Общая характеристика металлов по положению в периодической системе

Обновлено: 03.07.2024

Переходные элементы имеют d- и f-электроны, у них происходит заполнение внутренних оболочек. В Периодической системе химических элементов (ПСХЭ) они заполняют В-группы (побочные) 4, 5 и 6 периодов (рис. 1). В основном расположены между s- и р-элементами.

Рис. 1. Периодическая таблица

Наибольшее практическое значение среди переходных элементов имеют медь, цинк, хром и железо. На примере элементов, простых веществ и соединений можно проследить общие закономерности изменения свойств.

Медь, Cu

Латинское название — Cuprum, символ — Cu. Относительная атомная масса — 63,5. Медь находится в 4 периоде, I B-группе ПСХЭ. Порядковый номер — 29.

Распределение электронов по уровням и подуровням характеризует следующая электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 . В возбужденном состоянии на 4s уровень и подуровень «проскакивает» один d-электрон. Атом получает более устойчивую конфигурацию электронных оболочек.

Типичные значения валентностей и степеней окисления в соединениях: I(+), II(+), 0, +1, +2 соответственно. Заряд катиона 2+.

Способ получения меди в лаборатории — восстановление из оксида с помощью водорода при нагревании.

  • Восстановление водородом. Схема процесса: Cu +2 O + H2 → Cu 0 + H2O.
  • Металлотермия. Происходит реакция обмена CuO + H2SO4 → CuSO4 + H2O. далее идет вытеснение меди железом CuSO4 + Fe → FeSO4 + Cu↓.
  • Электролиз водного раствора сульфата меди. На катоде происходит восстановление Cu 2+ + 2ē → Cu 0 ; на аноде — окисление 2H2O – 4ē → 4H + + O2↑.

Описание металла — простого вещества

  • золотисто-красный цвет (рис. 2);
  • металлический блеск;
  • пластичен, легко вытягивается в проволоку и прокатывается в листы;
  • тепло- и электропроводность высокие.

Рис. 2. Медь

Химические свойства:

  • Медь в ряду активности находится после водорода, это инертный металл.
  • Не взаимодействует с водой.
  • Не реагирует при обычных условиях с водородом, углеродом, кремнием, азотом, с растворами соляной и серной кислот, растворами щелочей.
  • Взаимодействует с концентрированными растворами серной и азотной кислот.

Важнейшие соединения меди

Класс веществ

Название соединения

Характер свойств

Оксид меди (II) CuO

Амфотерный (преобладают основные свойства).

Гидроксид меди (I) СuOH

Применение меди, ее соединений и сплавов:

  • изготовление конденсаторов, механизмов для часов, ювелирных изделий с применением латуни (сплава);
  • использование чистого металла и сплавов в машиностроении;
  • использование оксидов в производстве стекла, эмалей;
  • производство дистилляторов воды;
  • выпуск проволоки, кабеля.

Кристаллогидрат сульфата меди (медный купорос) — средство для борьбы с грибковыми инфекциями растений. Применяется в смеси с гашеной известью для получения более сильной бордоской жидкости. Медь используется в производстве микроудобрений. Элемент необходим растениям и животным для нормального роста и развития.

Цинк, Zn

Латинское название Zincum, химический символ Zn. Элемент 4 периода, расположен во II группе, В-подгруппе. Порядковый номер 30. Масса — 65,37. Строение электронных оболочек: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 (в основном состоянии). Валентность и степень окисления: II(+) и +2 (соответственно).

Способы получения в промышленности:

  • Восстановление углеродом при нагревании: ZnO+ C → CO↑ + Zn.
  • Гидрометаллургия: ZnO + H2SO4 → ZnSO4+ H2O; ZnSO4+ Fe → FeSO4+ Zn↓.
  • Электролиз: цинк восстанавливается на катоде Zn 2+ + 2H + + 4ē → Zn↓ + H2.

Цинк — металл серебристо-серого цвета (рис. 3). Твердый, проводит тепло и электричество. Окисляется кислородом при нагревании. Не взаимодействует с бором, углеродом, кремнием, азотом. В воде не растворяется, но при сильном нагревании реагирует с водяным паром с образованием оксида цинка и выделением водорода. Реагирует с кислотами, кроме азотной, вытесняет водород. Вытесняет металлы, расположенные в ряду активности правее, из растворов их солей.

Рис. 3. Цинк

Характеристика соединений

Классы веществ

Названия и формулы

Свойства

Оксид цинка, ZnO

Гидроксид цинка Zn(ОН)2

Цинк находит применение как защитный материал для предотвращения ржавчины (оцинковки) изделий из стали, железа. Металл используется в строительстве, производстве бытовой техники и для других целей.

Хром, Cr

Латинское название Chromium, химический символ Cr. Элемент 4 периода, VI В-группы. Порядковый номер 24. Относительная атомная масса — 52. Строение электронных оболочек характеризует формула 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 (в невозбужденном состоянии).

Значения валентности и степени окисления в соединениях: II(+), III(+) VI(+); +2, +3, +6 (соответственно). Наиболее устойчивое состояние достигается при степени окисления +3. Повышение значения ведет к появлению и возрастанию кислотных свойств, ослаблению основных.

Способы получения в промышленности — пирометаллургия и электролиз. В первом случае используется вытеснение алюминием из оксида. Схема процесса: Cr2O3 + 2Al → Al2O3 + 2Cr. Проводят электролиз концентрированных водных растворов оксидов (CrO3 или Cr2O3), либо соли Cr2(SO4)3. Второй метод служит для получения наиболее чистого вещества.

Хром — твердый металл серого цвета с металлическим блеском (рис. 4). Вытесняет водород при взаимодействии с растворами неокисляющих кислот (соляной, фосфорной и др.). При сильном нагревании растворяется в серной и азотной кислотах.

Рис. 4. Хром

Химические свойства соединений

Гидроксид хрома (II), Сг(ОН)2.

Металл применяется для хромирования стали, изготовления декоративных изделий, бижутерии. Растворами солей пропитывают древесину для защиты от вредителей. Хром применяется для изготовления красителей, окраски стекла.

Железо, Fe

Латинское название Ferrum, химический символ Fe. Элемент находится в 4 периоде, VIII В-группе ПСХЭ. Порядковый номер 26. Относительная атомная масса — 56. Строение электронных оболочек характеризует формула 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (в невозбужденном состоянии).

Значения валентности и степени окисления в соединениях: II(+), III(+) VI(+); +2, +3, +6 (соответственно). Самое устойчивое состояние — при степени окисления +3. Железо в степени окисления +6 — сильный окислитель.

Железо получают в промышленности двумя основными способами. Пирометаллургический заключается в восстановлении алюминием или водородом при высоких температурах. Схема алюмотермии: Fe3O4 + 4H2 → 3Fe + 4H2O. Подвергают растворы солей, например хлорид. На катоде происходит восстановление по схеме: Fe +3 + 3ē → Fe↓. На аноде собирают газообразный хлор. Сплавы железа — чугун и сталь — производят в мартеновских печах, получают электрометаллургическим способом.

Железо — твердый металл серебристо-черного цвета с металлическим блеском (рис. 5). Взаимодействует с кислородом при сильном нагревании. Вытесняет водород из растворов кислот. В воде окисляется с образованием оксидов и гидроксидов. Эту смесь в быту называют ржавчиной (рис. 6).

1. Общая характеристика элементов металлов

Из \(118\) известных на данный момент химических элементов \(96\) образуют простые вещества с металлическими свойствами, поэтому их называют металлическими элементами .

Металлические химические элементы в природе могут встречаться как в виде простых веществ, так и в виде соединений. То, в каком виде встречаются металлические элементы в природе, зависит от химической активности образуемых ими металлов.

Металлические элементы, образующие химически активные металлы ( Li–Mg ), в природе чаще всего встречаются в виде солей (хлоридов, фторидов, сульфатов, фосфатов и других).

Соли, образуемые этими металлами, являются главной составной частью распространённых в земной коре минералов и горных пород.

shutterstock_499534720.png

calcite-728720_640.png

В растворённом виде соли натрия, кальция и магния содержатся в природных водах. Кроме того, соли активных металлов — важная составная часть живых организмов. Например, фосфат кальция Ca 3 ( P O 4 ) 2 является главной минеральной составной частью костной ткани.

Металлические химические элементы, образующие металлы средней активности ( Al–Pb ), в природе чаще всего встречаются в виде оксидов и сульфидов.

гематит.png

galena-337703_640.png

Металлические элементы, образующие химически неактивные металлы ( Cu–Au ), в природе чаще всего встречаются в виде простых веществ.

Stringer156_nugget.jpg
silver-4437577_640.png
самородная платина.png
Рис. \(7\). Самородное золото Au Рис. \(8\). Самородное серебро Ag Рис. \(9\). Самородная платина Pt

Исключение составляют медь и ртуть, которые в природе встречаются также в виде химических соединений.

1024px-MoreMalachite.png

В Периодической системе химических элементов металлы занимают левый нижний угол и находятся в главных (А) и побочных (Б) группах.

Рис. \(13\). Положение металлов в Периодической системе. Знаки металлических химических элементов расположены ниже ломаной линии B — Si — As — Te

В электронной оболочке атомов металлов на внешнем энергетическом уровне, как правило, содержится от \(1\) до \(3\) электронов. Исключение составляют только металлы \(IV\)А, \(V\)А и \(VI\)А группы, у которых на наружном энергетическом уровне находятся соответственно четыре, пять или шесть электронов.

В атомах металлов главных подгрупп валентные электроны располагаются на внешнем энергетическом уровне, а у металлов побочных подгрупп — ещё и на предвнешнем энергетическом уровне.

Радиусы атомов металлов больше, чем у атомов неметаллов того же периода. В силу отдалённости положительно заряженного ядра атомы металлов слабо удерживают свои валентные электроны.

Рис. \(14\). Характер изменения радиусов атомов химических элементов в периодах и в группах. Радиусы атомов металлов существенно больше, чем радиусы атомов неметаллов, находящихся в том же периоде

Главное отличительное свойство металлов — это их сравнительно невысокая электроотрицательность (ЭО) по сравнению с неметаллами.

Таблица электроотрицательности RU (1).png

Рис. \(15\). Величины относительных электроотрицательностей (ОЭО) некоторых химических элементов (по Л. Полингу). ОЭО металлических химических элементов уступает соответствующей величине неметаллических химических элементов

Атомы металлов, вступая в химические реакции, способны только отдавать электроны, то есть окисляться, следовательно, в ходе превращений могут проявлять себя в качестве восстановителей .

Общая характеристика металлов IА–IIIА групп

Общая характеристика металлов IА–IIIА групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов

Металлы характеризуют по их положению в Периодической системе химических элементов Д. И. Менделеева (ПСХЭ или ПС), строению атома. Простые вещества-металлы, их сплавы подразделяют на легкие и тяжелые, тугоплавкие и легкоплавкие, выделяют благородные, описывают отношение к электрическому току.

Общая характеристика металлов

Периодическая система — совокупность горизонтальных рядов и вертикальных столбцов. Последние включают в себя подгруппы А (главные) и В (побочные). Элементы подгрупп расположены друг под другом, они похожи по строению и свойствам. Типичные металлы относятся к первым трем А-группам.

Рис. 1. Периодическая система

Мысленно проведем диагональ в ПС: сверху от лития и бериллия вниз — к астату (Рисунок 1). Слева внизу окажутся элементы-металлы, справа вверху расположены неметаллы. Чем левее и ниже, тем сильнее металлические свойства. По направлению вверх и вправо усиливается неметаллический характер элементов. Вблизи воображаемой линии расположены металлоиды, сочетающие свойства двух классов элементов. Их соединения также обладают двойственным характером.

В атомах химических элементов первых трех А-групп расположены 1–3 электрона на внешнем (валентном) энергетическом уровне. До его заполнения не хватает 7–5 электронов. Таким частицам легче отдать валентные электроны, чем присоединить недостающие. При этом образуются ионы с зарядами от +1 до +3 (одно-трехзарядные катионы). Типичные валентности металлов — от I(+) до III(+), степени окисления — от + до 3 + . Металлы В-групп могут отдавать электроны предвнешнего уровня. Валентности, степени окисления и заряды ионов в этом случае возрастают.

Радиусы металлов сравнительно большие, что тоже объясняет слабую связь внешних электронов с ядром. Закономерное возрастание радиусов наблюдается в группах сверху вниз. Также в этом направлении усиливаются металлические (восстановительные) свойства. Слева направо в периодах металлические свойства ослабевают, а неметаллические — усиливаются.

Низкие значения относительной электроотрицательности, малое сродство к электрону — еще одна общая черта металлов. В целом, это сильные восстановители, для которых нехарактерны окислительные свойства. В химических реакциях атомы металлических элементов легко отдают внешние электроны окислителям, при этом приобретают электронное строение инертного газа из предыдущего периода.

Сходством электронного строения обусловлены физические свойства металлов. (Рис. 2).

Рис. 2. Связь положения металлов со строением и свойствами

Наличием свободных электронов в виде «электронного газа» обусловлена высокая электропроводность металлов. Они обычно имеют светло- или темно-серый цвет, обладают характерным блеском. Это ковкие, пластичные вещества, что используются при изготовлении проволоки, проката. Теплопроводность и электропроводность металлов имеют большое практическое значение.

Кристаллическая решетка металлов отличается от других типов наличием «электронного газа». Щелочные металлы — самые мягкие, они легко сгибаются, режутся ножом.. Хром царапает стекло, что характерно для твердых веществ, например, алмаза, корунда. Самый легкий металл — литий, тяжелый – осмий. Ртуть плавится при 30°С, вольфрам — почти при 3400°С.

Восстановительные свойства металлов представлены в их последовательности, получившей название «Электрохимический ряд напряжений ( ряд активности металлов )». (Рис. 3).

Рис. 3. Ряд активности металлов

Слева направо в ЭХРН восстановительная активность металлы, а именно способность отдавать электрон, снижается.

Металлы реагируют с кислородом с получением оксидом. С водородом образуют гидриды (только металлы IА и IIА групп), с серой — сульфиды. Металлы вступают в химические реакции с галогенами и азотом.

Щелочные и щелочноземельные металлы реагируют с водой с образованием растворимых оснований. В реакции выделяется водород, который нередко вспыхивает из-за выделения тепла в результате взаимодействия веществ.

Металлы, расположенные в ЭХРН до водорода, вытесняют Н2 из растворов кислот. Металлы после водорода — менее активные. Медь, ртуть, золото, серебро и платина не взаимодействуют с кислотами с вытеснением Н2.

Более активные металлы могут вытеснять металлы, расположены в ЭХРН правее, из растворов солей. Это и другие свойства широко используются для получения металлов, их важнейших соединений.

Характеристика металлов IA группы

Элементы Li, Na, K, Rb, Cs, Fr обладают сильными металлическими свойствами. Свое тривиальное название «щелочные металлы» они получили за едкие свойства растворимых оснований (щелочей). Лучше изучены первые три представителя группы. Франций является радиоактивным элементом, его химические свойства еще только исследуются в экспериментах.

Общая характеристика по положению в ПС и строению атома:

  • Заряды ядер соответствуют порядковым номерам элементов, только со знаком «+». Например, заряд ядра натрия равен + 11, калия + 19.
  • Электронная конфигурация в невозбужденном состоянии повторяет строение предыдущего инертного газа плюс 1 электрон на уровне, имеющем такой же номер, как период. Например, строение атома лития отражает формула (He)2s 1 , где (He) — это электронное строение атома гелия 1s 2 , а 2s 1 — номер последнего энергетического уровня, подуровень, количество электронов на нем.
  • Радиус элементов IA группы возрастает от 0,152 у лития до 0,248 нм у рубидия. Электроотрицательность снижается от лития (0,98) до франция (0,7).
  • Внешний энергетический уровень содержит 1 электрон, слабо связанный с ядром. Отдавая его, атомы превращаются в однозарядные катионы.

Щелочные металлы образуют соединения с ионной кристаллической решеткой с галогенами, кислородом и азотом.

Простые вещества химически очень активны: взаимодействуют с водой со взрывом, загораются на воздухе. Щелочные металлы хранят в лабораториях в запаянных ампулах, или в банках под слоем жидкости, не содержащей воду.

Ионы существенно отличаются по свойствам от атомов. Натрий, калий в виде однозарядных катионов являются макроэлементами, необходимыми для живых организмов.

Характеристика металлов IIA группы

Элементы IIA группы — Ве, Mg, Са, Sr, Ва, Ra. Радий — радиоактивный элемент. Электронное строение атомов IА и IIА групп имеет много общего. Повторяется конфигурация энергетических уровней инертного газа из предыдущего периода, дополненная двумя s-электронами на последнем уровне. Например, электронная конфигурация Са (Ar)4s 2 .

Радиус атомов возрастает сверху вниз от 0,112 у бериллия до 215 нм у стронция. Электроотрицательность выше, чем у щелочных металлов. ЭО бериллия — 1,57, магния — 1,31, кальция — 1, стронция — 0,95. Щелочноземельные металлы проявляют валентность II(+), степень окисления +2. Образуют двухзарядные катионы, например, Са 2+ .

Все щелочноземельные металлы при комнатной температуре — твердые вещества. Цвет серый или темно-серый, блеск металлический. Стронций режется ножом, кальций с трудом, магний твердый.

Общие признаки:

  • относятся к s-элементам;
  • на внешнем электронном слое по 1 и по 2 электрона;
  • в свободном состоянии в периоде не встречаются;
  • все металлы серебристо-белого цвета;
  • имеют низкие температуры кипения и плавления

Внутри групп существуют различия в химических свойствах. Например, бериллий и магний больше напоминают алюминий, отличаются от кальция и бария. Щелочноземельные металлы в химических реакциях с окислителями легко отдают валентные электроны и превращаются в двухзарядные катионы. Химическая активность повышается от бериллия к радию.

Характеристика металлов IIIA группы

Представители —В, Al, Ga, In, Tl. Бор в этой подгруппе — единственный неметалл. Заряд ядер атомов возрастает от 5 у бора до 81 у таллия. Атомный радиус в том же порядке увеличивается с 0,091 до 0,171 нм. Электроотрицательность снижается с 2,04 до 1,44.

Для электронной конфигурации металлов IIIA группы характерно наличие двух спаренных s-электронов и одного р-электрона. В «реальном» атоме все электроны внешнего энергетического уровня выравниваются по форме и энергии в результате sp2-гибридизации. Характерные валентность, степень окисления и заряд ионов в этой группе — III(+), +3, 3 + соответственно. Изменения свойств представлены в схеме 1.

Схема 1. Характеристика IIIA группы

Простые вещества имеют металлический блеск, серебристо-белый цвет. Они относительно легкоплавкие и мягкие. Лист или проволока из алюминия легко сгибаются, а индий — один из самых мягких металлов. Талий не только мягкий, но и твердеет при низкой температуре около –60°С.

Эка-таллий или нихоний — относительно недавно открытый, еще недостаточно изученный элемент IIIA группы.

Свойства галлия и индия близки к химии алюминия. Причина — одинаковое строение внешнего энергетического уровня. Алюминий имеет высокие тепло- и электропроводность.

Общие свойства металлов IА–IIIА групп ПС обусловлены сходством в электронном строении внешних электронных оболочек. Радиусы атомов и свойства закономерно изменяются. Более сильные металлические элементы — последние представители в группах. Самые сильные металлы относятся к IА группе. К IIIА группе металлические свойства ослабевают.

Атомы элементов IА–IIIА групп имеют сходство в строении электронных оболочек и закономерностях изменения свойств, что приводит к некоторому сходству их химических свойств и свойств их соединений.

Металлы IA (первой группы главной подгруппы) также называются «щелочные металлы«. К ним относятся литий, натрий, калий, рубидий, цезий. Франций – радиоактивный элемент, в природе практически не встречается. У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон:

… ns 1 — электронное строение внешнего энергетического уровня щелочных металлов

Металлы IA группы — s-элементы. В химических реакциях они отдают один валентный электрон, поэтому для них характерна постоянная степень окисления +1.

Рассмотрим характеристики элементов IA группы:

Все щелочные металлы — сильные восстановители. Это самые активные металлы, которые могут непосредственно взаимодействовать с неметаллами. С ростом порядкового номера и уменьшением энергии ионизации металлические свойства элементов усиливаются. Щелочные металлы образуют с кислородом оксиды Э2О. Оксиды щелочных металлов реагируют с водой с образованием основания (щелочи):

Водородные соединения щелочных металлов — это гидриды с общей формулой ЭН. Степень окисления водорода в гидридах равна -1.

Металлы IIA (второй группы главной подгруппы) — щелочноземельные. Раньше к щелочноземельным металлам относили только кальций, стронций, барий и радий, но по решению ИЮПАК бериллий и магний также называются щелочноземельными.

У щелочноземельных металлов на внешнем энергетическом уровне расположены два электрона. В основном состоянии это два спаренных электрона на s-подуровне:

… ns 2 — электронное строение внешнего энергетического уровня элементов IIA группы

Щелочноземельные металлы — s-элементы. Отдавая два валентных электрона, они проявляют постоянную степень окисления +2. Все элементы подгруппы бериллия — сильные восстановители, но восстановительные свойства выражены слабее, чем у щелочных металлов.

Характеристики элементов IIA группы:

Металлы подгруппы бериллия довольно активны. На воздухе они легко окисляются, образуя основные оксиды с общей формулой ЭО. Этим оксидам соответствуют гидроксиды Э(ОН)2.

Первый элемент IIA группы, бериллий, по большинству свойств гораздо ближе к алюминию (диагональное сходство). Это проявляется в свойствах бериллия. Например, он не взаимодействует с водой. Магний взаимодействует с водой только при нагревании. Кальций, стронций и барий — это типичные металлы. Они реагируют с водой при обычных условиях.

Элементам IIA группы соответствуют гидриды с общей формулой ЭН2.

Элементы IIIA (третьей группы главной подгруппы) — это бор, алюминий, галлий, индий, таллий и нихоний. В основном состоянии содержат на внешнем энергетическом уровне три электрона, которые распределены по s- и р-подуровням:

… ns 2 nр 1 — электронное строение внешнего энергетического уровня элементов IIIA группы

Все элементы подгруппы бора относятся к р-элементам. В химических соединениях проявляются степень окисления +3. Хотя для таллия более устойчивая степень окисления +1.

Металлические свойства у элементов подгруппы бора выражены слабее, чем у элементов IIA подгруппы. Элмент бор относится к неметаллам. Энергия ионизации атома у бора наибольшая среди элментов IIIA подгруппы. Алюминий относится к типичным металлам, но оксид и гидроксид алюминия проявляют амфотерные свойства. У таллия более сильно выражены металлические свойства, в степени окисления +1 он близок по свойствам к щелочным металлам. Наибольшее практическое значение среди элементов IIIA подгруппы имеет алюминий.

Периодический закон

Периодический закон — это фундаментальный закон, который был сформулирован Д.И. Менделеевым в 1869 году.

В формулировке Дмитрия Ивановича Менделеева периодическ ий закон звучал так: « Свойства элементов, формы и свойства образуемых ими соединений находятся в периодической зависимости от величины их атомной массы .» Периодическое изменение свойств элементов Менделеев связывал с атомной массой. Понимание периодичности изменения многих свойств позволило Дмитрию Ивановичу определить и описать свойства веществ, образованных еще не открытыми химическими элементами, предсказать природные рудные источники и даже места их залегания.


Более поздние исследования показали, что свойства атомов и их соединений зависят в первую очередь от электронного строения атома. А электронное строение определяется свойствами атомного ядра. В частности, зарядом ядра атома .

Поэтому современная формулировка периодического закона звучит так:

« Свойства элементов, форма и свойства образованных ими соединений находятся в периодической зависимости от величины заряда ядер их атомов «.

Следствие периодического закона – изменение свойств элементов в определенных совокупностях, а также повторение свойств по периодам, т.е. через определенное число элементов. Такие совокупности Менделеев назвал периодами.

Периоды – это горизонтальные ряды элементов с одинаковым количеством заполняемых электронных уровней. Номер периода обозначает число энергетических уровней в атоме элемента. Все периоды (кроме первого) начинаются щелочным металлом ( s -элементом), а заканчиваются благородным газом.

Группы – вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns— и np— подуровнях.

1. Периодическая система химических элементов Д.И. Менделеева

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра.

Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородными газами (Ne, Ar, Kr, Xe, Rn), которым предшествуют типичные неметаллы.

В периодах слева направо возрастает число электронов на внешнем уровне.

В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства.

1) Li 2) Ca 3) Cs 4) N 5) S

Ответ: 154

1) Be 2) Ba 3) Mg 4) N 5) F

Ответ: 541

В первом периоде имеются два элемента – водород и гелий. При этом водород условно размещают в IA или VIIA подгруппе, так как он проявляет сходство и со щелочными металлами, и с галогенами. Как и щелочные металлы, водород является восстановителем. Отдавая один электрон, водород образует однозарядный катион H + . Как и галогены, водород – неметалл, образует двухатомную молекулу H2 и может проявлять окислительные свойства при взаимодействии с активными металлами:

2Na + H2 → 2NaH

В четвертом периоде вслед за Са расположены 10 переходных элементов (от скандия Sc до цинка Zn), за которыми находятся остальные 6 основных элементов периода ( от галлия Ga до криптона Кr). Аналогично построен пятый период. Переходными элементами обычно называют любые элементы с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d–элементов (от лантана La — до ртути Hg), а после первого переходного элемента лантана La следуют 14 f–элементов — лантаноидов (Се — Lu). После ртути Hg располагаются остальные 6 основных р-элементов шестого периода (Тl — Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th — Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

В Периодической системе каждый элемент расположен в строго определенном месте, которое соответствует его порядковому номеру .

Элементы в Периодической системе разделены на восемь групп (I – VIII), которые в свою очередь делятся на подгруппы — главные , или подгруппы А и побочные , или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно:

В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические.

В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы.

У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп (литий, бериллий, натрий и др.). У p-элементов электронами заполняются p-орбитали. К ним относятся элементы III-VIII групп, главных подгрупп. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.

Номер периода соответствует числу заполняемых энергетических уровней.

Номер группы, как правило, соответствует числу валентных электронов в атоме (т.е. электроном, способных к образованию химической связи).

Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения!

О каких же еще свойствах говорится в Периодическом законе?

Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др.

2. Радиус атома

Рассмотрим, как меняется атомный радиус . Вообще, атомный радиус – понятие довольно сложное и неоднозначное. Различают радиусы атомов металлов и ковалентные радиусы неметаллов.

Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств.

Мы говорим про орбитальный радиус изолированного атома .

Орбитальный радиус – это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов.

Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами.

Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы.

Например , в ряду атомов: F – Cl – Br – I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается.


Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы.

Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру.

Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно:

Чем больше заряд ядра атома (при одинаковом количестве заполняемых энергетических уровней), тем меньше атомный радиус.

Например , в ряду Li – Be – B – C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается.


В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома.

В главных подгруппах сверху вниз увеличивается орбитальный радиус.

В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов.

В периодах слева направо орбитальный радиус атомов уменьшается.


1) O 2) Se 3) F 4) S 5) Na

Решение:

В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S.

В группе снизу вверх атомный радиус уменьшается, а сверху вниз – увеличивается. Следовательно, правильный ответ: O, S, Se или 142.

Ответ: 142

1) K 2) Li 3) F 4) B 5) Na

Решение:

В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na.

В периоде слева направо атомный радиус уменьшается, а справа налево – увеличивается. Следовательно, правильный ответ: Li, B, F или 243.

Ответ: 243

1) Ca 2) P 3) N 4) О 5) Ti

p-элементы это фосфор Р, азот N, кислород О.

В периоде слева направо атомный радиус уменьшается, а справа налево – увеличивается. В группе — сверху вниз увеличивается. Следовательно, правильный ответ: P, N, O или 234.

Ответ: 234

Рассмотрим закономерности изменения радиусов ионов : катионов и анионов.

Катионы – это положительно заряженные ионы. Катионы образуются, если атом отдает электроны.

Радиус катиона меньше радиуса соответствующего атома. С увеличением положительного заряда иона радиус уменьшается.

Например , радиус иона Na + меньше радиуса атома натрия Na:


Анионы – это отрицательно заряженные ионы. Анионы образуются, если атом принимает электроны.

Радиус аниона больше радиуса соответствующего атома.

Радиусы ионов также зависят от числа заполненных энергетических уровней в ионе и от заряда ядра.

Например , радиус иона Cl – больше радиуса атома хлора Cl.

Изоэлектронные ионы – это ионы с одинаковым числом электронов. Для изоэлектронных частиц радиус также определяется зарядом ядра: чем больше заряд ядра иона, тем меньше радиус.

Например : частицы Na + и F ‒ содержат по 10 электронов. Но заряд ядра натрия +11, а у фтора только +9. Следовательно, радиус иона Na + меньше радиуса иона F ‒ .

3. Электроотрицательность

Еще одно очень важное свойство атомов – электроотрицательность (ЭО).

Электроотрицательность – это способность атома смещать к себе электроны других атомов при образовании связи. Оценить электроотрицательность можно только примерно. В настоящее время существует несколько систем оценки относительной электроотрицательности атомов. Одна из наиболее распространенных – шкала Полинга.


По Полингу наиболее электроотрицательный атом – фтор (значение ЭО≈4). Наименее элекроотрицательный атом –франций (ЭО = 0,7).

В главных подгруппах сверху вниз уменьшается электроотрицательность.

В периодах слева направо электроотрицательность увеличивается.

1) Mg 2) P 3) O 4) N 5) Ti

Элементы-неметаллы – это фосфор Р, кислород О и азот N.

Электроотрицательность увеличивается в группах снизу вверх и слева направо в периодах. Следовательно, правильный ответ: P, N, O или 243.

Читайте также: