На сколько хватает кислородного баллона при резке металла

Обновлено: 19.05.2024

Расход кислорода при резке металла: нормы расхода пропана

Себестоимость процесса резки металла определяет расход кислорода и пропана, суммируемый с оплатой труда резчика. Причем расход окислителя и топлива зависит от технологии термического разделения металлов.

Поэтому мы начнем нашу статью с описания способов резки.

Технологии резки металлов

На сегодняшний день в промышленности используются три типовых технологии термического разделения металлических заготовок:

  • Кислородная резка.
  • Плазменная резка.
  • Лазерная резка.

Первая технология – кислородная резка – используется при разделении заготовок из углеродистой и низколегированной стали. Кроме того, кислородным резаком можно подравнять края кромок уже отрезанных заготовок, подготовить зону раздела стыка перед сваркой и «подчистить» поверхность литой детали. Расход рабочих газов, в данном случае, определяется тратой и топлива (горючего газа), и окислителя (кислорода).

Вторая технология – плазменная резка – используется при разделении сталей всех типов (от конструкционных до высоколегированных), цветных металлов и их сплавов. Для плазменного резака нет недоступных материалов – он режет даже самые тугоплавкие металлы.

Причем качество разделочного шва, в данном случае, значительно выше, чем у конкурирующей технологии. При определении объемов рабочих газов, в данном случае, важен расход кислорода — при резке металла плазмой за горение материала отвечает именно окислитель. А сама плазма используется, как катализатор процесса термического окисления металла.

Третья технология – лазерная резка – используется для разделения тонколистовых заготовок. Соответственно, объемы расходуемых газов, в данном случае, будут существенно меньше, чем у кислородной и плазменной резки, которые рассчитаны на работу с крупными, толстостенными заготовками.

Нормы расчета горючих газов и окислителя

Нормы расхода пропана и кислорода или ацетилена и кислорода или только окислителя рассчитываются следующим образом:

  • Норматив расхода топлива или окислителя на погонный метр разреза (H) умножается на длину разделочного шва (L).
  • После этого к полученной сумме прибавляют произведение все того же норматива расхода (H) на коэффициент потерь (k), связанных с продувкой и настройкой резака.

В итоге, расход кислорода при сварке (или расход горючего газа) считается по формуле:

Причем коэффициент k принимают равным 1,1 (для мелкосерийного производства или штучной резки, когда требуется часто включать и выключать резак) или 1,05 (для крупносерийного производства, когда резак работает почти без перерывов).

Определение норматива расхода газов

Для точного определения объемов расходуемых газов необходимо определить основу формулы — норму, которой определяется расход газа на погонный метр прорезаемого металла, обозначаемую в формуле литерой «H».

Согласно общим рекомендациям нормированный расход равняется частному от допустимого расхода разделяющего аппарата (p) (кислородного, плазменного или лазерного резака) и скорости резания металла (V).

То есть формула, по которой рассчитывается нормированный расход кислорода на резку металла (Н), а равно и любого другого газа, участвующего в процессе термического разделения, выглядит следующим образом:

Искомый результат подставляют в первую формулу и получают конкретное значение расходуемого объема.

Определение значения допустимого расхода и скорости резания

Используемые во второй формуле операнды p (допустимый расход) и V (скорость резания) зависят от множества факторов.

В частности значение допустимого расхода определяется паспортными данными сварочного аппарата. По сути p равно максимальной пропускной способности форсунки резака в рабочем режиме.

А вот скорость резания – V– определяется исходя из глубины шва, ширины режущей струи окислителя или плазмы, типа разделяемого материала и целой серии косвенных параметров.

В итоге, значение допустимого расхода извлекают из паспорта «резака», а скорость резания находят в справочниках, которые содержат специальные таблицы или диаграммы, связывающие все вводные данные.

И согласно справочным данным допустимый расход кислорода равняется 0,6-25 кубическим метрам в час. А максимальная скорость резания – 5-420 м/час. Причем для лазерной резки характерен минимальный расход (0,6 м3/час) и максимальная скорость (420 м/час): ведь такой резак разделит только 20-миллиметровую заготовку.

А вот плазменный резак «сжигает» до 25 м3/час кислорода и 1,2 м3/час ацетилена. При этом он разделяет даже 30-сантиметровые заготовки, делая разрез на скорости в 5 метров в час.

Словом, в таких расчетах все относительно: чем больше скорость, тем меньше глубина и чем больше расход, тем меньше скорость.

Гильотина

В основе данного способа резки лежит использование механических средств, а в частности специальных лезвий по металлу. По сути гильотина – это станок, который предназначен для резки листовой стали и стальных пластин (не путать с пресс-ножницами для резки труб и арматуры).

Преимущество гильотины в том, что она позволяет получить идеально ровный край среза без зазубрин, заусенцев и лишних кромок.

Однако и у данного метода есть свои недостатки:

  • Толщина разрезаемого материала не должна превышать 6мм для гидравлических машин;
  • Существует ограниченность по типу материала;
  • Максимальная длинна резки до 3000мм;
  • Невысокая точность получаемых полос при резке (качество зависит от квалификации оператора);
  • Нет возможности выполнять фигурную резку.

§ 12. Ручная газовая резка труб

Нормы на 1 м реза Таблица 036

Толщина стенки, мм Расход материалов по видам резки, л, с использованием Код строки
Ацетилена пропан-бутановой смеси природного газа
Ацетилен Кислород Пропан-бутан Кислород Природный газ Кислород
3 11,98 53,92 8,72 69,08 19,49 69,08 01
4 15,93 71,85 11,57 92,04 25,94 92,04 02
5 19,96 89,84 14,49 115,05 32,43 115,05 03
6 23,95 107,81 17,39 138,03 38,93 138,03 04
8 27,92 143,69 22,26 184 49,68 184 05
10 28,07 180,77 23 230,08 50,62 230,08 06
12 33,62 215,55 25,66 275,98 55,95 275,98 07
15 45,94 294,66 35,08 377,29 79,23 377,29 08
18 46,37 335,33 36 413,99 79,69 413,99 09
20 51,52 372,6 36,1 460 81,88 460 10
25 64,39 465,75 44,85 575 102,35 575 11
Код графы 01 02 03 04 05 06

Нормы на 1 перерез Таблица 037

При резке со скосом кромок под углом 50° и 30° нормы необходимо увеличивать соответственно в 1,55 и 1,16 раза.

Резка металла

Сколько баллонов кислорода нужно на резку данного объема металла? Данный вопрос является основополагающим, как при вычислении общих затрат в течение трудового процесса, так и при вычислении себестоимости изготовления детали и производства определённых видов работ. Так как кислород является топливом для резки детали, то норма расхода кислорода на резку металла приобретает ключевое значение, наряду с расходом электроэнергии. Существует несколько способов термического разделения металлов, которые подразделяются в зависимости от способа и вида используемого топлива. Поэтому наряду с кислородной резкой металлов мы в данной статье обратим внимание и на другие способы резки металлических конструкций. Итак, приступим.

Разновидности термической резки металла.

Рассмотрим три основных способа терморезки. Первый по распространению тип – это кислородно-автогенная резка. Область применения – раскрой листового и сортового углеродистого, низколегированного металлопроката, обрезка лишних выступов и кромок, которые образовались во время литья, подготовка деталей под сварку, разделка металлолома и прочее. Данный способ не применяется для разделения нержавеющих высоколегированных сталей, цветных металлов и чугуна.

Следующий тип – это плазменно-дуговая резка. Область применения – это также раскрой, но в данном случае низко- и высоколегированных сталей, а также алюминия, меди и их сплавов.

И последний тип, который мы рассмотрим в данной статье – это лазерная резка, которая является одним из инновационных методов резки металлов. Этот способ значительно расширяет область применения газовой резки и, благодаря этому, можно эффективно разделять тонколистный прокат, специальный профильный прокат, тонкостенные трубы, как из металлических, так и не из металлических деталей. Расход газового топлива в различных способах (кислород, ацетилен, пропан) на разделение определяется по специализированным таблицам в зависимости от режима резки, а также от толщины разрезаемого металла.

При вышеупомянутых типах резки по видам топлива номинируется расход газов, которые используются для разогрева разрезаемой конструкции, для резки, а также для образования плазмы. Повторим, что к таким относятся: кислород, газы-заменители (пропан- бутан, природный газ и др.), ацетилен, а также азот. Кроме этих газов, используются водород и аргон, но их область и популярность применения не значительна, поэтому включать в содержание статьи мы их не будем.

Во время работы с плазменно-дуговым прибором важно заранее планировать количество сменных специальных электродов (катодов), с циркониевыми или гафниевыми вставками. Нормы расхода данных электродов меняются в зависимости от интенсивности рабочего процесса и в общем, не превышают 4 стержней за одну смену. Более точное нормирование расхода стержней будет указано в инструкции по эксплуатации данного агрегата.

Расход газов на резку металла: нормы.

Расхода кислорода на резку металла, как и расход других газов, рассчитывается по специальной формуле:

И в этом уравнении Н – это нормативы расхода во время рабочего процесса, кубический метр газа на метр реза. L – величина разреза или вырезаемой детали, метр. Kh – это коэффициент, который учитывает множество особенностей рабочего процесса: расход газа на начальном этапе резке, продувка и регулировка, зажигание плазменной дуги, на прогрев металла, и, как правило, он равняется 1.1 при единичном производстве, или 1.05 — при промышленном производстве.

Норма расхода кислорода на резку металла и прочих газов (Н, кубический метр на один метр разреза) во время разделения в зависимости от мощностей оборудования и режима резки, высчитывается по следующей формуле:

Где Р – это допустимый расход газов, который указан в технических характеристиках используемого оборудования, метр кубический на час, а V – это скорость разделения метр на час.

Основные значения газового расхода по различным диапазонам скорости резки для некоторых типов оборудования, которые можно применять для расчётов крупного масштаба в промышленном производстве, приведены в следующей таблице.

Таблица. Номинальный расход газов в диапазоне скоростей резки для некоторых видов оборудования.
Виды оборудованияОптимальный диапазон разрешенных толщин ммДиапазон скоростей резки м/чНоминальный расход газа, м3/ч
КислородАцетиленАзотПриродный газВоздух
Ручной кислородный резак4-6030-65,0-10,00,12-0,450,21-0,75
Машинный кислородный резак5-30040-52,5-25,00,2-1,20,32-2,04
Плазменный резак1-60200-62,5-5,03,0-9,0
Лазерная режущая головка1-20*420-500,6-3,02,1-12,6
Для низкоуглеродистых, легированных сталей и цветных металлов диапазон 1-10 мм.

Применение различных газов в качестве топлива для разделительных машин по металлу обусловлено требованиями к применяемому оборудованию и в зависимости от технологического процесса. Зависимость толщины и скорости резки от допустимого расхода газа является прямо пропорциональной и данное значение можно легко и просто определить интерполированием. И поэтому можно укрупнено, оценочно совершить вычисление расхода различных газов независимо от вида термической резки металлов, исходя из размеров разреза, толщины металла, а также мощности оборудования.

В конце важно отметить, что нормирование расхода газов – это одна из важных особенностей, от которых зависит эффективность и скорость рабочего процесса, поэтому не стоит забывать про нормативы расхода, особенно во время разделения металла в огромных масштабах.

РЕЗКА МЕТАЛЛА

Газовая резка металла — классический метод термической резки. Разделение металла осуществляется режущим газом. Это недорогая и экономичная технология, возможна резка листового материала довольно большой толщины, но газовая резка тонких листов весьма проблематична. Следует также учитывать, что воздействие тепла режущим газом очень велико, и охватывает большую зону, что может вызвать термическую усадку. Еще один существенный недостаток газовой резки — у изделий остаются оплавленные края, что не всегда допустимо при монтаже изделий. Чтобы устранить этот дефект с помощью шлифовальной машинки производят дополнительную обработку — удаление наплывов и заусениц, выравнивание поверхности кромки. Поэтому потери материала при газовой резке могут быть около 2 см.
Резка металла газом используется для стали с массовым содержанием углерода до 0,7 % и некоторых сортов низколегированной стали. Алюминий и алюминиевые сплавы, чугун, медь, высоколегированные стали газовой резке не поддаются.

Абразивная резка металла осуществляется на стационарном оборудовании — углошлифовальной машине, которую также называют болгаркой. Применяется, как правило, при обработке небольших партий тонкостенного металлопроката, прутков небольших диаметров, арматуры.

Преимущества этого метода: кромка без наплывов и смятия, отсутствие механической и термической деформации металла, при резке не происходит нагревание материала, точность реза достигает ± 2 мм. Кроме того, технология абразивной резки является достаточно экологичной за счет применяемого абразива и отсутствия пыли в процессе резки.

Резка металла

Высокоточная ленточнопильная резка применяется для изделий из цветных металлов, легированной и нержавеющей стали, чугуна. Ленточнопильные станки обеспечивают непрерывную резку труб и сортового металлопроката на заготовки заданного размера. Главный инструмент в станках для резки металла — ленточная пила, которая изготавливается из очень прочной быстрорежущей стали, армированная кобальтом или твердым сплавом. Ленточная пила представляет собой замкнутую ленту, на которой расположены режущие зубья. Чаще всего резка металлопроката на ленточнопильных станках происходит перпендикулярно оси оборудования, но есть возможность резать металл и под заранее заданным углом (отличным от 90º), для этого станки оснащены поворотной рамой.

Ленточнопильная резка обеспечивает точность реза ± 1-1,5 мм, поверхность реза получается ровная, без заусенцев. С помощью ленточнопильного оборудования можно разрезать большие в сечении заготовки. Поперечная резка сортового проката увеличенного сечения — операция как раз для ленточнопильного станка. При необходимости на этом оборудовании выполнима поперечная резка труб. Прямолинейность реза при этом просто великолепная (ленточная пила не «скашивает» рез).

На сколько хватает кислородного баллона при резке металла

Эхо В-Тумане

24 литра пропана хватит на 10 заправок 10 литрового баллона кислорода, к 10-литровому кислороду достаточно 3-литрового пропана.

Евгений Привознов

Евгений Привознов

Лучше наоборот кислорода больше всегда расходуешь , смотря какой металл резать по качеству и толщине !

Джек Воробъев

Джек Воробъев

Дмитрий Семенов

Дмитрий Семенов

Капитан Морган

Капитан Морган

Дмитрий Сергеевич

Роман Романов

На Авито есть кислородные балоны по 20 литров и пропановый на 5 или 12 литров,вот это и будет мобильный резак,а вот 10 литровый кислородный,это очень мало

Евгений Шавалиев

На вопрос так и не ответили,сколько металла можно порезать, например труба 400 толщина стенки 12 мм и 20 литров кислорода и 5 пропана.Сколько резов трубы получится?

Иван Бушков

Андрей Борисов

Андрей Борисов

Евгений, вот ты вопрос то задал- смотря какую подачу кислорода ты влупишь ,номер сопла ,да и вообще- если не умеешь не берись!- на 50л баллон пропана 5 кислорода,- при значительной толщине металла и 10 кислорода будет мало,- причем один нюанс-: металл надобно обстучать кувалдой от херни

Как происходит резка металла газом

резка металла автогеном

Резка металла автогеном

Наиболее распространенный способ для осуществления резки металла сегодня – автогенный, его еще называют газовый или кислородный. Его суть сводится к тому, что под воздействием пламени газа, металл нагревается и начинает плавиться, а под воздействием струи кислорода происходит его сгорание, делая узкий паз.

Кислородно-флюсовая копьевая резка

Кислородно-флюсовая копьевая резка

В качестве подогревателя используют ацетилен, пропан-бутан, природный, коксовый газ.

Резка металла может классифицироваться в зависимости от необходимого конечного результата:

  • поверхностная;
  • разделительная;
  • резка копьем.

Поверхностная газовая резка применяется в случаях, когда необходимо удаление слоев металла, чтобы образовались шлицы, канавки и другие конструктивные элементы.

Разделительный вид предусматривает выполнения сквозного реза, для получения необходимого количества металлических элементов, частей. Прожиг металла для получения глубоких или сквозных отверстий называется резкой копьем.

Технологический процесс

В независимости от видов резки, технология выполнения данного процесса будет одинаковой. Горение газа обеспечивает температуру от 1000 до 1300 о С, ее достаточно, чтобы расплавить прочную сталь. Во время этого подается сильная струя кислорода, который вступает в реакцию с расплавленными молекулами металла, окисляя их.

Таблица толщин реза и расхода газа для мундштуков типа NX

Таблица толщин реза и расхода газа для мундштуков типа NX

В результате этого получается разрез. Кислород подается под большим давлением, Часто оно достигает 12 атмосфер, такая струя даже без подачи огня может разрезать кожу.

Строение режущего аппарата сконструировано таким образом:

  • газовая горелка;
  • два баллона;
  • смеситель;
  • регулятор давления;
  • шланги.

Газовая горелка состоит из головки с несколькими соплами, в основном достаточно трех. Через два боковых подается горючее вещество, через третий, который размещается посредине, подается кислород. Баллоны предназначены непосредственно для газа и кислорода, в зависимости от объемов предполагаемой работы подбираются соответствующие по вместительности баллоны.

Газовая горелка

Газовая горелка

Для обеспечения одного часа непрерывной работы будет расходоваться в среднем 0,7 м 3 ацетилена (1 м 3 пропана) и 10 м 3 кислорода. В целом необходимое количество исходного сырья будет зависеть от плотности металла и необходимой температуры для его нагрева. Сократить расход пропана можно за счет специальных насадок на сопла, которые фиксируют подачу газа в определенном направлении, чем ближе будет подача к кислородной струе, тем возрастет расход топлива.

Шланги необходимы для подачи кислорода и горючего вещества из баллонов в смеситель, их еще называют рукавами. Материал, из которого сделаны шланги – двухслойная резина, между слоями каркас, выполненный из хлопчатобумажной нити. Диаметр – до 12 мм, возможность эксплуатации при температуре воздуха не ниже -35 о С.

Регулятор давления необходим для обеспечения разных режимов и скоростей резки. Подавая меньшее количество топлива можно обеспечить низкую температуру, которая необходима для тонкой стали или металла невысокой прочности, а также сократить расход сырья.

Еще одной важной функцией редуктора является поддержание равномерного уровня давления. Если в процессе резки будет прервана подача газа, металл быстро охладеет и дальнейшая обработка станет невозможной.

Резка металла пропаном и кислородом

Необходимое оборудование

Самым первым резаком было устройство Р1-01, его сконструировали еще в СССР, затем появились более модернизированные модели – Р2 и Р3. Отличаются аппараты размерами сопел и мощностью редуктора. Более современные ручные установки:

Они отличаются набором дополнительных функций и производительностью.

Quicky-Е может осуществлять фигурную резку, по заданным чертежам, скорость работы достигает 1000 мм в минуту, максимально допустимая толщина металла до 100 мм. Устройство имеет набор съемных сопел для обеспечения обработки металлических листов или труб различной толщины.

Машинка автогенной резки Messer

Машинка автогенной резки Messer

Этот аппарат может работать, используя различные виды горючего газа, в отличие от прототипа Р1-01,который работает только на ацетилене.

Ручной резак Secator имеет более улучшенные характеристики по сравнению с аналогами.

С его помощью можно обрабатывать металл толщиной до 300 мм, это обеспечивают дополнительные насадки, входящие в комплект, они съемные и их можно приобрести дополнительно, по мере износа. Secator может производить следующие виды резки:

  • фигурную;
  • прямую;
  • кольцевую;
  • под скосом.

Скорость может регулироваться в диапазоне от 100 1200 мм в минуту, а с помощью встроенной муфты свободного хода обеспечивается плавное перемещение машины по листу металла. Редуктор с воздушным охлаждением обеспечивает более чистую работу и сокращает расход горючего вещества.

Вышеперечисленные модели относятся к ручным, то есть они компактные, управляются с помощью рук мастера. Но для больших объемов обрабатываемого металла работать с такими

Стационарная режущая установка

Стационарная режущая установка

установками неудобно и не эффективно. Для промышленного производства применяются стационарные режущие установки — это, по сути, та же технология.

Они представляют собой станок со столешницей, в которую встроен режущий механизм. Работу его обеспечивает электрический

компрессор, для которого необходима электросеть с не менее 380 В и трехфазными розетками. Технология работы моделей стационарных режущих установок ничем, но отличается от ручных. Разница лишь в производительности, максимальной температуре нагрева, и способности обрабатывать металл, толщиной более 300 мм.

Условия для резки металла газом

Газовая резка металла будет эффективна только в том случае, когда температура воспламенения металла будет меньшей, чем температура плавления. Такие пропорции соблюдаются в низкоуглеродистых сплавах, они плавятся при 1500 о С, а процесс воспламенения наступает при 1300 о С.

Для качественной работы установки необходимо обеспечить постоянную подачу газа, поскольку кислороду необходимо постоянное количество теплоты, которая поддерживается в основном (на 70%) за счет сгорания металла и лишь 30% обеспечивает пламя газа. Если его прекратить, металл перестанет вырабатывать тепло и кислород не сможет выполнять возложенные на него функции.

Работа резака, обучение резки металла

Максимальная температура ручных газовых резаков достигает 1300 о С, это достаточная величина для обработки большинства видов металла, однако, есть и такие, которые начинают плавиться при особо высоких температурах, например, окисел алюминия – 2050 о С (это почти в три раза больше чем температура плавления чистого алюминия), сталь с содержанием хрома – 2000 о С, никеля – 1985 о С.

Если металл достаточно не разогрет и не начат процесс плавления, кислород не сможет вытеснить тугоплавкие окислы. Обратная этой ситуация, когда металл имеет низкую температуру плавления, под воздействием горящего газа он может просто расплавиться, так, нельзя применять данный способ резки для чугуна.

Техника безопасности

Осуществление резки металла с помощью газовой установки лучше доверить опытному специалисту, поскольку при неаккуратном обращении последствия могут быть достаточно печальными.

Техника безопасности предполагает выполнения следующих условий:

  • хорошая вентиляция в помещении, где будут осуществляться работы;
  • на расстоянии 5 метров не должно быть баллонов с газом и прочими горючими веществами;
  • работы должны вестись в защитной маске или специальных очках, а также в огнеупорной одежде;
  • направлять пламя необходимо в противоположную сторону от источника газа;
  • шланги в процессе эксплуатации прибора нельзя перегибать, наступать на них, зажимать ногами;
  • если делается перерыв, то следует полностью погасить пламя у горелки и закрутить газовые вентили баллонов.

Соблюдение этих простых условий обеспечит безопасную и эффективную работу по резке металла газовой установкой.

Демьян Бедный

Может стоит пойти и получить образование?

Сергей Путинцев

Александр Дикий

Владислав Чабанов

Максим Кабрин

Человек вопрос задал а вы ржоте,помочь нужно ,там подскажут,сдесь,смотриш дальше все сам понимать сможет.

Константин Розов

Все зависит от резака , кислород сдувается в 0 а в пропане остаётся немного газа+ конденсат, . не используй армянские резаки используй типа норд. а то когда кончается газ может засосать пламя в шланги ,они загораются и бабах, также при резке МЕ сопло держать надо от МЕ 2-3 мм . нельзя "втыкать" резак в МЕ а то произойдет обратный удар сопло,внутренний мундштук может прогореть газы смешиваются и голова взрывается. так что смотри.в оба

Илья Сурин

Все поймешь при резке, кислого не менее двух атм. Начнет плохо резать меняй баллон. Пламя приобретает выраженно синий цвет и уменьшается в размере, кончается пропан. Пламя рыжеет и не продувается-кислород. Газ кончается почти мгновенно.За этим и ставится редуктор (в том числе).

Денис Меньщиков

Ютуб в помощь

Сергей Ивановский

DELETED

Часто бывает что в редукторе не работают стрелки на манометрах. В результате падения погнулся цыферблат или ещё какаянидь хрень. На них надедеяться не стоит. Чуйку развивай. Подходишь к баллону, кидаешь взгляд на него полный харизмы и понимаешь, сколько там он ещё проработает. Сергей, сдувать не умеешь

Гамлет Багдасарян

Серёга Богданов

Серёга Богданов

Сергей, ошиблись, нечего права качать. Две атмосферы это полная фигня, шланги держат легко, разве я не прав .

Чего нет? читайте таблицу

Гамлет, вы достали умники всегда поправилам должно оставаться остаточное давление 5-10атм умник изучай мат.часть.

Сергей Мамурин

Это ты такой у нас умный аш жуть, и на манометра не пишется атмосфер, и ты не ответил, у тебя кислород заканчивается на манометра что показывает?

Сергей, вот металл то тут при чем? Сергей прав по поводу регламентов.Но. На редукторе два монометра, один показывает давление в баллоне, другой давление в рукавах. Давление в рукавах можно настроить от 0-2.5 МПа. 2.5 МПа это приблезительно 24 атм. Если вы режете сороковку - ставите расход газа больше, если тончатину - меньше.
В определенный момент давление в баллоне уравнивается с установленным давлением в шлангах. И тут начинаются неприятные вещи. Непродув, слабое пламя и тд.
Я сильно сомневаюсь что баллоны кто-то меняет по регламенту. Перестало дуть-пора менять.

Читайте также: