светом длиной волны \(\lambda\) наблюдается явление фотоэлектрического эффекта. Установите соответствие между физическими величинами, характеризующими процесс фотоэффекта, перечисленными в первом столбце, и их изменениями во втором столбце при уменьшении в 2 раза длины волны падающего на пластину света. \[\begin <|c|c|>\hline \text < ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ>& \text< ИХ ИЗМЕНЕНИЯ>\\ \hline \text< А) частота световой волны>& \text< 1) остается неизменной>\\ \text < Б) энергия фотона>& \text< 2) увеличивается в 2 раза>\\ \text < В) работа выхода>& \text< 3) уменьшается в 2 раза>\\ \text< Г) максимальная кинетическая энергия фотоэлектрон>а& \text < 4) увеличивается более чем в 2 раза>\\ & \text < 5) увеличивается менее чем в 2 раза>\\ \hline \end\]


При уменьшении длины волны частота света увеличивается \[\nu=\frac<\lambda>\] A) 2
Энергия фотона: \[E=h\nu=\frac<\lambda>\] Б) 2
Работа выхода – это характеристика материала
В) 1
Уравнение Энштейна (фотоэффект): \[h\nu=A_>+E_k\] Г) 4

На дифракционную решётку с периодом \(d\) перпендикулярно её поверхности падает параллельный пучок света с длиной волны \(\lambda\) . Определите, как изменятся число наблюдаемых главных дифракционных максимумов и расстояние от центра дифракционной картины до первого главного дифракционного максимума, если увеличить длину волны падающего света.
Для каждой величины определите соответствующий характер изменения:
1) увеличится;
2) уменьшится;
3) не изменится.
Запишите в ответ цифры, расположив их в порядке, соответствующем таблице:


Дифракционная решетка: \[dsin\varphi=m\lambda\] Число наблюдаемых максимумов определяется, когда \(sin\varphi=1\)
При увеличении длины волны число наблюдаемых максимумов уменьшается.
Из формулы дифракционной решетки при увеличении длины волны угол, под которым наблюдается максимум увеличивается, следовательно, расстояние между максимумами увеличивается.

На металлическую пластинку падает пучок монохроматического света. При этом наблюдается явление фотоэффекта. На графиках в первом столбце представлены зависимости энергии от длины волны \(\lambda\) и частоты света \(\nu\) . Установите соответствие между графиком и той энергией, для которой он может определять представленную зависимость. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ВИД ЗАВИСИМОСТИ
1) зависимость максимальной кинетической энергии фотоэлектронов от частоты падающего света
2) зависимость энергии падающих фотонов от частоты падающего света
3) зависимость энергии падающих фотонов от длины волны света
4) зависимость потенциальной энергии взаимодействия
фотоэлектронов с ионами металла от длины волны падающего света


А) График представляет собой часть гиперболы, следовательно, это энергия падающих фотонов от длины волны: \[E=\dfrac<\lambda>\] т.к. длина волны находится в знаменателе.
Б) Рассмотрим уравнение Энштейна: \[h\nu =A+E_\] если \(h \nu < A\) , то кинетическая энергия равна 0, а если \(h\nu>A\) , то кинетическая энергия больше 0, следовательно под Б номер 1

На металлическую пластинку падает пучок монохроматического света. При этом наблюдается явление фотоэффекта. На графике А представлена зависимость энергии фотонов, падающих на катод, от физической величины \(x_1\) , а на графике Б – зависимость максимальной кинетической энергии фотоэлектронов от физической величины \(x_2\) . Какая из физических величин отложена на горизонтальной оси на графике А и какая – на графике Б?
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.


ФИЗИЧЕСКАЯ ВЕЛИЧИНА x
1) длина волны
2) массовое число
3) заряд ядра
4) частота


А) График представляет собой часть гиперболы, следовательно, это энергия падающих фотонов от длины волны: \[E=\dfrac<\lambda>\] т.к. длина волны находится в знаменателе.
Б) Рассмотрим уравнение Энштейна: \[h\nu =A+E_\] если \(h \nu < A\) , то кинетическая энергия равна 0, а если \(h\nu>A\) , то кинетическая энергия больше 0, следовательно под Б номер 4

Интенсивность монохроматического светового пучка плавно увеличивают, не меняя длину волны света. Как изменяются при этом запирающее напряжение и скорость каждого фотона? Для каждой величины определите соответствующий характер изменения:

Для каждой величины определите соответствующий характер изменения:
1) увеличится
2) уменьшится
3) не изменится
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

“Досрочная волна 2019 вариант 1”


От интенсивности не зависит ни скорость, ни запирающее напряжение: \[h\nu = A+ eU=A+\dfrac\]

Тематический тест в формате ЕГЭ по физике.

А1.Ме­тал­ли­че­скую пла­сти­ну осве­ща­ли мо­но­хро­ма­ти­че­ским све­том с дли­ной волны 500 нм. Что про­изой­дет с ча­сто­той па­да­ю­ще­го света, им­пуль­сом фо­то­нов и ки­не­ти­че­ской энер­ги­ей вы­ле­та­ю­щих элек­тро­нов при осве­ще­нии этой пла­сти­ны мо­но­хро­ма­ти­че­ским све­том с дли­ной волны 700 нм оди­на­ко­вой ин­тен­сив­но­сти? Фо­то­эф­фект на­блю­да­ет­ся в обоих слу­ча­ях.

К каж­до­му эле­мен­ту пер­во­го столб­ца под­бе­ри­те со­от­вет­ству­ю­щий эле­мент из вто­ро­го и вне­си­те в стро­ку от­ве­тов вы­бран­ные цифры под со­от­вет­ству­ю­щи­ми бук­ва­ми.

А. Ча­сто­та па­да­ю­ще­го света

Б. Им­пульс фо­то­нов

В. Ки­не­ти­че­ская энер­гия вы­ле­та­ю­щих элек­тро­нов

ча­сто­та па­да­ю­ще­го света

А2.Квант света вы­би­ва­ет элек­трон из ме­тал­ла. Как из­ме­нят­ся при уве­ли­че­нии энер­гии фо­то­на в этом опыте сле­ду­ю­щие три ве­ли­чи­ны: ра­бо­та вы­хо­да элек­тро­на из ме­тал­ла, мак­си­маль­ная воз­мож­ная ско­рость фо­то­элек­тро­на, его мак­си­маль­ная ки­не­ти­че­ская энер­гия? Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

За­пи­ши­те в таб­ли­цу вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

Ра­бо­та вы­хо­да элек­тро­на из ме­тал­ла

Мак­си­маль­ная ско­рость фо­то­элек­тро­на

Мак­си­маль­ная ки­не­ти­че­ская энер­гия

А3. Мо­но­хро­ма­ти­че­ский свет с энер­ги­ей фо­то­нов Eф па­да­ет на по­верх­ность ме­тал­ла, вы­зы­вая фо­то­эф­фект. На­пря­же­ние, при ко­то­ром фо­то­ток пре­кра­ща­ет­ся, равно Uзап. Как из­ме­нят­ся мо­дуль за­пи­ра­ю­ще­го на­пря­же­ния Uзап и длина волны λкр, со­от­вет­ству­ю­щая «крас­ной гра­ни­це» фо­то­эф­фек­та, если энер­гия па­да­ю­щих фо­то­нов Eф уве­ли­чит­ся?

Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

За­пи­ши­те в ответ вы­бран­ные цифры для каж­дой фи­зи­че­ской ве­ли­чи­ны. Цифры в от­ве­те могут по­вто­рять­ся.

Мо­дуль за­пи­ра­ю­ще­го на­пря­же­ния Uзап

«Крас­ная гра­ни­ца» фо­то­эф­фек­та λкр

А4.Ин­тен­сив­ность мо­но­хро­ма­ти­че­ско­го све­то­во­го пучка плав­но умень­ша­ют, не меняя ча­сто­ту света. Как из­ме­ня­ют­ся при этом кон­цен­тра­ция фо­то­нов в све­то­вом пучке и ско­рость каж­до­го фо­то­на? Для каж­дой ве­ли­чи­ны опре­де­ли­те со­от­вет­ству­ю­щий ха­рак­тер из­ме­не­ния:

А5. На ме­тал­ли­че­скую пла­стин­ку на­пра­ви­ли пучок света от ла­зе­ра, вы­звав фо­то­эф­фект. Ин­тен­сив­ность ла­зер­но­го из­лу­че­ния плав­но уве­ли­чи­ва­ют, не меняя его ча­сто­ты. Как ме­ня­ют­ся в ре­зуль­та­те этого число вы­ле­та­ю­щих в еди­ни­цу вре­ме­ни фо­то­элек­тро­нов и их мак­си­маль­ная ки­не­ти­че­ская энер­гия?

А6.На ме­тал­ли­че­скую пла­стин­ку на­пра­ви­ли пучок света от ла­зе­ра, вы­звав фо­то­эф­фект. Ин­тен­сив­ность ла­зер­но­го из­лу­че­ния плав­но уве­ли­чи­ва­ют, не меняя его ча­сто­ты. Как ме­ня­ют­ся в ре­зуль­та­те этого число вы­ле­та­ю­щих в еди­ни­цу вре­ме­ни фо­то­элек­тро­нов и их мак­си­маль­ная ки­не­ти­че­ская энер­гия?

Число фо­то­элек­тро­нов, вы­ле­та­ю­щих

в еди­ни­цу вре­ме­ни

А7.Ра­бо­та вы­хо­да элек­тро­нов для ис­сле­ду­е­мо­го ме­тал­ла равна 3 эВ. Чему равна мак­си­маль­ная ки­не­ти­че­ская энер­гия фо­то­элек­тро­нов, вы­ле­та­ю­щих с по­верх­но­сти ме­тал­ли­че­ской пла­стин­ки под дей­стви­ем света, длина волны ко­то­ро­го со­став­ля­ет 2/3 длины волны, со­от­вет­ству­ю­щей крас­ной гра­ни­це фо­то­эф­фек­та для этого ме­тал­ла?

А8.В таб­ли­це пред­став­ле­ны ре­зуль­та­ты из­ме­ре­ний за­пи­ра­ю­ще­го на­пря­же­ния для фо­то­элек­тро­нов при двух раз­ных зна­че­ни­ях ча­сто­ты ν па­да­ю­ще­го мо­но­хро­ма­ти­че­ско­го света (νкр — ча­сто­та, со­от­вет­ству­ю­щая крас­ной гра­ни­це фо­то­эф­фек­та).

Ча­сто­та па­да­ю­ще­го света За­пи­ра­ю­щее на­пря­же­ние

Какое зна­че­ние за­пи­ра­ю­ще­го на­пря­же­ния про­пу­ще­но в таб­ли­це?

А10.В опы­тах по фо­то­эф­фек­ту пла­сти­ну из ме­тал­ла с ра­бо­той вы­хо­да 3,4*10 -19 Дж осве­ща­ли све­том ча­сто­той ν. Затем ча­сто­ту умень­ши­ли в 2 раза, од­но­вре­мен­но уве­ли­чив в 1,5 раза число фо­то­нов, па­да­ю­щих на пла­сти­ну за 1 с. В ре­зуль­та­те этого число фо­то­элек­тро­нов, по­ки­да­ю­щих пла­сти­ну за 1 с,

1) уве­ли­чи­лось в 1,5 раза

2) стало рав­ным нулю

3) умень­ши­лось в 2 раза

4) умень­ши­лось более чем в 2 раза

А11. Гра­фик на ри­сун­ке пред­став­ля­ет за­ви­си­мость мак­си­маль­ной энер­гии фо­то­элек­тро­нов от ча­сто­ты па­да­ю­щих на катод фо­то­нов. Опре­де­ли­те по гра­фи­ку энер­гию фо­то­на с ча­сто­той ν1 . Ответ при­ве­ди­те в эВ.


А12.. Поток фо­то­нов вы­би­ва­ет из ме­тал­ла фо­то­элек­тро­ны, мак­си­маль­ная ки­не­ти­че­ская энер­гия ко­то­рых 10 эВ. Энер­гия фо­то­нов в 3 раза боль­ше ра­бо­ты вы­хо­да. Ка­ко­ва ра­бо­та вы­хо­да? Ответ при­ве­ди­те в эВ.

1. Ме­тал­ли­че­ский фо­то­ка­тод освещён све­том дли­ной волны λ = 0,42 мкм. Мак­си­маль­ная ско­рость фо­то­элек­тро­нов, вы­ле­та­ю­щих с по­верх­но­сти фо­то­ка­то­да, v = 580 км/с. Ка­ко­ва длина волны крас­ной гра­ни­цы фо­то­эф­фек­та для этого ме­тал­ла? Ответ при­ве­ди­те в мкм с точ­но­стью до сотых.

2.Поток фо­то­нов па­да­ет на ме­тал­ли­че­скую пла­сти­ну с ра­бо­той вы­хо­да 2,6 эВ и вы­би­ва­ет из пла­сти­ны фо­то­элек­тро­ны, ко­то­рые по­па­да­ют в за­мед­ля­ю­щее од­но­род­ное элек­три­че­ское поле с мо­ду­лем на­пряжённо­сти 1 В/м. Какое время (в мкс) про­хо­дит от мо­мен­та на­ча­ла за­мед­ле­ния фо­то­элек­тро­нов до их пол­ной оста­нов­ки, если энер­гия па­да­ю­ще­го фо­то­на 11,5 эВ? Счи­тай­те, что все фо­то­элек­тро­ны при вы­ле­те из пла­сти­ны имеют оди­на­ко­вую ско­рость.

Читайте также: