Определение водорода в металле

Обновлено: 18.05.2024

Изобретение относится к аналитической химии, в частности определению водорода в металлах. Способ включает нагревание пробы с выделением водорода и определение его количества. Нагревание пробы проводят в среде кислорода. Выделившийся водород дожигают до воды и определяют его количество кулонометрическим датчиком. При этом нагревание проводят при 400-800 o С. Технический результат: определение содержания водорода в металлах при более низких температурах. 1 з.п.ф-лы, 1 ил.

Изобретение относится к аналитической химии, в частности определению водорода в уране.

Известно, что наличие водорода в металлах отрицательно влияет на их механические свойства. Появляется водородная хрупкость. Поэтому проблема получения чистых по водороду металлов весьма актуальна, особенно в атомной и авиационной промышленности.

В основном все известные аналитические методы определения водорода в металлах предусматривают предварительную высокотемпературную экстракцию с целью отделения исследуемой компоненты с последующим количественным ее определением по теплопроводности, масс-спектрометрическим, спектральным, кулонометрическим или другими методами.

Известен способ определения водорода в металлах (Федоров Т.Г. Спектральный изотопный анализ водорода и определение концентрации водорода в металлах. - М.: Атомиздат, 1980, с. 64-87), заключающийся в нагревании образца исследуемого металла до высоких температур свыше 1100 o С в вакууме.

Недостатком данного способа является высокая температура для разложения водородсодержащих соединений металлов.

Наиболее близким по технической сущности и достигаемому результату (прототип) является способ определения водорода в металлах методом вакуум-нагрева для определения водорода в металлах (ГОСТ 22720.0-77 - ГОСТ 22720.4-77 Редкие металлы и сплавы на их основе. Методы определения кислорода, водорода, азота и углерода. Издательство стандартов, 1978, с. 26, п. 4.5), заключающийся в разложении всех водородсодержащих соединений металлов в образце, помещенном в графитовый тигель вакуумной печи при температуре свыше 1200 o С, выделившийся при этом в газовую фазу водород поступает в анализатор, где измеряется его давление в известном объеме.

Недостатком известного способа является высокая температура для разложения водородсодержащих соединений металлов и, следовательно, удорожание способа.

Задача изобретения - определение содержания водорода в металлах при более низких температурах (400-800 o С).

Поставленная задача решается благодаря тому, что в способе определения водорода в металлах, включающем нагревание пробы с выделением водорода и определение его количества, согласно формуле изобретения нагревание пробы проводят в среде кислорода, выделившийся водород дожигают до воды и определяют его количество кулонометрическим датчиком, при этом нагревание проводят при 400-800 o С.

Указанная совокупность признаков является новой и обладает изобретательским уровнем, так как нагревание пробы в среде кислорода обеспечивает интенсивное окисление исследуемых металлов и разложение гидридов металлов, при этом освобождается также окклюдированный и растворенный водород в металлах. Освободившийся растворенный, окклюдированный и гидридный водород дожигают до воды и замеряют интегрированием количества электричества, пошедшего на ее разложение в кулонометрическом датчике.

Предлагаемый способ реализуется на приборе, схематически изображенном на чертеже.

Прибор состоит из кварцевого испарителя 1, дожигателя водорода 2, сосуда Дьюара 3, змеевика 4, кулонометрического датчика 5 и интегратора 6.

Способ осуществляется следующим образом.

Перед проведением анализа через весь прибор пропускают инертный газ до установления стабильного показания тока электролиза в датчике 5. Пробу исследуемого металла помещают в кварцевой лодочке в кварцевый испаритель 1, где она омывается кислородом в течение 2 минут для удаления воды, сорбированной поверхностью пробы и кварцевой лодочкой. После продувки испарителя 1 пробу металла нагревают до 400-800 o С в потоке кислорода. Анализируемый образец, окисляясь, превращается в мелкий порошок, при этом гидриды металла разлагаются. Растворенный и окклюдированный водород, а также освободившийся водород при разложении гидридов, потоком кислорода перемещают в дожигатель 2 водорода до воды. Образовавшаяся вода тем же потоком кислорода уносится в размещенный в сосуде Дьюара 3 змеевик 4, где конденсируется, а кислород, свободный от воды, сбрасывается в атмосферу. Затем вместо кислорода подают в систему газ-носитель (инертный газ), змеевик удаляют из сосуда Дьюара и пары воды потоком газа-носителя уносятся в кулонометрический датчик 5, где после поглощения гигроскопическим веществом, вода подвергается электролизу. Количество электричества, пошедшее на электролиз воды, регистрируется интегратором 6. По количеству электричества, пошедшего на электролиз воды, определяют массу водорода в металле.

Пример выполнения способа.

Три грамма металлического урана в виде стружки помещают в испаритель, в течение двух минут через всю систему установки пропускают кислород, который сбрасывается в атмосферу. В течение 10 минут проба нагревается при 700 o С и, окисляясь, разрушается до мелкого порошка закиси-окиси урана. Освободившийся водород потоком кислорода переносится в дожигатель водорода до воды, которая тем же потоком кислорода перемещается в змеевик. По истечении десяти минут сосуд Дьюара снимается со змеевика (конденсатора) и вместо кислорода в систему подается инертный газ, который пары воды переносит в датчик, где вода электролизом разлагается. Интегратор тока регистрирует количество электричества, пошедшего на электролиз воды. Далее рассчитывается содержание водорода в пробе.

С помощью предложенного способа проанализирована серия проб урана с содержанием водорода от 1,610 -4 до 4,010 -4 %. Суммарная погрешность определения водорода составила 0,4810 -5 - 0,5 10 -5 %.

Таким образом, предложенный способ предварительного окисления исследуемого металла дает возможность проводить анализ водорода в металлах при относительно низких температурах, работать с укрупненными навесками, что обеспечит повышение чувствительности метода определения водорода, снижение погрешности анализа.

1. Способ определения водорода в металлах, включающий нагревание пробы с выделением водорода и определение его количества, отличающийся тем, что нагревание пробы проводят в среде кислорода, выделившийся водород дожигают до воды и определяют его количество кулонометрическим датчиком.

2. Способ по п. 1, отличающийся тем, что нагревание проводят при 400-800 o С.

Определение водорода в металле

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

АЛЮМИНИЙ И СПЛАВЫ АЛЮМИНИЕВЫЕ

Метод определения водорода в твердом металле

Aluminium and aluminium alloys. Method for determination of hydrogen in solid metal

Дата введения 1997-07-01

1 РАЗРАБОТАН ОАО "Всероссийский институт легких сплавов" (ОАО ВИЛС), Техническим комитетом ТК 297 "Материалы и полуфабрикаты из легких и специальных сплавов"

ВНЕСЕН Главным управлением стандартизации и сертификации сырья и материалов Госстандарта России

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 30 октября 1996 г. N 607

3 ВВЕДЕН ВПЕРВЫЕ

4 ИЗДАНИЕ с Изменением N 1, принятым в ноябре 2003 г. (ИУС 1-2004)

1 Область применения

Настоящий стандарт устанавливает порядок определения водорода в алюминии и алюминиевых сплавах методом плавления в потоке инертного газа-носителя (при массовой доле водорода от 0,05 до 0,45 млн).

(Измененная редакция, Изм. N 1).

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.315-97 Государственная система обеспечения единства измерений. Стандартные образцы состава и свойств веществ и материалов. Основные положения

ГОСТ 1012-72 Бензины авиационные. Технические условия

ГОСТ 2603-79 Ацетон. Технические условия

ГОСТ 3022-80 Водород технический. Технические условия

ГОСТ 18300-87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 21241-89 Пинцеты медицинские. Общие технические требования и методы испытаний

ГОСТ 24104-2001* Весы лабораторные. Общие технические требования

ГОСТ 25086-87 Цветные металлы и их сплавы. Общие требования к методам анализа

3 Общие требования

3.1 Общие требования к методам анализа - по ГОСТ 25086 с дополнением.

3.1.1 Массовую долю водорода определяют на двух образцах одной пробы, взвешенных с погрешностью не более 0,01 г. За результат анализа принимают среднее арифметическое результатов двух параллельных определений.

4 Нормы погрешности измерений

Методика выполнения измерений обеспечивает анализ с погрешностью, не превышающей значения, указанные в таблице 1.

Массовая доля водорода

Предел погрешности , не более

От 0,05 до 0,09 включ.

5 Сущность метода

Метод основан на плавлении образца, помещенного в графитовый тигель высокочастотной печи, в потоке инертного газа-носителя (азота) с последующей регистрацией массовой доли выделившегося водорода в кондуктометрической ячейке - катарометре.

6 Аппаратура, материалы и реактивы

Анализатор для определения массовой доли водорода H-mat 2020 (Германия) или RH-402 (США), внесенный в Госреестр средств измерений.

Допускается использование другой аппаратуры аналогичного назначения, обеспечивающей получение метрологических параметров, предусмотренных настоящим стандартом, и аттестованной в соответствии с [2].

Стандартные образцы состава алюминия или алюминиевых сплавов по ГОСТ 8.315 с аттестованной массовой долей водорода от 0,08 до 0,5 млн.

Газ-носитель: азот 99,999 [1].

Водород 99,95 по ГОСТ 3022.

Гелий марки А [3].

Тигли графитовые фирмы - изготовителя анализатора или тигли соответствующих размеров других изготовителей из графита марки ТГ-1.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Бензин авиационный по ГОСТ 1012.

Весы лабораторные по ГОСТ 24104.

7 Отбор проб и подготовка образцов для анализа

7.1 Пробу для анализа отбирают по нормативной документации на соответствующую продукцию.

Из твердого металла (слитки, чушки и др. полуфабрикаты) вырезают заготовку для образца шириной и толщиной от 10х10 до 12x12 мм и длиной от 80 до 100 мм.

Пробу жидкого металла заливают в толстостенную медную изложницу, в которой при кристаллизации заготовки для образца исключается потеря водорода, обеспечивается необходимое качество заготовки правильной формы и размеров, без раковин и трещин.

Требования к качеству внутренних поверхностей изложницы и металлической ложки, которой отбирают пробу, должны обеспечивать сохранение массовой доли водорода со значением, характеризующим анализируемый расплав.

7.2 Образец для анализа изготовляют в виде цилиндра диаметром (9,0±0,01) мм и высотой (35,0±0,1) мм для приборов типа H-mat, высотой (25,0±0,1) мм - для приборов типа RH-402. Форма и размеры образцов при использовании других аналогичных типов аппаратуры определяются профилем и размерами графитового тигля.

Поверхность пробы обтачивают на токарном станке без использования охлаждающей жидкости.

От пробы отрезают образец, при этом не допускается поддерживать его пинцетом. При проведении указанной операции необходимо предусмотреть, чтобы образец падал в стеклянную бюксу, расположенную под ним.

Затем образец зажимают в патрон станка в полиэтиленовой цанге и обтачивают второй торец. В качестве материала цанги допускается использовать тефлон или тарнамид.

7.3 До загрузки в анализатор образцы хранят в стеклянных бюксах, заполненных ацетоном, не более 5-6 ч. Для прибора RH-402 допускается хранение образцов в бюксах без ацетона.

7.2, 7.3. (Измененная редакция, Изм. N 1).

8 Подготовка анализатора

8.1 Подготовку анализатора (включение, установление газовых потоков, установку нулевого уровня катарометра) проводят в соответствии с техническим описанием и инструкцией по эксплуатации конкретного применяемого прибора (далее - инструкция).

8.2 Градуирование анализатора

В соответствии с инструкцией проводят градуирование анализатора.

8.1, 8.2. (Измененная редакция, Изм. N 1).

8.3 Определение поправки контрольного опыта

8.3.1 Для оценки качества используемой партии графитовых тиглей в соответствии с инструкцией определяют поправку контрольного опыта пустого графитового тигля ПКО-1, отнесенную к массе образца, в режиме анализа (раздел 9), значение которой не должно превышать 0,02 млн водорода. Указанную операцию проводят не менее чем на пяти тиглях от партии. При соответствии ПКО-1 указанному значению данную партию тиглей используют для проведения анализов.

8.3.2 Определяют поправку контрольного опыта графитового тигля с образцом ПКО-2, для чего образец, прошедший анализ, повторно расплавляют в режиме анализа (раздел 9). Для прибора H-mat значение ПКО-2 не должно превышать 0,03 млн водорода. Полученное значение ПКО-2 вводят в память ЭВМ. ПКО-2 устанавливают как среднее арифметическое двух параллельных определений. Для прибора RH-402 значение ПКО-2 не должно превышать значений для конкретного анализируемого сплава, указанного в приложении к инструкции.

8.4 Проверку правильности градуирования анализатора проводят не реже одного раза в месяц, анализируя стандартный образец, в соответствии с инструкцией по эксплуатации прибора. Требования к стандартному образцу - по 11.3. В случае отклонения воспроизведенного значения массовой доли водорода в СО от аттестованного проводят корректирование значения К-фактора по аттестованной массовой доле водорода в СО в соответствии с инструкцией по эксплуатации анализатора.

9 Проведение анализа

9.1 Образец извлекают из бюксы. Если бюкса заполнена ацетоном, образец сушат на предметном стекле теплым воздухом при температуре 40-50 °С. Дальнейшие операции анализа проводят в соответствии с инструкцией по следующим режимам. Для прибора H-mat:

- дегазация пустого графитового тигля при входном напряжении высокочастотного генератора (230±5) В в течение (60±10) с;

- охлаждение пустого тигля в течение (60±10) с;

- удаление поверхностного водорода с образца при входном напряжении ВЧ-генератора (140±5) В в течение (30±10) с;

- охлаждение тигля с образцом в течение (60±10) с;

- расплавление образца при входном напряжении ВЧ-генератора (220±5) В. Время расплавления образца фиксирует оптико-электрическая система анализатора, которая автоматически отключает нагрев в момент расплавления.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения содержания диффузионного
водорода в наплавленном металле и металле шва

Welding of metals.
Methods for determination of diffusible hydrogen
in deposited weld metal and fused metal

Дата введения 1992-07-01

1. РАЗРАБОТАН И ВНЕСЕН Академией наук УССР

Л.М.Лобанов, чл.-кор. АН УССР; И.К.Походня (руководитель темы); И.Р.Явдошин, канд. техн. наук; А.П.Пальцевич, канд. техн. наук; Я.М.Юзькив, канд. техн. наук; В.И.Петрыкин; А.Т.Васильев; А.Н.Трощенков; Б.Б.Искоз; Р.И.Щерабаков; Г.Л.Петров; А.М.Левченко

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 04.06.91 N 783

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, приложения

1.3.2.6; приложение 2

1.3.2.4; приложение 1

Настоящий стандарт устанавливает хроматографический и вакуумный методы определения содержания диффузионного водорода в наплавленном металле и металле шва и распространяется на покрытые электроды, порошковую проволоку, стальную сварочную проволоку, предназначенные для сварки низкоуглеродистых и низколегированных сталей.

Хроматографический метод предназначен для определения содержания диффузионного водорода в образцах швов, выполненных покрытыми электродами, порошковой и стальной сварочной проволоками.

Вакуумный метод предназначен для определения содержания водорода в образцах швов, выполненных покрытыми электродами диаметром от 3 до 6 мм.

При сварке электродами диаметром 4 мм диапазон измерения массовой доли водорода от 0,25 до 13,5 млн - в металле шва, от 0,4 до 22 млн - в наплавленном металле или от 0,3 до 15 см/100 г - в металле шва, от 0,5 до 25 cм /100 г - в наплавленном металле.

Измерения содержания диффузионного водорода в наплавленном металле и металле шва используют для классификации и контроля качества партий сварочных материалов и исследовательских целей.

Для классификации и контроля партий сварочных материалов условия наплавки шва указаны в стандарте.

1. АППАРАТУРА И МАТЕРИАЛЫ

1.1. Сущность хроматографического метода (метод 1)

1.1.1. Метод основан на сборе выделяющегося из образца сварного шва водорода в камере с последующим измерением его объема методом газовой хроматографии.

Для ускорения анализа образец дегазируется при температуре (150±5) °С.

Схема прибора приведена на черт. 1. Выделяющийся из образца 1 водород собирается в металлической камере 2, соединенной с хроматографом 7 через электромагнитный переключатель направления движения газа 5. Управление работой переключателя 5 выполняется с помощью блока управления 6.

Схема прибора для хроматографического метода анализа (метод 1)


2 - реакционная камера; 3 - крышка реакционной камеры; 4 - печь для нагрева камеры с образцом; 5 - электромагнитный переключатель направления движения газа; 6 - блок управления электромагнитным переключателем направления движения газа; 7 - хроматограф; 8 - блок подготовки газа хроматографа; 9 - блок подготовки детектора по теплопроводности; 10 - блок регулятора температуры; 11 - потенциометр КСП-4; 12 - интегратор И-02 (И-05); 13 - баллон с аргоном

Промежуток времени, на который камера 2 подключается к потоку газа-носителя аргона для вымывания выделившегося из образца водорода (или промывка камеры от воздуха после помещения в нее образца), - цикл отбора водорода или промывка камеры. Промежуток времени, на который камера 2 отключена от потока газа-носителя аргона для накопления водорода, - цикл накопления водорода.

Во время накопления водорода в камере 2 газ-носитель аргон проходит через хроматограф 7, минуя камеру 2. Для измерения объема выделившегося водорода газ-носитель с помощью переключателя 5 направляется через камеру 2 в хроматограф 7, где детектируется.

Выходной сигнал регистрируется потенциометром 11, его площадь измеряется интегратором 12. Работа хроматографа 7 и его детектора по теплопроводности управляется соответственно блоками 10 и 9. Расход газа-носителя в двух магистралях хроматографа задается с помощью блока подготовки газа хроматографа 8. Для ускорения анализа образец 1 вместе с камерой 2 нагревают печью сопротивлением 4.

Количество циклов накопления водорода и отбора водорода определяют интенсивностью выделения водорода из образца. Количество выделившегося водорода из образца равно сумме площадей пиков водорода, умноженной на функцию преобразования прибора.

1.2. Сущность вакуумного метода (метод 2)

1.2.1. Метод основан на сборе выделяющегося водорода из образца в вакуумированный контейнер, соединенный с манометром. Объем выделившегося водорода определяют с учетом объема контейнера и изменения в нем давления за счет выделившегося водорода. Дегазация образца выполняется при комнатной температуре.

Конструкция прибора для измерения объема диффузионного водорода приведена на черт. 2. Водород, выделяющийся из образца, помещенного в колбу 7, повышает давление, регистрируемое жидкостным манометром 6.

Прибор для вакуумного метода анализа (метод 2)


1, 2, 3, 4 - краны вакуумные; 5 - лампа вакуумметрическая; 6 - манометр; 7 - колба

1.3. Для измерения объема водорода используются приборы, приспособления и материалы:

1.3.1.1. Прибор ОБ 2456 или ОБ 2144, в состав которого входит хроматограф ЛХМ-8МД или ЛХМ-80 с детекторами по теплопроводности (или хроматографы других марок, укомплектованные детекторами по теплопроводности). Приведенные приборы изготавливают по нормативно-технической документации. Прибор ОБ 2456 предназначен для одновременного анализа трех образцов, прибор ОБ 2144 - для одного образца.

Допускается пользоваться другими приборами, основанными на принципах матографического анализа газов, обеспечивающих идентичные результаты, изготовленными по другой нормативно-технической документации.

1.3.2.1. Вакуумный прибор (черт. 2), устройство которого приведено в приложении 2.

1.3.2.2. Приспособление для наплавки (черт. 3, 4).

Приспособление для наплавки образцов по методам 1 и 2


1, 2 - медные водоохлаждаемые губки; 3 - тиски с ручным приводом

Приспособление для наплавки образцов по методу 2


1 - болт М12; 2, 4 - зажимы медные; 3 - заготовка образца; 5 - гайка М12; 6 - размерная планка

1.3.2.3. Универсальный фотоувеличитель "Беларусь-2М" по НТД.

1.3.2.5. Весы аналитические ВЛДП-200 г, 2 кл. по НТД.

1.3.2.6. Реактивы: ацетон по ГОСТ 2603; спирт этиловый технический по ГОСТ 18300; толуол по ГОСТ 5789; силикагель по ГОСТ 8984; аргон по ГОСТ 10157; эфир для наркоза - по НТД.

2. ПОДГОТОВКА К ИСПЫТАНИЮ

2.1. Образцы для испытания

2.1.1. Образец представляет собой пластину с наплавленным валиком. Валик следует наплавлять на заготовку, состоящую из пластины, собранной вместе с выводными планками в соответствии с черт.5.

Заготовки составных образцов для наплавки валика


1 - пластина; 2, 3 - выводные планки; неуказанные отклонения размеров Н12

2.1.2. Материал пластины и выводных планок: для классификации сварочных материалов - сталь марок БСт3сп, ВСтЗсп по ГОСТ 380; для других назначений допускается применение низкоуглеродистых и низколегированных сталей, для сварки которых предназначены испытуемые сварочные материалы.

Заготовки для изготовления пластин и выводных планок должны быть подвергнуты отжигу при температуре 650-670 °С в течение не менее 2 ч.

2.1.3. Пластина маркируется на нижней поверхности (по отношению к наплавленному валику).

2.1.4. Пластина и выводные планки после опиловки заусенцев и острых кромок должны быть промыты: для метода 1 - в ацетоне и спирте этиловом техническом; для метода 2 - в толуоле, затем в ацетоне и спирте этиловом техническом.

2.1.5. Пластина до наплавки валика должна быть взвешена с погрешностью не более ±0,01 г.

2.1.6. Пластины и выводные планки до наплавки валика должны храниться в эксикаторе с силикагелем. Силикагель следует регенерировать при температуре 150-300 °С в течение 3 ч не реже одного раза в три месяца.

2.1.7. Заготовка типа I предназначена для испытания электродов диаметром 3-4 мм по методу 1, заготовка типа II предназначена для испытания электродов диаметром более 4 мм, проволок порошковых и проволок стальных сварочных по методу 1, заготовка типа III предназначена для испытания электродов диаметром 3-6 мм по методу 2 (черт. 5).

2.2. Наплавка валика на заготовку

2.2.1. Для наплавки валика заготовку зажимают в приспособление для наплавки. Температура приспособления должна быть в пределах от температуры окружающей среды до температуры ее точки росы.

ГОСТ 34061-2017
(ISO 3690:2012)

Сварка и родственные процессы

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ВОДОРОДА В НАПЛАВЛЕННОМ МЕТАЛЛЕ И МЕТАЛЛЕ ШВА ДУГОВОЙ СВАРКИ

Welding and allied processes. Determination of hydrogen content in deposited metal and arc weld metal

МКС 25.160.10, 25.160.40

Дата введения 2017-09-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью "Региональный Северо-западный межотраслевой аттестационный центр" (ООО "PCЗ МАЦ"), Федеральным государственным автономным образовательным учреждением высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАО ВО "СПбПУ"), Обществом с ограниченной ответственностью "Научно-Технический Центр "Сварка", Национальным Агентством Контроля Сварки (СРО НП "НАКС") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 364 "Сварка и родственные процессы"

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 25 апреля 2017 г. N 301-ст межгосударственный стандарт ГОСТ 34061-2017 (ISO 3690:2012) введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2017 г.

5 Настоящий стандарт является модифицированным по отношению к международному стандарту ISO 3690:2012* "Сварка и родственные процессы. Определение содержания водорода в наплавленном металле и металле шва дуговой сварки" ("Welding and allied processes - Determination of hydrogen content in arc weld metal", MOD) путем включения дополнительных положений, фраз, слов, ссылок, показателей, их значений и внесения изменений по отношению к тексту применяемого международного стандарта, которые выделены полужирным курсивом**.

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей.

** В оригинале обозначения и номера стандартов и нормативных документов в разделах 2 "Нормативные ссылки" и 4 "Процедуры испытаний" выделены полужирным курсивом, остальные по тексту документа приводятся обычным шрифтом. - Примечание изготовителя базы данных.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

Объяснение причин внесения технических отклонений приведено в дополнительном приложении ДА. Сопоставление структуры настоящего стандарта со структурой примененного в нем международного стандарта приведено в дополнительном приложении ДБ.

Международный стандарт разработан Международным институтом сварки в сотрудничестве с Техническим комитетом ISO/TC 44 "Сварка и родственные процессы", подкомитетом ISO/TC 44/SC 3 "Сварочные материалы".

Сведения о соответствии ссылочных межгосударственных стандартов международным стандартам, использованным в качестве ссылочных в примененном международном стандарте, приведены в дополнительном приложении ДЕ

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Май 2020 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

Настоящий стандарт устанавливает отбор образцов и аналитическую процедуру определения диффузионного водорода в наплавленном металле и металле шва дуговой сварки с присадочным материалом для сталей мартенситного, бейнитного и ферритного классов.

В настоящем стандарте представлены следующие методы: сбор диффузионного водорода при помощи процесса замещения ртути (метод замещения ртути); сбор водорода в вакуумированной камере (вакуумный метод); сбор водорода в камере, заполненной инертным газом, например аргоном (метод теплопроводности). Количество собранного водорода определяется путем измерения замещенного объема в первом случае, путем измерения давления во втором случае и по теплопроводности в последнем случае.

Для предотвращения термической активации недиффузионного водорода при сборе диффузионного водорода необходимо контролировать температуру.

В настоящем стандарте использована ссылка на следующий межгосударственный стандарт:

3 Основные положения

На стандартный образец наплавляется присадочный материал способом, обеспечивающим контроль параметров изготовления типовых образцов для исследований. Для предотвращения преждевременных потерь водорода последующее хранение образца и обращение с ним подлежит контролю. Далее образец перемещают в аппарат для сбора газа (ртутный и вакуумный методы) или в подходящую для исследований камеру, заполненную инертным газом (метод теплопроводности) и выдерживают в течение определенного периода времени и при температуре, достаточной для выделения диффузионного водорода соответственно в вакуумированную газовую бюретку или в камеру, заполненную инертным газом. Количество собранного водорода определяется путем измерения замещенного объема (ртутный метод), путем измерения давления газа внутри камеры (вакуумный метод) или по теплопроводности. Определение массы наплавленного металла или объема металла сварного шва позволяет рассчитать содержание диффузионного водорода в наплавленном металле или содержание диффузионного водорода в металле сварного шва .

4 Процедуры испытаний

4.1 Изготовление сварных образцов

4.1.1 Краткое описание

Испытываемым сварочным материалом производят наплавку одного валика шва, который быстро охлаждают и хранят до начала исследований при температуре минус 78°С или ниже. Зачистку и удаление шлака выполняют на охлажденных образцах.

4.1.2 Фиксирующее устройство для сварки

Пример фиксирующего устройства для сварки, обеспечивающего единую форму образцов для сварочных процессов, указанных в 4.2, показан на рисунке 1. Устройство должно обеспечивать надежное выравнивание образцов во время сварки и чтобы после сварки образец можно было отсоединить за одну операцию в соответствии с 4.1.4, с). Перед изготовлением каждого образца для испытаний температура поверхности фиксирующего устройства должна находиться в интервале между температурой окружающей среды и температурой, ее превышающей не более чем на 25°С. Для уменьшения времени цикла испытаний фиксирующее устройство может иметь водяное охлаждение. Для предотвращения появления конденсата на поверхности фиксирующего устройства следует контролировать температуру охлаждающей воды.

Для всех сварочных процессов собранный образец должен быть зажат с помощью отожженной медной фольги в фиксирующем устройстве для сварки, как показано на рисунке 1. Медная фольга может отжигаться повторно и охлаждаться в воде после каждого отжига. После отжига оксидная пленка удаляется травлением азотной кислотой (10%-ной концентрации по объему) с последующей промывкой дистиллированной водой и сушкой.


1 - образец согласно рисунку 2; 2 - жилет с водяным охлаждением (при необходимости); 3 - рукоятка зажима; 4 - вставка из медной фольги (1 мм15 мм min300 мм); - медь; - углеродистая сталь

Рисунок 1 - Пример фиксирующего устройства для сварки и собранного образца для наплавки

4.1.3 Образцы

Образец должен быть изготовлен из спокойной или полуспокойной углеродистой стали, с содержанием углерода не более 0,18% и содержанием серы не более 0,025%. Размеры собранного образца должны соответствовать размерам, указанным на рисунке 2 для образца А, образца В или образца С, с допуском ±0,25 мм для всех размеров кроме длины вводных и выводных планок. На рисунке 2 представлена минимально возможная длина вводной и выводной планок.

Все поверхности должны иметь прямые углы для обеспечения плотного контакта прилегающих частей во время сварки. Каждый образец может быть подвергнут одной операции шлифовки на шлифовальном оборудовании для обеспечения одинаковой ширины, для надлежащей фиксации может применяться более точный контроль размеров. Образцы должны быть механически обработаны таким образом, чтобы шероховатость торцов составляла Ra=3,2 мкм, а шероховатость верхней, нижней и боковых поверхностей Ra=1,6 мкм. Условия правильной фиксации см. в 4.1.4, d).

Центральная часть образца со стороны обратной той, которая используется для сварки, должна быть маркирована при помощи гравировки или тиснения. Образец должен быть подвергнут дегазации при температуре 650°С±10°С в течение 1 ч и охлажден в любой сухой инертной атмосфере или в вакууме. Допускается дегазация и охлаждение на воздухе, при условии, что перед испытаниями слой поверхностной оксидной пленки будет удален. Образцы, подвергнутые дегазации, следует хранить в эксикаторе или в других условиях, предотвращающих их окисление. После маркировки и удаления оксидов, массу центральной части образца следует определить с точностью до 0,1 г для образца А или с точностью до 0,01 г для образца В или образца С.


- вводная планка образца длиной ; - выводная планка образца длиной ; - центральная часть образца длиной ; - ширина образца; - толщина образца

Приведен обзор статей о перспективных исследованиях в области разработки и применения титановых сплавов. Отмечена важность определения малых концентраций водорода в титановых сплавах. Задача для ВИАМ сегодня – это разработка новых методик измерений и выпуск стандартных образцов с аттестованным содержанием водорода. Рассмотрены имеющиеся методики измерения содержания водорода в титановых сплавах. Подробно описан опыт разработки такой методики с использованием газоанализатора RHEN -600 – от выбора способа подготовки образцов и прибора до расчета метрологических характеристик. Разработанная методика анализа содержания водорода в титановых сплавах путем плавления образца в инертном газе (аргоне) утверждена и внесена в Госреестр.

Ключевые слова: методика измерений, водород, титановые сплавы, метод плавления образца в инертном газе, стандартные образцы, газоанализатор, теплопроводность газов.

Введение

Контроль содержания водорода в сплавах авиационного назначения очень важен, так как повышенное содержание водорода в некоторых сплавах приводит к их охрупчиванию и разрушению [1]. Критическое содержание водорода очень мало, поэтому необходимо, чтобы была возможность определения его малых концентраций. Важное значение имеет контроль содержания водорода в титановых изделиях и заготовках из титановых сплавов в процессе эксплуатации и при их производстве, а также входной контроль титановой губки. В большинстве разработанных сплавов содержание водорода нормируется на уровне 3·10 -3 % (по массе) (30 ppm).

Важно также проводить определение содержания водорода в сплавах при проведении перспективных исследований [2–7]. Например, в настоящее время проводятся исследования влияния дополнительного легирования водородом на фазовый состав и структуру титанового сплава ВТ6 [8–10], разработки новых интерметаллидных титановых сплавов с повышенным содержанием ниобия [11]. Известны работы по определению плотности дефектов структуры и энергии связи водорода в металлах с применением метода высокотемпературной экстракции [12]. Возрастающие требования к качеству сплавов диктуют необходимость применения новых приборов для определения водорода с более низкими пределами обнаружения и высокой воспроизводимостью результатов анализа. Важнейшая составляющая качества проводимых анализов – наличие стандартных образцов (СО) состава сплавов с аттестованным значением содержания водорода [13], которые в настоящее время являются остродефицитным материалом особенно отечественного производства. Развитие и внедрение разнообразных методик и методов определения содержания водорода позволит при выпуске СО сплавов проводить их аттестацию различными методами и получать эталонные образцы с наименьшей допускаемой величиной относительного отклонения (при доверительной вероятности 0,95). Применение таких СО повысит качество анализов, проводимых при производстве заготовок титановых сплавов и изделий из них [14, 15].

Для исследования содержания газов и газообразующих примесей в сплавах, наиболее часто используют следующие методы: сжигания в несущем газе, эмиссионной спектроскопии, спектрометрии с индуктивно связанной плазмой, активационного анализа на заряженных частицах, масс-спектрального анализа [16], с применением действующих в настоящее время ГОСТов. Например, ГОСТ 9853.21 «Титан губчатый. Методы определения водорода» устанавливает хроматографический (при содержании водорода от 0,001 до 0,1% (по массе)) и спектральный (при содержании водорода от 0,002 до 0,1% (по массе)) методы определения содержания водорода в губчатом титане [17]. Хроматографический метод основан на высокотемпературной экстракции водорода из титана в потоке азота с последующим его определением с помощью термохимического детектора. Спектральный метод основан на возбуждении спектра пробы низковольтным импульсным разрядом с последующей регистрацией интенсивности спектральной линии водорода фотографическим или фотоэлектрическим способом и на определении массовой доли водорода с помощью градуировочных характеристик с использованием оптического спектрометра ИСП-51 [18].

Действуют также ГОСТ 24956 «Сплавы титановые. Определение водорода в твердом металле методом вакуум-нагрева» [19] и ГОСТ 17745 «Стали и сплавы. Методы определения газов» [20].

Для определения малых концентраций водорода в любых сплавах, в том числе и титановых, преимущественно используют анализатор водорода АВ-1, работа которого основана на высокотемпературной вакуумной экстракции с масс-спектрометрической регистрацией водорода. При интегрировании экстракционной кривой получают абсолютное количество выделившегося водорода.

При спектральном исследовании на спектрометре ИСП-51 (по ОСТ 1 90034 [21] – для титановых сплавов, по ГОСТ 9853.21–96 – для титановой губки) содержание водорода определяется по градуировочной кривой, построенной с использованием стандартных образцов с аттестованным содержанием водорода.

Работа газоанализатора RHEN-600 фирмы LECO основана на методе плавления сплава в токе инертного газа (аргона) с последующим определением количества водорода в смеси газов с помощью детектора теплопроводности. Применение аргона вместо применяемого ранее азота (ГОСТ 17745) способствует более быстрому отклику датчика теплопроводности и, следовательно, определению более низких концентраций ввиду различия их коэффициентов теплопроводности (коэффициент теплопроводности азота 0,0243 Вт/(м·К), аргона 0,0162 Вт/(м·К), водорода 0,1742 Вт/(м·К)). Этот наиболее удобный и быстрый метод не описан ни в одной из действующих в настоящее время методик.

Поскольку эти три метода являются необходимыми составляющими для решения важной задачи – выпуска стандартных образцов с аттестованным содержанием водорода – разработка методики измерений массовой доли водорода для газоанализатора RHEN-600 крайне актуальна.

Материалы и методы

Для разработки проекта методики измерений массовой доли водорода в титановых сплавах методом нагрева в токе инертного газа (аргона), проведена работа по выбору оптимальных условий пробоподготовки и измерений на газоанализаторе RHEN-600.

Нагрев образцов из титановых сплавов проводили в графитовых тиглях, помещенных в импульсную печь газоанализатора. В качестве плавня использовали оловянные капсулы.

Градуировку газоанализатора и выбор оптимальных условий анализа проводили по стандартным образцам состава титановых сплавов с аттестованным значением содержания водорода 0,00422% (по массе). Масса СО (0,25 г) рассчитана на стандартный графитовый тигель фирмы LECO. При подготовке образцов для анализа не допускается их нагрев выше 70°С.

Результаты

Исследованы зависимости (табл. 1–5) аналитического сигнала и стандартного отклонения результатов от следующих настроек газоанализатора: силы тока импульсной печи газоанализатора (сила тока печи определяет температуру нагрева образца при анализе), продолжительности работы печи (длительность нагрева), количества олова (необходимо для снижения температуры растворения), времени, за которое смесь газов (водорода и аргона) достигает детектора теплопроводности (задержка интегрирования).

Зависимость результатов измерения содержания водорода в титановых образцах

от величины тока импульсной печи при постоянных времени задержки

интегрирования (30 с), количестве плавня (1 г), продолжительности нагрева (60 с)

импульсной печи, A

(металл выплеснулся из тигля)

Зависимость результатов измерения содержания водорода в титановых образцах
от продолжительности нагрева при постоянных величине тока импульсной печи (800 A),
количестве плавня (1 г), времени задержки интегрирования (30 с)

Продолжительность нагрева печи, с

от количества олова при постоянных величине тока импульсной печи (800 A),

продолжительности нагрева (60 с), времени задержки интегрирования (30 с)

от задержки интегрирования при постоянных величине тока импульсной печи (800 А),

количестве плавня (1 г), продолжительности нагрева печи (70 с)

Задержка интегрирования, с

от отношения продолжительности нагрева к величине тока импульсной печи
при постоянных количестве плавня (1 г) и времени задержки интегрирования (30 с)

Продолжительность нагрева печи/величина тока печи, с/А

Из данных табл. 1–5 видно, что наибольшее влияние на аналитический сигнал (при его минимальном стандартном отклонении) оказывают сила тока импульсной печи газоанализатора и продолжительность нагрева образца. По результатам исследования (см. табл. 5) сделан выбор в пользу соотношения продолжительности нагрева 70 с и силы тока импульсной печи 700 А.

По результатам испытаний установлены оптимальные – время задержки интегрирования 30 с, количество добавляемого олова 1 г.

Для расчета метрологических характеристик методики измерений содержания водорода в титановых сплавах методом нагрева в токе инертного газа (аргона) получены статистические данные определения содержания водорода в стандартных образцах титановых сплавов – с 0,00064 и 0,00422% (по массе) водорода.

По процедуре, регламентированной ГОСТ 5725 [22], рассчитаны метрологические характеристики, приведенные в табл. 6.

Показатели точности методики

(границы относительной погрешности)

(относительное среднеквадратическое отклонение

Из данных, приведенных в табл. 6, видно, что предел определения содержания водорода в титановых сплавах методом нагрева в токе инертного газа (аргона) составляет 3·10 -4 % (по массе) (3 ppm), что в два раза ниже предела определения содержания водорода методом вакуумного нагрева (по ГОСТ 24956 «Титан и титановые сплавы. Методы определения водорода»: 6·10 -4 % (по массе) (6 ppm).

Разработанная МИ 1.2.050–2013 устанавливает процедуру выполнения измерений содержания водорода в титановых сплавах методом нагрева в токе инертного газа (аргона) в интервале от 0,0003 до 0,03%. Применение данной методики в лаборатории «Спектральные, химико-аналитические исследования и эталонные образцы» (ФГУП «ВИАМ») позволяет снизить предел определения содержания водорода в титановых сплавах до 3 ppm, что в два раза ниже предела определения содержания водорода методом вакуумного нагрева (по ГОСТ 24956 «Титан и титановые сплавы. Методы определения водорода»).

Читайте также: