Положительно и отрицательно заряженные металлы

Обновлено: 28.09.2024

В 1865 г. (т.е. за 4 года до открытия Д.И. Менделеевым переодического закона) металлы уже были классифицированы по их активности. Это сделал известный русский ученый Н.Н. Бекетов, который изучал действие различных металлов на разбавленные кислоты и воду и заметил, что наиболее активно ведут себя щелочные металлы. Некоторые же металлы, такие, как Cu, Hg, Ag, Au, вообще не вытесняли водород из растворов кислот, даже наоборот — водород сам способен вытеснять металлы из солей ртути и серебра.

Итогом трудов Н.Н. Бекетова явился так называемый вытеснительный ряд металлов:

K, Na, Ca, Mg, Al, Mn, Zn, Fe, Ni, Sn, Pb, H2, Cu, Hg, Ag, Au.

Все металлы, стоящие в этом ряду левее водорода, вытесняют водород из разбавленных кислот.

Современное название этого ряда — «Электрохимический ряд напряжений», так как положение каждого металла в этом ряду определяется величиной так называемого электродного потенциала.

Что же такое электродный потенциал? Как он возникает?

Напомним, что электрическим потенциалом называют величину, соответствующую энергии, которую нужно затратить (и тогда потенциал положителен) или которую можно получить (и тогда потенциал отрицателен) при переносе единицы электричества из бесконечности в данную точку.

Согласно современным представлениям, в узлах кристаллических решеток металлов находятся атомы и ионы, причем нейтральных атомов очень мало, подавляющее число частиц находится в виде ионов. Электроны, подчиняясь законам квантовой теории, движутся в поле положительных зарядов, создавая своеобразный «электронный газ». Таким образом, в металле существует подвижное равновесие, которое можно выразить уравнением.

Если погрузить пластинку металла в воду, то под действием полярных молекул воды часть катионов перейдет в жидкость Me z + + mH2O ? [Me(H2O)m] z+ , а электроны останутся на пластинке металла, в результате чего металл зарядиться отрицательно.

Катионы, перешедшие в жидкость, располагаются вблизи поверхности отрицательно заряженной пластинки металла, в результате чего образуется двойной электрический слой, что схематически можно представить так (рис.1):


Рис.1. двойной электрический слой на границе металл–вода

Таким образом, на границе соприкосновения жидкости с металлом электрический потенциал? резко изменяется и наблюдается скачок (или разность) потенциала ??, который принято называть электродным потенциалом.

. В большинстве современной химической литературы скачки потенциалов обозначаются просто ?.

Ясно, что чем активнее металл, тем легче будут диссоциировать его атомы, тем большее количество катионов перейдет в жидкость и тем, следовательно, б?льшим будет отрицательный заряд металла, что, в свою очередь, обусловит б?льшую разность потенциалов на границе металл—жидкость.

Процесс перехода ионов металла в жидкость является обратимым процессом. Поэтому, если погрузить пластинку металла не воду, а в раствор соли этого металла, то равновесие будет смещено: из металла в раствор будет переходить меньше ионов и разность потенциалов на границе металл—раствор будет несколько иной, чем в первом случае.

На рис. 2. представлена схема возникновения двойного электрического слоя в случае цинковой и медной пластинок, погруженных в растворы их солей.


Рис.2. Схема возникновения электродного потенциала

Видно, что величина электродного потенциала определяется прежде всего природойметалла. Кроме того она зависит от температуры, концентрации раствора и других факторов. Поэтому для сравнения электродных потенциалов необходимо выбрать некоторые стандартные условия. Обычно сравнение производят при 25°С, давлении 101,3 кПа и в растворе с концентрацией одноименного иона, равной единице (1 моль/л).

Таким образом, стандартным электродным потенциалом называется электродный потенциал при концентрации иона металла 1 моль/л.

Абсолютное значение электродного потенциала измерить невозможно (поскольку введение любых измерительных зондов неизбежно приводит к появлению новой контактной разности потенциалов). Вместе с тем не представляет труда измерение величины относительного электродного потенциала.

Относительные электродные потенциалы металлов измеряют относительно стандартного водородного электрода, потенциал которого произвольно принят за нуль.

Поскольку водород при температуре 298 К является газом, из него невозможно, как из металла, изготовить пластинку. В качестве твердой фазы в стандартном водородном электроде используют инертный металл (например, Pt).

Конструктивно водородный электрод (рис.3) состоит из платиновой пластинки, покрытой слоем мелкозернистой платины — платиновой чернью, частично погруженной в раствор кислоты с концентрацией ионов водорода, равной 1 моль/л. Обычно берут раствор нелетучей кислоты — серной H2SO4 или хлорной HClO4. К пластинке подают чистый газообразный водород под постоянным давлением 101,3 кПа.

Возникновение потенциала на стандартном водородном электроде можно представить следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние, поэтому в поверхностном слое платины устанавливается равновесие Н2 ? 2Н, а на границе платины и раствора серной кислоты — равновесие Н ? Н + + е.

Суммарный процесс выражается уравнением:

Таким образом, водородный электрод можно обозначить как Н2/Н + , Pt, где вертикальная черта означает поверхность раздела фаз.


Рис. 3. Схема водородного электрода или так

Если пластинку некоторого металла, погруженную в раствор его соли с концентрацией иона металла 1 моль/л, соединить электролитным мостиком с водородным электродом (рис.3), то получится гальванический элемент, т.е. в полученной системе пойдет электрический ток, обусловленный разностью электродныхпотенциаловводородногоэлектродаи изучаемогометалла.

Вот эту величину — разность электродных потенциалов катода и анода — в разомкнутом (незамкнутом) гальваническом элементе называют электродвижущей силой (ЭДС или Е) элемента:

ЭДС= ??1 –??2 или ЭДС = ??к –??А

В замкнутом гальваническом элементе, т.е. при измеряемом значении силы тока в элементе (т.е. при соединении платины с некоторым металлом металлическим проводником) разность потенциалов катода и анода называют напряжением:

Прямым измерением разности потенциалов на клеммах гальванического элемента с помощью обычного вольтметра можно получить значение напряжения U,которое не равноЭДСэлемента, т.е. U < ЭДС.

Разница между ЭДС и напряжением обусловлена падением напряжения внутри элемента при прохождении тока (в физике ЭДС = I·R + I·rвнутр.., где rвнутр– внутреннее сопротивление электродов. При I ~ 0 произведение I·rвнутр.. = 0, но выражение I·R хоть и очень мало, но все-таки оно есть и равно ЭДС). Поэтому измерение ЭДС обычно проводят компенсационным методом, при котором ток, протекающий через элемент, близок к нулю. Более простой и менее точный метод измерения ЭДС заключается в прямом измерении напряжения на клеммах гальванического элемента вольтметром, имеющим высокое сопротивление (высокоомным вольтметром). Вследствие высокого сопротивления вольтметра мал ток, протекающий через элемент, поэтому не велика разница между ЭДС и напряжением элемента.

Измеренная ЭДС цепи, составленной из стандартного водородного электрода и стандартного металлического электрода является электродным потенциалом последнего.

Если измерить стандартные электродные потенциалы различных металлов по отношению к потенциалу стандартного водородного электрода и расположить их в порядке увеличения, то получим ряд напряжений металлов:

?? 0 , ВK, Na, Ca, Mg, Al, Mn, Zn, Fe, Ni, Sn, Pb, H2, Cu, Hg, Ag, Au

(или просто ? 0 ) –2,92 –2,38 0,0 0,8 1,2

Ряд напряжений характеризует химические свойства металлов:

1. Чем меньшей алгебраической величиной ? 0 обладает металл, тем он химически активнее, т.е. тем больше его восстановительная способность.

2. Чем дальше расположены друг от друга в ряду напряжений два металла, тем б?льшую электродвижущую силу будет иметь построенный из них гальванический элемент, причем катодом всегда будет являться тот электрод, потенциал которого больше.

Электрический ток в металлах: подробное объяснение

Электрический ток в металлах представляет собой упорядоченное движение свободных электронов. Более подробно об этом читайте далее в нашей статье.

Важно знать

Как известно, электрический ток – это упорядоченный поток носителей электрического заряда. Носители – это заряженные частицы, способные свободно перемещаться во всем объеме тела.

В случае металлов этими частицами являются электроны, которые высвобождаются при образовании связи между атомами металла.

Известно, что металлы в твердом состоянии имеют кристаллическую структуру. Частицы в кристаллах расположены в определенном порядке, образуя пространственную решетку (кристалл).

Наконец, кристаллическая решетка металла образована положительными ионами, погруженными в “облако” хаотически движущихся так называемых свободных электронов, также называемых электронами проводимости. В зависимости от валентности атомов металла, один атом может освободить от одного до трех электронов при образовании металлических связей. Число таких высвобожденных электронов непосредственно переводится в число носителей заряда. Это является одним из факторов, влияющих на способность металла проводить электрический ток.

Доказательством того, что ток в металлах вызывается электронами, послужили эксперименты наших отечественных физиков Леонида Исааковича Мандельштама и Николая Дмитриевича Папалекси, а также американских физиков Бальфура Стюарта и Роберта Толмана.

Способность металла проводить электрический ток может быть описана физической величиной, называемой удельным электрическим сопротивлением. Эта физическая величина обозначается греческой буквой ρ (читается как “ро”). Единицей измерения удельного сопротивления является Ом · м, т.е. произведение Ом на метр. Удельное сопротивление – это константа, которая характеризует материал и имеет различные значения для разных материалов. Например, удельное сопротивление меди составляет 1.72*10 -8 Ом · м. Это означает, что электрическое сопротивление медного проводника длиной 1 метр и площадью поперечного сечения 1 м равно 1.72*10 -8 Ом . В целом, чем ниже удельное сопротивление материала, тем лучше он проводит электрический ток.

В таблице ниже приведены некоторые примеры удельного сопротивления часто используемых металлов.

МеталлУдельное сопротивление (Ом · м)
Серебро1.59*10 -8
Медь1.72*10 -8
Алюминий2.82*10 -8
Вольфрам5.6*10 -8
Железо10*10 -8

Удельное электрическое сопротивление может быть связано с микроскопическими свойствами материала. В частности, он зависит от концентрации носителей заряда и их подвижности.

Движение свободных электронов в металлах не является полностью “свободным”, поскольку во время их движении они взаимодействуют с другими электронами, и прежде всего с ионами кристаллической решетки. Специфика этого движения описывается так называемой классической моделью проводимости.

Основные предположения и выводы этой модели представлены в большом упрощении ниже.

Классическая модель проводимости

Без внешнего электрического поля электроны совершают тепловые хаотические движения, сталкиваясь друг с другом, а также сталкиваясь с ионами кристаллической решетки. В результате такого движения среднее положение электронов практически не меняется (см. рис. 1.).

Пример траектории электрона во время его хаотического движения в металле

Рис. 1. Пример траектории электрона во время его хаотического теплового движения в металле

Из-за квантовых эффектов, и в частности из-за принципа запрета Паули, который не позволяет всем электронам занимать самое низкое энергетическое состояние, средняя скорость электронов в металлах, связанная с их хаотическим тепловым движением, больше, чем скорость частиц в классическом идеальном газе той же температуры. Она составляет порядка 10 м/с.

Если электрическое напряжение U приложено к концам проводника длиной L в нем появится электрическое поле с напряженностью E = U / L

Под действием этого внешнего поля, согласно второму закону динамики, электроны ускоряются: a = F / m,

где F = e*E – сила, с которой электрическое поле действует на электрон с зарядом e. Таким образом, ускорение электрона составляет: a = e*E / m .

Ускоренное движение электрона длится лишь довольно короткое время, пока он не столкнется с ионом
кристаллической решетки. В результате такого столкновения электрон теряет практически всю свою кинетическую энергию. Однако замедленный электрон не остается в состоянии покоя – он снова ускоряется под действием электрического поля, снова сталкивается с одним из ионов из ионы кристаллической решетки и т.д. Этот эффект добавляет к скорости тепловых движений дополнительную направленную среднюю скорость u, которая из-за отрицательного заряда электрона имеет направление, противоположное напряженности внешнего электрического поля. Эта скорость называется средней скоростью дрейфа (рис. 2).

Дрейф электрона под действием внешнего электрического поля

Рис. 2. Дрейф электрона под действием внешнего электрического поля

В проводнике начинает течь электрический ток с силой тока I (см. рисунок 3).

Дрейфующие электроны сталкиваются с ионами кристаллической решетки

Рис. 3. Дрейфующие электроны сталкиваются с ионами кристаллической решетки

Предполагая, что движение электрона равномерно ускоряется между столкновениями с ионами решетки, с ускорением a = e*E / m , и предполагая, что в результате столкновения электрон передает всю свою кинетическую энергию кристаллической решетке, мы можем вычислить скорость, которую развивает электрон в своем свободном движении: v = a*τ . В этой формуле τ – средний интервал времени между последующими столкновениями дрейфующего электрона с ионами кристаллической решетки.

Поскольку при равномерно ускоренном движении без начальной скорости средняя скорость является средним арифметическим начальной (равной нулю) и конечной скоростью, то получаем: u = v / 2 = e*E*τ / 2*m .

Из полученной формулы следует, что скорость дрейфа, помимо внешнего электрического поля, определяется средним интервалом времени между столкновениями электронов с ионами решетки. Этот параметр зависит от многих факторов (включая температуру, кристаллическую структуру металла, дефекты кристаллической структуры, примеси) и, как выясняется, существенно влияет на электрическое сопротивление материала.

Средняя дрейфовая скорость электронов составляет порядка 10 -4 м/с. Она очень мала по сравнению со скоростью теплового движения, которая составляет порядка 10 6 м/с.

Классическая теория проводимости достаточно хорошо описывает явление электропроводности в металлах. Однако эта теория не может объяснить экспериментально наблюдаемую зависимость электрического сопротивления от температуры.

Причина упомянутой неудачи классической теории проводимости заключается в том, что она не учитывает влияние ионов решетки на движение электронов между столкновениями. Более близкие к реальности результаты дает квантовая теория проводимости, которая описывает электроны как частицы, подверженные квантовой статистике, движущиеся в периодическом электрическом поле, создаваемом положительными ионами решетки.

Выводы простым языком

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны в нём движутся беспорядочно. Но если в металле создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникнет электрический ток. Беспорядочное движение электронов при этом сохраняется, подобно тому как сохраняется беспорядочное движение в стайке мошкары, когда под действием ветра она перемещается в одном направлении.

« Скорость движения самих электронов в проводнике под действием электрического поля невелика – несколько миллиметров в секунду, а иногда и ещё меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км/c), распространяетcя по всей длине проводника. »

Перышкин А. В. Физика 8. – М.: Дрофа, 2010

Как пример, электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s = 8000 км), приходит туда примерно через 0,03 с.

Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, когда цепь электрической лампы замкнута, электроны в спирали лампы также движутся упорядоченно.

Сравнение электрического тока с потоком воды в водопроводной системе и распространения электрического поля с распространением давления воды поможет нам понять это. Когда вода поднимается в резервуар для воды, давление (напор) воды очень быстро распространяется по всей системе водоснабжения. Когда мы включаем кран, вода уже находится под давлением и сразу же начинает течь. Но вода, которая была в кране, течет, а вода из башни достигает крана гораздо позже, потому что вода движется с меньшей скоростью, чем распространяется давление.

Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.

Что такое анод и катод: объясняю простыми словами

Для корректной работы полупроводниковых приборов, работающих в цепях с постоянным током, электроды радиоэлементов необходимо подключать с учетом их полярности. Неправильное подключение может привести к выходу из строя радиоэлемента либо к отказу в работе электронного прибора. С целью избегания ошибок электроды таких деталей получили специальное название – анод и катод.

Часто эти электроды обозначаются на схемах соответствующими символами «+» или «–», либо определяются по схематическому изображению радиоэлемента. На корпусах деталей иногда проставляется точка или другая метка, позволяющая определить направление тока на конкретном электроде. Иногда полярность выводов приходится определять по специальным таблицам или с помощью измерительного прибора.

Понятие анода и катода

Для лучшего понимания терминов дадим определения этих понятий.

Под данным термином будем подразумевать электрод, по которому электрический ток втекает в разглядываемый прибор. При этом подразумевается, что электрический ток образуется потоком положительных зарядов. В действительности, по металлическим проводникам перемещаются электроны (носители отрицательных зарядов), которые движутся в сторону положительного полюса источника электрического тока.

Проще говоря, положительным электродом будем считать анод, а отрицательным электродом – катод. При подключении радиоэлементов следует соблюдать их полярность, руководствуясь обозначениями на схемах.

Катод

Это электрод, по которому электрический ток вытекает с прибора (подразумевается конвенциальное понимание тока, в виде потока положительных зарядов). Таким образом, если к аноду подключается провод с положительным потенциалом, то к катоду – клеммы с отрицательными потенциалами.

Вышеуказанные термины применяются по отношению к гальваническим элементам. В гальванике анод – это электрод, на поверхности которого проходит реакция окисления металла. Названия электродов встречаются:

  • в химии;
  • физике;
  • электротехнике;
  • радиоэлектронике.

При монтаже радиодеталей очень важно не перепутать электроды. Для этого необходимо знать, как определить их назначение.

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

Электролиз

Рис. 1. Электролиз

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента.

Гальванический элемент

Рис. 2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу. То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Транзистор на схемах и его электроды

Рис. 5. Транзистор на схемах и его электроды

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.

Анод и катод: где плюс, а где минус?

Из сказанного выше следует, что ток всегда течет в направлении от анода к катоду. Вывод один – на анод поступает плюс, а катод подсоединяется к минусу. Придерживаясь этого правила можно безошибочно определить, где плюс, а где минус.

Где плюс и минус анод катод

Вот так можно запомнить:)

В гальванотехнике на катоде происходит реакция восстановления. То есть положительные ионы из раствора оседают на катоде. По этому признаку определяем знак минус.

Как определить катод и анод радиодеталей мы рассмотрели выше. Если есть схема устройства то по ней довольно легко можно указать направление тока, и, соответственно, назначение электродов. При отсутствии схемы пользуйтесь признаками и метками на корпусах деталей.

Примечание: по отношению к стабилитрону некорректно применять термин катод и анод, так как он проводит ток в разных направлениях.

Отдельно заострю ваше внимание на элементах питания. Обычно «+» указывается на гальванических устройствах, а на аккумуляторах часто маркируются обе клеммы. В аккумуляторах автомобильного типа плюсовую клемму делают толще. По этому признаку также можно определить полярность полюсов.

В качестве выводов см. рисунок 6.

Цифрами обозначено:

  • 1– анод;
  • 2 – электролит;
  • 3 – катод;
  • 4 – источник тока.

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронных приборах;
  • полупроводниковых элементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.

Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.

В вакуумных электронных приборах

Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

В полупроводниковых приборах

Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.

При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

Механизм возникновения тока в гальванических элементах. Электродные потенциалы металлов

Прибор для измерения нормального потенциала металла

Существует несколько теорий, объясняющих возникновение тока в гальванических элементах. Наиболее простая из них была выдвинута Нернстом (1888 г.) и позднее подробно развита академиком Л. В. Писаржевским на основе представлений о строении металлов из поло жительно заряженных ионов и свободных электронов.

Лев Владимирович Писаржевский родился в 1874 г.в. г. Кишиневе. Окончив естественный факультет Новороссийского университета (г. Одесса), Писаржевский был оставлен при нем для подготовки к прафессорскому званию. В 1902 г. он защитил магистерскую диссертацию, а в/1913 г. был избран профессором Екатеринославского горного института (г. Днепропетровск). С 1930 г. Писаржевский был действительным членом Академии наук СССР.

Крупный ученый и блестящий педагог, Писаржевский смело использовал достижения физики для изучения и объяснения химических процессов. Важнейшие его работы посвящены исследованию перекисей и надкислот, разработке теории растворов, приложению электронной теории к химии и разработке теории возникновения тока в гальванических элементах.

Возникновение тока в гальваническом элементе происходит следующим образом. Если погрузить любой металл в воду, то ионы его начинают переходить в раствор под влиянием притяжения, испытываемого ими со стороны полярных молекул воды. Вследствие этого металл, в котором остается избыток электронов, заряжается отрицательно, а раствор — положительно. Однако число ионов, которое металл посылает в раствор, как показывает опыт, очень мало. Возникающий на металле по мере ухода ионов отрицательный заряд начинает притягивать обратно ушедшие из металла ионы, так что вскоре наступает состояние равновесия, при котором в единицу времени столько же ионов уходит из металла, сколько и возвращается в него:

металл⇄ионы металла

Перешедшие в раствор ионы не распределяются равномерно по всей массе раствора, а вследствие притяжения к отрицательно заряженному металлу располагаются близ его поверхности, образуя так называемый двойной электрический слой (рис. 127). В результате между металлом и раствором устанавливается определенная разность потенциалов.

Лев Владимирович Писаржевский

Предположим теперь, что мы прибавили к воде, в которую погружен металл, некоторое количество соли того же металла. Вследствие увеличения концентрации ионов металла в растворе равновесие между ними и металлом нарушится и часть ионов перейдет обратно в металл. Следовательно, в раствор своей соли

металл должен посылать меньше ионов, чем в чистую воду, и тем меньше, чем больше концентрация ионов в растворе. При достаточно большой концентрации соли ионы могут совсем не перейти из металла в раствор, так что ни металл, ни раствор не будут заряжены.

Наконец, если концентрация ионов металла в растворе достаточно велика, а активность металла сравнительно мала, то металл не только не посылает ионов в раствор, но, наоборот, часть ионов переходит из раствора в металл. При этом между металлом и раствором тоже возникает разность потенциалов, но теперь уже раствор заряжается отрицательно за счет избытка отрицательных ионов соли, а металл — положительно. Практически дело обстоит так, что одни металлы (более активные) всегда заряжаются в растворах своих солей отри-цательно, другие (менее активные) —положительно.

Следует заметить, что во всех случаях при погружении металла в раствор его соли количество переходящих в раствор или выделяющихся из раствора ионов настолько мало, что не может быть обнаружено химическим путем. Однако заряд их достаточно велик, чтобы создать поддающуюся измерению разность потенциалов.

Изложенная выше теория очень просто объясняет механизм действия гальванических элементов. Рассмотрим, например, медно-цинковый элемент . В этом элементе на цинковой пластинке, погруженной в раствор ZnSО4, возникает некоторый отрицательный заряд, а на меди, погруженной в раствор CuSO4,— положительный заряд. Если металлы не связаны друг с другом проводником, то возникновение указанных зарядов, как мы видели выше, должно тотчас же приостановить и дальнейший переход ионов цинка в раствор, и выделение из раствора ионов меди. Но если соединить обе пластинки проволокой, то накапливающиеся на цинке электроны все время будут перетекать к медной пластинке, где их недостает. Таким образом, цинк получает возможность посылать все новые и новые количества ионов Zn •• в раствор, у медной же пластинки ионы Сu •• разряжаются и выделяются в виде металлической меди. Этот процесс продолжается до тех пор, пока не растворится весь цинк или не израсходуется вся медная соль.

В гальванических элементах тот электрод, который в процессе работы элемента разрушается, посылая ионы в раствор, называется анодом, а электрод, у которого разряжаются поло жительные ионы, называется катодом.

Гальванический элемент может быть построен из любых двух металлов, погруженных в растворы их солей. При этом совершенно не обязательно, чтобы один металл заряжался «отрицательно, а другой — положительно. Единственным условием для перетекания электронов от одного заряженного тела к другому является существование разности потенциалов между ними. Но последняя должна возникнуть, какие бы металлы мы ни взяли, так как способность отщеплять электроны и переходить в ионы у всех металлов различна. Если, например, составить гальванический элемент из цинка и железа, погруженных в нормальные растворы их солей, то, хотя оба металла заряжаются в растворах отрицательно, между ними все же возникнет некоторая разность потенциалов. При соединении металлов проводником электроны потекут от цинка, как металла более активного, к железу; цинк будет растворяться, а железо — выделяться из раствора. Происходящая в элементе реакция выразится уравнением

Zn + Fe •• = Fe + Zn ••

Разность потенциалов, возникающая между металлом и раствором его соли, называется электродным потенциалом металла и может служить мерой его способности отдавать электроны или, что то же самое, мерой его химической активности при реакциях в растворах. Поэтому, измерив потенциалы всех металлов при одинаковых концентрациях их ионов, мы могли бы количественно охарактеризовать активность металлов.

К сожалению, прямое измерение этих величин очень затруднительно и не дает точных результатов. Это ясно уже из того, что нельзя, например, присоединить вольтметр к раствору, не погрузив в раствор металлический проводник. Но тогда возникает разность потенциалов между проводником и раствором, так что напряжение, показываемое вольтметром, будет зависеть от двух разностей потенциалов: разности потенциалов между интересующим нас металлом и раствором его соли и разности потенциалов между металлическим проводником и тем же раствором.

Гораздо легче измерить разность потенциалов (разность напряжений электронов) между двумя различными металлическими электродами, погруженными в растворы соответствующих солей, т. е. узнать, насколько потенциал одного металла больше или меньше потенциала другого металла. Если измерить таким образом относительные потенциалы всех металлов, сравнивая их потенциалы с потенциалом какого-нибудь одного из них, то полученные числа будут так же точно характеризовать активность металлов, как и абсолютные величины их потенциалов.

В качестве стандартного электрода, с потенциалом которого сравнивают потенциалы других металлов, принят так называемый нормальный водородный электрод. Последний состоит из платиновой пластинки, покрытой рыхлым слоем платины и погруженной в двунормальный раствор серной кислоты. Через раствор непрерывно пропускают под давлением в 1 ат токчистого водорода, который, приходя в соприкосновение с платиной, в довольно большом количестве поглощается ею. Насыщенная водородом платиновая пластинка ведет себя так, как если бы она была сделана из водорода. При соприкосновении ее с раствором серной кислоты возникает определенная разность потенциалов (потенциал водородного электрода), условно принимаемая при измерениях относительных потенциалов за нуль.

Разность потенциалов между металлом, погруженным в раствор его соли, содержащий 1 грамм ион металла на литр, и нормальным водородным электродом называется нормальным потенциалом металла.

Для измерения нормальных потенциалов обычно пользуются приборами, подобными изображенному на рис. 128. По существу такой прибор представляет собой гальванический элемент, одним из электродов которого служит испытуемый металл, а другим — водородный электрод. Так как потенциал водородного электрода принимается за нуль, то, измерив разность потенциалов на полюсах такого элемента или его электродвижущую силу, мы непосредственно находим нормальный потенциал металла.

В табл. 27 указаны нормальные потенциалы важнейших металлов . Они берутся со знаком минус, когда потенциал металла ниже потенциала водородного электрода, и со знаком плюс, когда потенциал металла выше его.

Если расположить металлы, включая и водород, по убывающей величине напряжения их электродов, т. е. по убывающим отрицательным нормальным потенциалам (и возрастающим положительным), то получится тот же самый ряд напряжений.

Нормальные потенциалы металлов

Металл Ион Потенциал в вольтах Металл Ион Потенциал в вольтах
К К • — 2,92 Ni Ni •• — 0,23
Са Са •• — 2,84 Sn Sn •• — 0,14
Na Na • — 2,713 Pb Pb •• — 0,126
Mg Mg •• — 2,38 н2 H • 0,000
Al Аl ••• — 1,66 Сu Сu •• + 0,34
Мn Mn •• — 1,05 Hg Hg2 •• + 0,798
Zn Zn •• — 0,763 Ag Ag • + 0,799
Fe Fe •• — 0,44 Au Au ••• + 1,42

Зная нормальные потенциалы металлов, легко определить электродвижущую силу любого элемента, состоящего из двух металлов, погруженных в растворы их солей. Для этого нужно только найти разность нормальных потенциалов взятых металлов.

Чтобы величина электродвижущей силы имела положительное значение, всегда вычитают из большего потенциала меньший. Например, электродвижущая сила медно-цинкового элемента:

э. д. с. = 0,34 — (—0,763) = 1,103 вольта

Понятно, что такую величину она будет иметь, если концентрации ионов Zn •• и Сu •• в соответствующих растворах равны 1 граммиону на 1 литр. Для иных концентраций потенциалы металлов, а следовательно, и электродвижущие силы могут быть вычислены по формуле, выведенной Нернстом:

где Е — потенциал металла при данной концентрации ионов; Ео — нормальный потенциал металла; п — валентность ионов металла; с — концентрация ионов в растворе в граммионах на литр.

Так, например, потенциал цинка в 0,001 М растворе его соли будет равняться:

E = — 0,763 + (0,058 : 2)log 10 -3 = — 0,85 вольта

потенциал водородного электрода в нейтральном растворе, где [Н • ] = 10 -7 , будет —0,41 вольта и т. д.

При устройстве гальванических элементов, помимо реакций вытеснения металлов металлами, нередко используются другие окислительно-восстановительные реакции, в которых могут принимать участие и металлоиды. Для некоторых металлоидов также определены их нормальные потенциалы, но ряд напряжений для металлоидов установлен далеко не так полно, как для металлов. В качестве иллюстрации приводим нормальные потенциалы галогенов:

нормальные потенциалы галогенов

Вы читаете, статья на тему Электродные потенциалы металлов

Похожие страницы:

Что такое ионизационные потенциалы Мерой энергии связи электронов в различных атомах может служить ионизационный потенциал (потенциал ионизации), т. е. работа.

Что такое термодинамика процесса цианирования золота Гравитационного обогащения и амальгамации позволяют извлекать из руд только относительно крупное золото. Однако подавляющее.

Содержание статьи1 Потенциал электрического поля и разность потенциалов1.1 Разность потенциалов1.2 Эквипотенциальные поверхности1.3 Что такое электрон-вольт Потенциал электрического поля и разность.

Электролиз Электролизом называется химический процесс, происходящий при пропускании электрического тока через раствор электролита или через расплавленный электролит. При прохождении электрического.

Осаждение никеля на катоде при рафинировании Катоды — тонкие листы чистого электролитного никеля получают в отдельных ваннах с анодами из.

Содержание статьи1 Химические свойства металлов1.1 Удельный вес и температура плавления некоторых металлов1.2 Почему типичные металлы восстановители1.3 Вытеснение металлов из соединений.

Ионная и металлическая связь

До появления знания об электроне, в науке главенствовала теория о валентности как о скрепляющей атомы внутри вещества силе.

Ее предвестником стала научная работа Уильяма Хиггинса, ирландского химика конца XVIII века, который описал существование неких связей между частицами веществ.

В начале прошлого века, когда появилась модель атомного ядра и выяснилось, что оно состоит из частиц трех видов: электронов, протонов и нейтронов — теория о валентности сменилась теорией о химических связях.

Феномен химических связей объясняется стремлением всего к упорядочиванию. Частицы веществ стремятся к наиболее стабильным и устойчивым формам с минимальным расходом энергии, благодаря чему появляется множество соединений.

Современная химия различает до шести видов связей, но чаще всего рассматривает только первые четыре из них:

  • металлическая;
  • ковалентная;
  • ионная;
  • водородная;
  • ван-дер-ваальсова;
  • двухэлектронная трехцентровая химическая.

От типа химической связи зависят ее свойства, а также строение химических решеток, структура и способы взаимодействия атомов и частиц.

Самой распространенной химической связью является ковалентная полярная, а остальные чаще всего являются либо крайними ее формами, либо вариациями с металлическими и нехарактерными неметаллическими химическими элементами в соединениях.

Ионная химическая связь

Ионная связь получила свое название от «иона» — частицы, вступающей в связь в соединении.

Ионная химическая связь — особый вид химической связи между частицами, основное действие которого направленно на заряженные частицы — ионы.

Ионная связь является крайней формой ковалентной полярной связи. При образовании, происходит поляризация атомов, в следствии чего образуются ионы.

Ионы — одноатомные или многоатомные частицы, имеющие ярко выраженный электрический заряд. Делятся на катионы — положительно заряженные атомы, и анионы — отрицательно заряженные.

Ионы могут иметь разный заряд и классифицируются по значению заряда на:

  • однозарядную ( K + );
  • двузарядную ( O 2 + );
  • трехзарядную ( A l 3 + ) группы.

Частицы, вступающие в ионную связь, должны иметь большую разницу в 2 определение — электроотрицательности — способности притягивать электронные пары к себе. По Полингу для образования ионной связи необходима разница в 1,7 и более.

При таком виде химической связи происходит почти полный переход одного электрона к другому атому. Частицы с меньшей ЭО практически полностью переходят во владения частицы с большей ЭО, однако полного перехода никогда не случается.

Отчуждение электронов называется окислением, а присоединение — восстановлением.

Полного разделения на + и – заряженные частицы нет, так как частицы пересекаются своим электронными орбиталями и связываются очень прочной связью, а также имеют сильное электростатическое взаимодействие между частицами.

Ионная связь характерна для соединений металлов и неметаллов, реже для соединений неметаллов с неметаллами, присутствует в оксидах, гидроксидах, гидридах щелочных и щелочноземельных металлов, в солях, соединениях металлов с галогенами.

Ионная связь характеризуется двумя главными чертами:

Вещества с ионной химической связью имеют ряд особенностей:

  • низкая летучесть;
  • высокая температура плавления;
  • низкая электростатическая проводимость из-за специфического строения кристаллической решетки;
  • твердость, но при этом хрупкость веществ;
  • заметная растворимость соединений в полярных растворителях.

Металлическая связь

Атомы металлов имеют возможность соединяться не только с неметаллами, но и между собой. В таком случае происходит формирование металлической связи.

Металлическая химическая связь — особый вид химической связи, образующийся между атомами металлов за счет обобществления их крайних электронных оболочек и валентных электронов.

В металлическую связь вступают частицы двух видов:

  • ионизированных атомов металлов, которые в процессе формирования отдают электроны, а значит получают положительный заряд;
  • свободных электронов, называемых «электронным газом», имеющих отрицательный заряд по своей природе происхождения.

Металлическая связь образуется только в веществах, а не между отдельными атомами. При этом связи внутри вещества связи не перманенты и не отличаются постоянством.

Кристаллическая решетка в веществах с металлической связью образуется в виде некого каркаса, в узлах которого находятся ионы металлов, а между ними в свободной форме путешествует «электронный газ», состоящий из свободных электронов.

Форма кристаллической решетки отличается в зависимости от группы, к которой относится металл:

  • щелочные металлы (литий Li, калий K, рубидий Rb и другие) имеют объемно-центрированную кубическую кристаллическую решетку;
  • переходные элементы (алюминий Al, медь Cu, цинк Zn и другие) имеют гранецентрированную кубическую форму решетки;
  • щелоноземельные металлы (бериллий Be, кальций Ca, радий Ra, кроме бария) имеют гексагональную решетку;
  • индий In имеет тетрагональную решетку;
  • ртуть Hg имеет ромбоэдричсекую решетку.

Соединения, обладающие металлической связью, представляют собой либо чистые соединения металлов, либо их сплавы, которые образуют новые вещества, например, бронзу, сталь, чугун, латунь и другие.

Все металлы и их сплавы имеют сходные физические свойства:

  • металлический блеск;
  • теплопроводность материала;
  • высокая ковкость, пластичность материала;
  • хорошая электропроводность;
  • твердое агрегатное состояние в нормальных условиях среды;
  • высокая плотность материала.

Чем отличаются друг от друга и от ковалентной, что общего

Основные виды химической связи имеют довольно сходный принцип строения по природе происхождения. Они переплетаются между собой и имеют общие признаки. Более того, внутри одной молекулы нередко бывают сразу несколько видов химических связей.

Металлическая и ионная связь сходны между собой, а также сходны с ковалентной связью.

Металлическая и ковалентная связи сходны тем, что электроны, вступающие в связь обоих видах, становятся общими и принадлежат всем атомам либо в виде электронных пар, либо в виде электронного газа.

Ионная и ковалентная связи имеют сходство принципом строения. По сути происхождения, ионная связь является крайней формой ковалентной полярной связи. Полностью ионной связи в природе не существует — на какой-то процент она всегда остается ковалентной.

Металлическая связь сходна с ионной тем, что атомы металлов в соединениях легко отдают свои валентные электроны, которые слабо связаны со своими атомными ядрами. Отрыв электронов от ядра приводит к формированию ионизированных катионов металлов.

Однако отличия между связями все же есть. Именно по ним можно определить тип химической связи в соединении.

Металлическая от ковалентной связи отличается, в первую очередь, тем, что происходит между двумя атомами металлов, а не неметаллов. Благодаря этому она имеет высокую концентрацию электронов проводимости в своих атомах. Она менее прочна, чем ковалентная, а ее энергия связей меньше в 3-4 раза.

В отличие от ковалентной связи металлическая:

  • ненасыщаема — объединяет большое количество атомов;
  • ненаправлена — из-за сферической формы орбиталей;
  • делокализирована — электроны в связи обобществляются всеми атомами соединения.

Ионная связь в отличие от ковалентной происходит между атомами металлов и неметаллов, реже между неметаллами. Она образуется между катионами и отрицательно заряженными электронами, которые не привязаны к одному ядру, а свободно движутся по кристаллической решетке.

Металлическая от ионной связи отличается:

  • типом связываемых частиц — у металлической связи нет как такового аниона, вместо него катионы притягивают электронный газ;
  • прочностью связи при ударе — взаимное смещение катионов не приводит к разрыву, но если в связи находятся катион и анион, то связь может быть разорвана.

Как образуется ионная и металлическая связь, примеры

Ионная связь образуется между металлом и неметаллом (иногда неметаллом и неметаллом) с разным уровнем электроотрицательности. Ионы могут быть простыми и иметь только один атом, как, например, C l - , N a + , так и сложными и иметь несколько атомов и общий уровень заряда при них, как, например, N H 4 - .

Графически образование ионной связи можно проследить на схеме образования соединения натрия и хлора:

По принципу ионной связи образуются также хлороводород HCl, оксид кальция CaO, фторид натрия NaF, бромид серебра AgBr и другие.

Металлическая связь образуется между двумя неметаллами. В связь вступают ионы металла и свободные электроны. Основой для образования металлической химической связи является наличие свободных атомных орбиталей, а также свободных электронов.

Схему образования металлической связи одной формулой можно записать следующим образом:

Число n будет зависеть от места химического элемента в Периодической системе химических элементов Д. И. Менделеева. Число внешних электронов равно номеру группы, в которой находится металл.

Читайте также: