Определите металл выделяющийся на катоде при электролизе

Обновлено: 19.05.2024

Электролизом называются окислительно-восстановительные реакции, протекающие на электродах в растворе или расплаве электролита под действием постоянного электрического тока, подаваемого от внешнего источника. При электролизе происходит превращение электрической энергии в химическую. Прибор, в котором проводят электролиз, называют электролизером. На отрицательном электроде электролизера (катоде) происходит процесс восстановления – присоединения окислителем электронов, поступающих из электрической цепи, а на положительном электроде (аноде) – процесс окисления – переход электронов от восстановителя в электрическую цепь.

Таким образом, распределение знаков заряда электродов противоположно тому, которое имеется при работе гальванического элемента. Причина этого заключается в том, что процессы, протекающие при электролизе, в принципе обратны процессам, идущим при работе гальванического элемента. При электролизе процессы осуществляются за счёт энергииэлектрического тока, подводимой извне, в то время как при работе гальванического элемента энергия самопроизвольно протекающей в нём химической реакции превращается в электрическую энергию. Для процеcсов электролиза DG>0, т.е. при стандартных условиях они самопроизвольно не идут.

Электролиз расплавов. Рассмотрим электролиз расплава хлорида натрия (рис. 10.2). Это простейший случай электролиза, когда электролит состоит из одного вида катионов (Na + ) и одного вида анионов(Cl ) и никаких других частиц, могущих участвовать в электролизе, нет. Процесс электролиза расплава NaCl идёт следующим образом. С помощью внешнего источника тока электроны подводятся к одному из электродов, сообщая ему отрицательный заряд. Катионы Na + под действием электрического поля движутся к отрицательному электроду, взаимодействуя с приходящими по внешней цепи электронами. Этот электрод является катодом, и на нём идёт процесс восстановления катионов Na + . Анионы Cl движутся к положительному электроду и, отдав электроны аноду, окисляются. Процесс электролиза наглядно изображают схемой, которая показывает диссоциацию электролита, направление движения ионов, процессы на электродах и выделяющиеся вещества. Схема электролиза расплава хлорида натрия выглядит так:

(-) Катод: Na + Анод (+):Cl

Na + + e - = Na 2Cl - 2eˉ = Cl2

2Na + + 2Cl ЭЛЕКТРОЛИЗ 2Na + Cl2

или в молекулярном виде

2NaCl ЭЛЕКТРОЛИЗ 2Na + Cl2

Эта реакция является окислительно-восстановительной: на аноде протекает процесс окисления, на катоде – процесс восстановления.

В процессах электролиза растворов электролитов могут участвовать молекулы воды и имеет место поляризация электродов.

Поляризация и перенапряжение. Потенциалы электродов, определённые в растворах электролитов в условиях отсутствия в цепи электрического тока, называются равновесными потенциалами (в стандартных условиях – стандартные электродные потенциалы). При прохождении электрического тока потенциалы электродов изменяются. Изменение потенциала электрода при прохождении тока называется поляризацией:

где Dj - поляризация;

j i – потенциал электрода при прохождении тока;

j р – равновесный потенциал электрода.

Когда известна причина изменения потенциала при прохождении тока вместо термина «поляризация», используют термин «перенапряжение». Его также относят к некоторым конкретным процессам, например, к катодному выделению водорода (водородное перенапряжение).

Для экспериментального определения поляризации строят кривую зависимости потенциала электрода от плотности тока, протекающего через электрод. Так как электроды могут быть разными по площади, то в зависимости от площади электрода при одном и том же потенциале могут быть разные токи; поэтому ток относят обычно к единице площади поверхности. Отношение тока I к площади электрода S называют плотностью тока I:


Графическую зависимость потенциала от плотности тока называют поляризационной кривой (рис. 10.3). При прохождении тока изменяются потенциалы электродов электролизёра, т.е. возникает электродная поляризация. Вследствие катодной поляризации (Djк) потенциал катода становится более отрицательным, а из-за анодной поляризации (Djа) потенциал анода становится более положительным.

Последовательность электродных процессов при электролизе растворов электролитов.В процессах электролиза растворов электролитов могут участвовать молекулы воды, ионы Н + и ОН в зависимости от характера среды. При определении продуктов электролиза водных растворов электролитов можно в простейших случаях руководствоваться следующими соображениями:

1. Катодные процессы.

1.1. На катоде в первую очередь идут процессы, характеризуемые наибольшим электродным потенциалом, т.е. в первую очередь восстанавливаются наиболее сильные окислители.

1.2. Катионы металлов, имеющих стандартный электродный потенциал больший, чем у водорода (Cu 2+ , Ag + , Hg 2+ , Au 3+ и др. катионы малоактивных металлов), при электролизе практически полностью восстанавливаются на катоде:

1.3. Катионы металлов, потенциал которых значительно меньше, чем у водорода (стоящих в «Ряду напряжений» от Li + до Al 3+ включительно, т.е. катионы активных металлов), не восстанавливаются на катоде, так как на катоде восстанавливаются молекулы воды:

Электрохимическое выделение водорода из кислых растворов происходит вследствие разряда ионов водорода:

1.4. Катионы металлов, имеющих стандартный электродный потенциал, меньше, чем у водорода, но больше чем у алюминия (стоящих в «Ряду напряжений» от Al 3+ до 2Н + - катионы металлов средней активности), при электролизе на катоде восстанавливаются одновременно с молекулами воды:

К данной группе относятся ионы Sn 2+ , Pb 2+ , Ni 2+ , Co 2+ , Zn 2+ , Cd 2+ и т.д.. При сравнении стандартных потенциалов этих ионов металлов и водорода можно было бы сделать вывод о невозможности выделения металлов на катоде. Однако следует учесть:

· стандартный потенциал водородного электрода относится к ан+ [Н + ] 1 моль/л., т.е. рН=0; с увеличением рН потенциал водородного электрода уменьшается, становится отрицательнее ( ; см. раздел 10.3); в то же время потенциалы металлов в области, где не происходит выпадения их нерастворимых гидроксидов, от рН не зависят;

· поляризация процесса восстановления водорода больше поляризации разряда ионов металлов этой группы (или по-другому, выделение водорода на катоде происходит с более высоким перенапряжением по сравнению с перенапряжением разряда многих ионов металлов этой группы); пример: поляризационные кривые катодного выделения водорода и цинка (рис. 10.4).

Как видно из данного рисунка, равновесный потенциал цинкового электрода меньше потенциала водородного электрода, при малых плотностях тока на катоде выделяется лишь водород. Но водородное перенапряжение электрода больше, чем перенапряжение цинкового электрода, поэтому при повышении плотности тока начинает выделяться на электроде и цинк. При потенциале φ1 плотности токов выделения водорода и цинка одинаковы, а при потенциале φ2 , т.е. на электроде выделяется в основном цинк.

2.
Анодные процессы.

2.1. На аноде в первую очередь идут процессы, характеризуемые наименьшим электродным потенциалом, т.е. в первую очередь окисляются сильные восстановители.

2.2. Обычно аноды подразделяют на инертные (нерастворимые) и активные (растворимые). Первые изготовляют из угля, графита, титана, платиновых металлов, имеющих значительный положительный электродный потенциал или покрытых устойчивой защитной плёнкой, служащих только проводниками электронов. Вторые – из металлов, ионы которых присутствуют в растворе электролита – из меди, цинка, серебра, никеля и др.

2.3. На инертном аноде при электролизе водных растворов щелочей, кислородосодержащих кислот и их солей, а также НF и ее солей (фторидов) происходит электрохимическое окисление гидроксид-ионов с выделением кислорода. В зависимости от рН раствора этот процесс протекает по- разному и может быть записан различными уравнениями:

а) в кислой и нейтральной среде

б) в щелочной среде

Потенциал окисления гидроксид-ионов (потенциал кислородного электрода) рассчитывается по уравнению (см. раздел 10.3):

Кислородосодержащие анионы SO , SO , NO , CO , PO и т.д. или не способны окисляться, или их окисление происходит при очень высоких потенциалах, например: 2SO - 2eˉ = S2O = 2,01 В.

2.4. При электролизе водных растворов бескислородных кислот и их солей (кроме НF и ее солей) у инертного анода разряжаются их анионы.

Отметим, что выделение хлора (Cl2) при электролизе раствора НCl и её солей, выделение брома (Br2) при электролизе раствора HBr и её солей противоречит взаимному положению систем.

2Cl - 2eˉ = Cl2 = 1,356 В

2Br - 2eˉ = Br2 = 1,087 В

2H2O - 4eˉ = O2 + 4 Н + = 0,82 В (рН = 7)

Эта аномалия связана с анодной поляризацией процессов (рис. 10.5). Как видно, равновесный потенциал кислородного электрода (потенциал окисления гидроксид-ионов из воды) меньше равновесного потенциала хлорного электрода (потенциала окисления хлорид-ионов). Поэтому при малых плотностях тока выделяется лишь кислород. Однако выделение кислорода протекает с более высокой поляризацией, чем выделение хлора, поэтому при потенциале токи на выделение хлора и кислорода сравниваются, а при потенциале (высокая плотность тока) выделяется в основном хлор.

Если потенциал металлического анода меньше, чем потенциал ионов ОН или других веществ, присутствующих в растворе или на электроде, то протекает электролиз с активным анодом. Активный анод окисляется, растворяясь: Ме – neˉ ® Me n + .

Выход по току. Если потенциалы двух или нескольких электродных реакций равны, то эти реакции протекают на электроде одновременно. При этом прошедшее через электрод электричество расходуется на все эти реакции. Доля количества электричества, расходуемая на превращение одного из веществ (Bj), называется выходом по току этого вещества:

где Qj – количество электричества, израсходованное на превращение j-го вещества; Q – общее количество электричества, прошедшее через электрод.

Например, из рис. 10.4 следует, что выход по току цинка растет с увеличением катодной поляризации. Для данного примера высокое водородное перенапряжение – явление положительное. Вследствие этого из водных растворов удается выделять на катоде марганец, цинк, хром, железо, кобальт, никель и другие металлы.

Закон Фарадея. Теоретическое соотношение между количеством прошедшего электричества и количеством вещества, окисленного или восстановленного на электроде, определяется законом Фарадея, согласно которому масса электролита, подвергшаяся химическому превращению, а также масса веществ, выделившихся на электродах, прямо пропорциональны количеству прошедшего через электролит электричества и молярным массам эквивалентов веществ: m = MэIt/F,

где m – масса электролита, подвергшаяся химическому превращению,

или масса веществ – продуктов электролиза, выделившихся на электродах, г; Mэ – молярная масса эквивалента вещества, г/моль; I – сила тока, А; t – продолжительность электролиза, с; F – число Фарадея – 96480 Кл/моль.

Пример 1. Как протекает электролиз водного раствора сульфата натрия с угольным (инертным) анодом?

(-) K A (+)
Na + , H2O (H + ) SO4 2- , H2O (OH )
= 0,82B
= 2,01B
2| 2H2O + 2eˉ= H2­ + 2OH 2H2O – 4eˉ = O2­ + 4H +

или в молекулярной форме

В прикатодном пространстве накапливаются ионы Na + и ионы ОН - , т.е. образуется щелочь, а около анода среда становится кислой за счёт образования серной кислоты. Если катодное и анодное пространство не разделены перегородкой, то ионы Н + и ОН образуют воду, и уравнение примет вид

Итак, электролиз водного раствора сульфата натрия сводится к электролизу воды, а растворённая соль остаётся неизменной.

Пример 2. Как протекает электролиз водного раствора хлорида меди (II) CuCl2 с угольным анодом?

CuCl2 = Cu 2+ + 2Cl

(-) K А (+)
Cu 2+ , H2O (H + ) Cl , H2O (ОH )
из-за анодной поляризации при высоких i протекает процесс:
Cu 2+ + 2e – = Сu 2Cl - 2e – = Сl2­

Cu 2+ + 2Cl = Cu + Cl2

или в молекулярной форме: CuCl2 = Cu + Cl2.

Пример 3. Как протекает процесс электролиза раствора сульфата цинка с инертным анодом?

(-) K (+) A
Zn 2+ , H2O (H + ) SO4 2- , H2O (OH - )
Из-за катодной поляризации протекают два процесса:
Zn 2+ + 2e – = Zn 2О - 4е – = О2­ + 4Н +
2О +2е – = Н2­ + 2ОН

Суммарное уравнение реакции:

Пример 4. Как протекает электролиз водного раствора сульфата меди (II) с активным анодом?

(-) K А (Cu) (+)
Cu 2+ , H2O (H + ) SO , H2O (ОH )
Сu 2+ + 2e – = Сu Cu - 2e – = Сu 2+

Cu 2+ + Cu = Cu + Cu 2+

Концентрация CuSO4 в растворе при этом останется постоянной. Этот процесс применяется для электролитической очистки меди (электролитическое рафинирование).

Пример 5. Как протекает электролиз водного раствора хлорида цинка с активным анодом?

ZnCl2 = Zn 2+ + 2Cl

(-) K A (Zn) (+)
Zn 2+ , H2O(H + ) Cl , H2O (OH )
Из-за катодной поляризации
будут протекать два процесса:
Zn 2+ + 2e – = Zn Zn – 2e – = Zn 2+ | 2
2О +2е – =Н2­+ 2ОН

Пример 6. Определите массу цинка, которая выделится на катоде при электролизе раствора сульфата цинка в течение 1 часа при токе 26,8А, если выход цинка по току равен 50%.

Решение. В соответствии с законом Фарадея определим массу цинка, который выделился бы, если бы на катоде протекал один процесс:

Выход цинка по току равен

Отсюда масса выделившегося цинка составляет:

Применение электролиза.Практически нет ни одной отрасли техники, где бы он не применялся. В энергетике водород, полученный электролизом, используют для охлаждения генераторов на тепловых и атомных ЭС. Электролизом солей получают различные металлы: Cu, Zn, Cd, Ni, Mn и др. металлы. Электролиз используется для нанесения металлических покрытий на металлы и пластмассы (гальванические покрытия). Электролизом воды получают O2, H2, Cl2 и щёлочи из раствора хлорида натрия. Электролиз используют для зарядки аккумуляторов (см. раздел 10.2).

Электролиз

Электролиз (греч. elektron - янтарь + lysis — разложение) - химическая реакция, происходящая при прохождении постоянного тока через электролит. Это разложение веществ на их составные части под действием электрического тока.

Процесс электролиза заключается в перемещении катионов (положительно заряженных ионов) к катоду (заряжен отрицательно), и отрицательно заряженных ионов (анионов) к аноду (заряжен положительно).

Электролиз

Итак, анионы и катионы устремляются соответственно к аноду и катоду. Здесь и происходит химическая реакция. Чтобы успешно решать задания по этой теме и писать реакции, необходимо разделять процессы на катоде и аноде. Именно так и будет построена эта статья.

Катод

К катоду притягиваются катионы - положительно заряженные ионы: Na + , K + , Cu 2+ , Fe 3+ , Ag + и т.д.

Чтобы установить, какая реакция идет на катоде, прежде всего, нужно определиться с активностью металла: его положением в электрохимическом ряду напряжений металлов.

Электролиз катод

Если на катоде появился активный металл (Li, Na, K) то вместо него восстанавливаются молекулы воды, из которых выделяется водород. Если металл средней активности (Cr, Fe, Cd) - на катоде выделяется и водород, и сам металл. Малоактивные металлы выделяются на катоде в чистом виде (Cu, Ag).

Замечу, что границей между металлами активными и средней активности в ряду напряжений считается алюминий. При электролизе на катоде металлы до алюминия (включительно!) не восстанавливаются, вместо них восстанавливаются молекулы воды - выделяется водород.

В случае, если на катод поступают ионы водорода - H + (например при электролизе кислот HCl, H2SO4) восстанавливается водород из молекул кислоты: 2H + - 2e = H2

К аноду притягиваются анионы - отрицательно заряженные ионы: SO4 2- , PO4 3- , Cl - , Br - , I - , F - , S 2- , CH3COO - .

Электролиз анод

При электролизе кислородсодержащих анионов: SO4 2- , PO4 3- - на аноде окисляются не анионы, а молекулы воды, из которых выделяется кислород.

Бескислородные анионы окисляются и выделяют соответствующие галогены. Сульфид-ион при оксилении окислении серу. Исключением является фтор - если он попадает анод, то разряжается молекула воды и выделяется кислород. Фтор - самый электроотрицательный элемент, поэтому и является исключением.

Анионы органических кислот окисляются особым образом: радикал, примыкающий к карбоксильной группе, удваивается, а сама карбоксильная группа (COO) превращается в углекислый газ - CO2.

Примеры решения

В процессе тренировки вам могут попадаться металлы, которые пропущены в ряду активности. На этапе обучения вы можете пользоваться расширенным рядом активности металлов.

Ряд активности металлов

Теперь вы точно будете знать, что выделяется на катоде ;-)

Итак, потренируемся. Выясним, что образуется на катоде и аноде при электролизе растворов AgCl, Cu(NO3)2, AlBr3, NaF, FeI2, CH3COOLi.

Задания на электролиз

Иногда в заданиях требуется записать реакцию электролиза. Сообщаю: если вы понимаете, что образуется на катоде, а что на аноде, то написать реакцию не составляет никакого труда. Возьмем, например, электролиз NaCl и запишем реакцию:

NaCl + H2O → H2 + Cl2 + NaOH (обычно в продуктах оставляют именно запись "NaOH", не подвергая его дальнейшему электролизу)

Натрий - активный металл, поэтому на катоде выделяется водород. Анион не содержит кислорода, выделяется галоген - хлор. Мы пишем уравнение, так что не можем заставить натрий испариться бесследно :) Натрий вступает в реакцию с водой, образуется NaOH.

Запишем реакцию электролиза для CuSO4:

Медь относится к малоактивным металлам, поэтому сама в чистом виде выделяется на катоде. Анион кислородсодержащий, поэтому в реакции выделяется кислород. Сульфат-ион никуда не исчезает, он соединяется с водородом воды и превращается в серую кислоту.

Электролиз расплавов

Все, что мы обсуждали до этого момента, касалось электролиза растворов, где растворителем является вода.

Перед промышленной химией стоит важная задача - получить металлы (вещества) в чистом виде. Малоактивные металлы (Ag, Cu) можно легко получать методом электролиза растворов.

Но как быть с активными металлами: Na, K, Li? Ведь при электролизе их растворов они не выделяются на катоде в чистом виде, вместо них восстанавливаются молекулы воды и выделяется водород. Тут нам как раз пригодятся расплавы, которые не содержат воды.

Электролиз расплава

В безводных расплавах реакции записываются еще проще: вещества распадаются на составные части:

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.


Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :


Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

На аноде окисляются хлорид-ионы до молекулярного хлора:

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl – → 2 Na 0 + Cl2 0


Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH – → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0


В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присутствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

Примеры решения задач. Пример 13.1. Сколько граммов никеля выделится на катоде при пропускании через раствор сернокислого никеля NiSO4 тока силой 5 А в течение 10 мин?

Пример 13.1. Сколько граммов никеля выделится на катоде при пропускании через раствор сернокислого никеля NiSO4 тока силой 5 А в течение 10 мин? Привести схемы электродных процессов, протекающих при электролизе с инертным анодом. Определить продукты электролиза.

Решение. В водном растворе сульфат никеля (II) диссоциирует:

NiSO4 = Ni 2+ + SO4 2– . Стандартный электродный потенциал никеля (–0,250 В) выше значения потенциала восстановления ионов водорода из воды (–0,41 В). Поэтому на катоде будет происходить разряд ионов Ni 2+ и выделение металлического никеля. При электролизе сернокислых солей на инертном аноде происходит электрохимическое окисление воды с выделением кислорода.

Ni 2+ + 2ē = Ni2Н2О – 4ē = 4Н + + О2;

Продукты электролиза – Ni и О2.

Масса вещества, выделившегося на электроде при электролизе, определяется по законам Фарадея, математическое выражение которых имеет вид

где m – масса вещества, выделившегося на электроде, г; Мэк – молярная масса эквивалентов этого вещества, г/моль; Q – количество электричества, прошедшего через электролит, Кл; F – постоянная Фарадея, равная 96500 Кл/(моль∙экв).

Q = I∙t, где I – сила тока, А; t – время, электролиза, с. Подставляя в формулу (1) вместо Q его значение, получаем (2).

Молярная масса эквивалентов никеля (молярная масса атомов никеля – 58,71 г/моль) равняется 58,71/2 = 29,36 г/моль. Подставляя это значение, а также силу тока и время электролиза (в секундах) в формулу (2), получаем искомую массу никеля: m = (29,36×5×600)/96500 = 0,91 г.

Пример 13.2. Сколько времени нужно пропускать через раствор кислоты ток силой 10 А, чтобы получить 5,6 л водорода при нормальных условиях?

Решение. Продукт электролиза представляет собой газообразное вещество, поэтому для решения воспользуемся уравнением

Так как 1 моль эквивалентов водорода занимает при нормальных условиях объем 11,2 л, то искомое количество времени прохождения тока 4825 c =1ч 20мин 25 с.

Пример 13.3. При проведении электролиза водного раствора хлорида двухвалентного металла затрачено 3561 Кл электричества. В результате процесса на катоде выделилось 2,19 г этого металла. Определить металл, водный раствор хлорида которого подвергли электролизу. Привести схему электродных процессов. Определить продукты электролиза.

Решение.Находим молярную массу эквивалентов металла: Мэк = 59,347 г/моль. Умножая эту величину на 2 (валентность металла) получаем 118,69 г/моль, что соответствует молярной массе атомов олова. Следовательно, электролизу подвергли раствор SnCl2. В водном растворе хлорид олова (II) диссоциирует: SnС12 = Sn 2+ + 2С1 – . Стандартный электродный потенциал олова (II) (–0,136 В) существенно выше значения потенциала восстановления ионов водорода из воды (–0,41 В). Поэтому на катоде будет происходить разряд ионов Sn 2+ и выделение металлического олова. На аноде будут окисляться анионы хлора.

Катод (−) Sn 2+ , Н2О Анод (+) Сl – , Н2О

Sn 2+ + 2ē = Sn 2Сl − – 2ē = С12.

Продукты электролиза – Sn и С12.

Пример 13.4.При электролизе раствора CuSO4 на угольном аноде выделилось 350 мл кислорода при нормальных условиях. Сколько граммов меди выделилось на катоде? Привести уравнения электродных процессов, определить продукты электролиза.

Решение. В водном растворе сульфат меди (II) диссоциирует по схеме: CuSO4 = Cu 2+ + SO4 2− . Электродный потенциал меди (+0,337 В) значительно больше потенциала восстановления ионов водорода из воды (–0,41 В). Поэтому на катоде происходит процесс восстановления ионов Cu 2+ . При электролизе водных растворов сульфат-анионы не окисляются на аноде. На нем происходит окисление воды.

Cu 2+ + 2ē = Сu 2Н2О – 4ē = 4Н + + О2;

Продукты электролиза – Сu и О2.

Один моль эквивалентов кислорода при нормальных условиях занимает объем 5,6 л. Следовательно, 350 мл составляют 0,35/5,6 = 0,0625 моль. Столько же молей эквивалентов выделилось на катоде. Отсюда масса меди

m = × 0,0625 = 1,98 г.

Пример 13.5.Будут ли, и в какой последовательности, восстанавливаться на катоде одновременно присутствующие в растворе (в равных концентрациях) ионы А1 3+ , Ni 2+ , Sn 2+ , Au 3+ и Mg 2+ ? Напряжение достаточно для выделения любого металла.

Решение. На катоде сначала восстанавливаются катионы, имеющие большее значение электродного потенциала (табл. Б. 4). Поэтому, в первую очередь, на катоде будут восстанавливаться ионы Au 3+ (+1,498 В), далее Sn 2+ (–0,136 В) и, наконец, Ni 2+ (–0,250 В). Ионы А1 3+ (–1,662 В) и Mg 2+ (–2,363 В), имеющие значения электродного потенциала значительно отрицательнее потенциала восстановления ионов Н + из воды (–0,41 В), при электролизе водных растворов не восстанавливаются на катоде. При электролизе их солей протекает восстановление молекул воды:

Задачи и упражнения по электролизу и окислительно-восстановительным процессам с решениями


Сегодня у нас урок химии 107 — Задачи и упражнения по электролизу и окислительно-восстановительным процессам с решениями. Как изучить? Полезные советы и рекомендации повторите предыдущие уроки химии.

При обнаружении неточностей, или если появятся неясные моменты, просьба написать в комментариях. Отвечу на все вопросы.

  1. Какой объем газа (при н.у.) выделится на аноде при электролизе расплава хлорида калия, если на катоде выделяется 11,7 г металла?

1) 11,2; 2) 3,36; 3) 16,8; 4) 22,4.

Электролиз расплава хлорида калия:

V(Cl2) = 22,4 ⃰0,15 = 3,36 л.

  1. Вычислите объём в литрах газа, выделяющегося на аноде при электролизе водного раствора гидроксида кальция с инертными электродами, если на катоде выделился газ объемом 67,2 л (при н.у.).

1) 16,8; 2) 11,2; 3) 33,6; 4) 5,6.

Электролиз водного раствора гидроксида кальция с инертными электродами:

Катодный процесс К(-) будет: 2Н + + 2е — → Н2;

Анодный процесс A(+) будет: 2H2O — 4 е — → O2 + 4Н + ;

Процесс электролиза сводится к разложению воды:

  1. Какая масса (в граммах) гидроксида лития образуется в растворе при электролизе водного раствора хлорида лития с инертными электродами с инертными электродами, если на аноде выделяется 10,08 л газа (н.у.)?

1) 24; 2) 46; 3) 19; 4) 21,6.

Электролиз водного раствора хлорида лития с инертными электродами:

Анодный процесс A(+) будет: 2Cl — — 2е — → Cl2;

Cуммарный процесс электролиза:

n(Cl2) = 10,08/22,4 = 0,45 моль;

n(LiOH) = 2n(Cl2) = 0,45 ⃰0,45 = 0,9 моль;

М(LiOH) = 24 г/моль;

m(LiOH) = 24 ⃰0,9 = 21,6 г.

  1. Определите массу (в граммах) азотной кислоты, образующейся в растворе при электролизе водного раствора нитрата меди с инертными электродами, если на катоде выделяется 8 г вещества.

1) 35,8; 2) 60; 3) 15,75; 4) 48,9.

Электролиз водного раствора нитрата меди с инертными электродами:

Катодный процесс К(-) будет: Cu 2+ + 2е — → Cu;

n(Cu) = 8/64 = 0,125 моль;

n(HNO3) = 2n(Cu) = 0,125 ⃰2 = 0,25 моль;

m(HNO3) = 0,25 ⃰63 = 15,75 г.

  1. Какая масса газа выделится на аноде (в граммах) при полном электролизе 320 г 10 %-го водного раствора сульфата меди?

1) 3,2; 2) 12,8; 3) 19,2; 4) 25,6.

Электролиз водного раствора сульфата меди с инертными электродами:

m(CuSO4) = 320 ⃰10/100 = 32 г;

n(CuSO4) = 32/160 = 0,2 моль;

  1. При погружении в раствор нитрата серебра медной пластинки массой 120 г. произошло полное вытеснение серебра. При этом, масса пластинки увеличилась на 3,8 %. Какая масса серебра содержалось в растворе?

1) 3,24; 2) 6,48; 3) 2,43; 4) 12,96.

Масса медной пластинки после выделения серебра будет:

m(Cu) = 120 ⃰103,8/100 = 124,56 г;

Из уравнения реакции видно, что при растворении 1 моля Cu (64 г), выделяется 2 моля серебра (216 г). При этом масса пластинки увеличивается на:

Δm = 216 – 64 = 152 г;

По условию задачи,

Δm = 124,56 – 120 = 4,56 г;

Тогда верна будет пропорция:

216 г Ag увеличивают массу пластинки на 152 г

х г Ag увеличивают массу пластинки на 4,56 г

Оттуда, х = 216 ⃰4,56/152 = 6,48 г.

  1. Электролиз раствора медного купороса выделил на аноде 6,72 л газа (н.у.). Какова масса вещества (граммы) выделившегося на катоде?

1) 19,2; 2) 9,6; 3) 76,8; 4) 38,4.

Электролиз водного раствора медного купороса с инертными электродами:

m(Cu) = 64 ⃰0,6 = 38,4 г;

  1. При проведении электролиза расплава хлорида неизвестного металла, дающего трехзарядный катион, на аноде выделилось 1,344 л газа (н.у.), а на катоде – 1,08 г металла. Определите неизвестный металл. (В ответе укажите молярную массу хлорида.)

1) 144,5; 2) 189,5; 3) 133,5; 4) 203,5.

Электролиз расплава хлорида трехвалентного металла:

n(Cl2) = 1,344/22,4 = 0,06 моль;

n(Ме) = 2/3n(Cl2) = 2 ⃰0,06/3 = 0, 04 моль;

М(Ме) = 1,08/0,04 = 27 г/моль;

  1. 400 мл раствора с массовой долей КOH 12 % (ρ = 1,11 г/мл) подвергли электролизу, в результате которого на аноде выделилось 26,88 л газа (н.у.). Какова массовая доля (%) находящегося в растворе вещества после электролиза. (Массовую долю в ответе укажите с точностью до десятых).

1) 13,3; 2) 15,6; 3) 18,4; 4) 14,1.

m(р-ра КOH) = 400 ⃰1,11 = 444 г;

m(КOH) = 444 ⃰12/100 = 53,28 г;

Электролиз водного раствора гидроксида калия с инертными электродами:

m(р-ра КOH после электролиза) = 444 – (38,4 + 4,8) = 400,8 г;

ω(р-ра КOH после электролиза) = 53,28 ⃰100/400,8 = 13,3 %.

  1. Сколько граммов перманганата калия потребуется для реакции с хлористоводородной кислотой, если полученный хлор, при пропускании через раствор иодида натрия выделяет 40 г брома? (в ответе укажите массу (г) перманганата калия с точностью до десятых.)

1) 7,9; 2) 15,8; 3) 23,7; 4) 31,6.

n(Br2) = 40/160 = 0,25 моль;

m(KMnO4) = 158 ⃰0,1 = 15,8 г.

  1. В разбавленной азотной кислоте растворили 3 моля магния. Какова масса азотной кислоты, которая была израсходовано только на процесс окисления магния, если одним из продуктов реакции является азот?

1) 40,8; 2) 22,6; 3) 31,5; 4) 75,6.

2N +5 + 10e — = 2N 0

5Mg 0 — 2e — = 5Mg 2+

Из уравнения реакции и электронного баланса видно, что 5 атомов магния (восстановитель) отдают 10 элетронов, которые принимаются двумя атомами азота в азотной кислоте в степени окисления +5. При этом, из каждых двух молей азотной кислоты, участвующих в окислении, образуется одна моль газообразного азота, остальные 10 молей HNO3 участвуют в реакции обмена.

Для процесса окисления-восстановления можно написать:

2HNO3 + 5Mg 0 → 5Mg 2+ + N2 0 ↑ + 2H +

Тогда, количество молей HNO3, взаимодействуэщих с тремя молями магния будет:

n(HNO3) = 2 ⃰3/5 = 1,2 моль;

m(HNO3) = 1,2 ⃰63 = 75,6 г;

  1. Напишите уравнение реакции взаимодействия дихромата калия с бромидом калия в сернокислом растворе. Сколько граммов брома выделяется, если для реакции взято 200 мл 0,2 М раствора K2Cr2O7, а выход брома равен 85 %? (Ответ с точностью до сотых.)

1) 28,15; 2) 21,26; 3) 16,32; 4) 36,49.

2Cr 6+ + 6e — = 2Cr 3+

2Br 0 — 2e — = 2Br 0

m(Br2) = 0,12 ⃰160 ⃰85/100 = 16,32 г.

  1. В концентрированной азотной кислоте было растворено 27 г металлического серебра. Какая масса азотной кислоты (в граммах) была израсходована только на процесс солеобразования? (Ответ с точностью до сотых.)

1) 15,75; 2) 32,63; 3) 44,56; 4) 18,45.

Из уравнения реакции и электронного баланса видно, что 1 атом серебра (восстановитель) отдает 1 электрон, который принимается одним атомом азота в азотной кислоте в степени окисления +5. При этом, из каждой молекулы азотной кислоты, участвующей в окислении, образуется одна молекула газообразного оксида азота (IV), остальная 1 молекула HNO3 участвует в реакции солеобразования.

Тогда, для процесса солеобразования можно будет написать:

n(Аg) = 27/108 = 0,25 г/моль;

m(HNO3) = 0,25 ⃰63 = 15,75 г;

  1. Какую массу (в граммах) 20,6 %-го раствора бромида натрия следует подвергнуть электролизу, чтобы выделившийся галоген вытеснил 12,7 г йода из иодида натрия?

1) 70; 2) 50; 3) 40; 4) 80.

Электролиз водного раствора бромида натрия с инертными электродами:

Анодный процесс A(+) будет: 2Br — — 2е — → Br2;

Реакция брома с иодидом натрия:

n(NaBr) = 2n(Br2) = 2 ⃰0,05 = 0,1 моль;

М(NaBr) = 103 г/моль;

m(NaBr) = 103 ⃰0,1 = 10,3 г.

m(р-ра NaBr) = 10,3 ⃰100/20,6 = 50 г.

  1. Из приведенных вариантов электролиза расплава гидроксида натрия выберите правильный (анод нерастворимый):

Электролиз расплава гидроксида натрия с инертными электродами:

Катодный процесс К(-) будет: 4Na + + 4е — → 4Na;

Анодный процесс A(+) будет: 4OH — — 4е — → O2 + 2H2O;

4NaOH (электролиз) → 4Na + O2↑ + 2H2O;

  1. Из приведенных вариантов, продуктами электролиза раствора гидроксида калия являются (анод инертный):
  1. Электролиз раствора нитрата серебра сопровождается выделением газа _____________. Запишите название газа в родительном падеже.

Электролиз водного раствора нитрата серебра с инертными электродами:

Катодный процесс К(-) будет: Ag + + е — → Ag;

Анодный процесс A(+) будет: 2H2O — 4е — → O2 + 4Н + ;

  1. При электролизе водных растворов, содержащих смесь катионов Fe 2+ , Ag + , Cо 2+ и К + , раньше восстанавливаются на катоде катионы _______________. Запишите название металла в родительном падеже.

Металлы в ряду активности расположены в порядке убывания их активности:

Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Чем правее расположен металл в этом ряду, тем он менее активен и легче восстанавливается на катоде.

  1. При электролизе расплава и раствора какого вещества получаются одинаковые продукты

Электролиз расплава и раствора хлорида меди(II) дает медь и хлор.

  1. При электролизе расплава хлорида двухвалентного металла массой 19 г на аноде выделяется газ объемом 4,48 л (при н.у.). Определите металл ____________.

Электролиз расплава хлорида двухвалентного металла:

М(МеCl2) = 19/0,2 = 95 г/моль;

А(Ме) = 95 – 71 = 24 г/моль.

Такую атомную массу имеет магний.

  1. Из ниже приведенных окислительно-восстановительных процессов с участием воды протекает:

1) NaCl + … → Na + Cl2;

3) 2ZnS + … → 2SO2 + 2ZnO;

С участием воды протекает окислительно-восстановительная реакция под номером 2.

  1. Какой ион является окислителем в реакции бария с концентрированной азотной кислотой?

1) Ва 2+ ; 2) H + ; 3) Ва 0 ; 4) NO3 — .

Ва 0 + 2е — = Ва 2+

Видно, что окислителем является N 5+ , входящий в состав иона NO3 — .

  1. При электролизе водного раствора фосфата калия на аноде выделяется

Электролиз водного раствора фосфата калия с инертными электродами:

1) проявляет только окислительные свойства;

2) проявляет только восстановительные свойства;

3) проявляет как окислительные, так и восстановительные свойства;

4) не проявляет окислительно-восстановительных свойств.

Сера может находиться в степенях окисления: S 2- ; S 4+ ; S 6+ .

В сульфите натрия — Na2 + S 4+ O3 2- она находится в степени окисления S 4+ . Следовательно, может проявлять, как окислительные, так и восстановительные свойства.

В сульфиде калия – К2 + S 2- , она находится в степени окисления S 2- . Следовательно, может проявлять только восстановительные свойства.

Это был у нас урок химии 107 — Задачи и упражнения по электролизу и окислительно-восстановительным процессам с решениями.

Читайте также: