Поверхностная фаза горения характерна для горения каких металлов

Обновлено: 17.05.2024

Горение – это совокупность одновременно протекающих физических процессов (плавление, испарение, ионизация) и химических реакций окисления горючего вещества и материала, сопровождающееся, как правило, световым и тепловым излучением и выделением дыма. В основе горения лежит взаимодействие горючего вещества с окислителем, преимущественно с кислородом воздуха.

Однако горения может осуществляться без доступа воздуха (кислорода), если в состав горючей массы (среды) входит окислитель в виде примеси или составной части молекулы. В производственных условиях или ракетной технике горения может осуществляться в атмосфере таких окисляющих газов, как фтор, хлор, окислы азота и другие.

Некоторые вещества (порошкообразные титан и цирконий) способны гореть в атмосфере азота, двуокиси углерода, не относящимся к традиционным окислителям.

В зависимости от способа подвода окислителя различают:

При пожаре отмечается смешанный тип горения. В зависимости от скорости горение может быть медленным (тление), нормальным (дефлаграция) и взрывообразным (взрыв), переходящим в детонационное (детонация).

По внешнему проявлению горение может быть пламенным или беспламенным.

Беспламенное горение может возникнуть в результате дефицита окислителя (тление) или при низком давлении насыщенных паров горючего вещества (горение тугоплавких металлов и кокса).

По механизму развития горение может быть тепловым, при котором причиной самоускорения реакций окисления является повышение температуры, и автокаталитическим (цепным), когда ускорение процесса достигается накоплением промежуточных катализирующих продуктов (активных центров). Автокаталитическое горение осуществляется при сравнительно низких температурах. При достижении определенных концентраций промежуточных каталитических продуктов автокаталитическое горение может переходить в тепловое. При этом температура горения резко возрастает.

Горение может возникать и развиваться спонтанно, стихийно (пожар), но может быть специально организованным, целесообразным: энергетическое горение (в целях получения тепловой или электрической энергии) и технологическое горение (доменный процесс, металлотермия, синтез тугоплавких неорганических соединений и т.д.).

Горение характеризуется такими величинами, как: температура, скорость, полнота, состав продуктов. Располагая данными о механизме горения и его характерных особенностях, можно увеличивать скорость и температуру горения (промотирование горения) или снижать их вплоть до прекращения горения (ингибирование горения).

Источники: Основные характеристики горения. Мальцев В.М., Мальцев М.И., Кашпоров Л.Я. —М., 1977; Процессы горения в химической технологии и металлургии. Мержанов А.Г. —Черноголовка, 1975; Физика горения и взрыва. Хитрин Л.Н. —М., 1957.

Преимущества кислородной резки

Технология кислородной и кислородно-флюсовой резки имеет массу преимуществ. Среди них:

  1. большие толщины рассекаемого металла (до 500 мм), ограниченные лишь конструктивными особенностями установок кислородно-флюсовой резки;
  2. низкая себестоимость;
  3. высокое качество (современные машины позволяют достичь приемлемой ширины реза, отсутствия конусности реза, чистых кромок, не требующих обработки);
  4. возможность использования многорезаковых схем.

Качественную кислородную резку осуществляют специалисты «МетиСтр», в арсенале которых — высокоточные станки и богатый опыт.

Горение металлов

По характеру горения металлы делятся на две группы: летучие и нелетучие. Летучие

металлы обладают относительно низкимитемпературами фазового перехода, температура их плавления менее1000 К, температура кипения 1000 К, а Ткип > 2500 К. Механизм горения металлов во мно­гом определяется состоянием их оксидов. Температура плавления летучих металлов зна­чительно ниже температуры плавления их оксидов. При этом оксиды представ­ляют собой достаточно пористые соединения.

При воздействии ИЗ на поверхность металла проис­ходит его испарение и окисление. При достижении НКПРП происходит их воспламенение. Зона диффузион­ного горения устанавливается у поверхности. Образующиеся пары, свободно диффундируют через пористую оксидную пленку и поступают в зону горения. Кипение металла вызы­вает периодическое разрушения оксидной пленки, что ин­тенсифицирует горние. Продукты горения, окислы металлов диффундируют не только к поверхности металла, способст­вуя образованию корки окисла (оксида), но и в окружающее про­странство, где, конденсируясь, образуются твердые частички в виде белого дыма. Белый плотный дым – признак горения летучих металлов.

У нелетучих

металлов при горении на поверхности образуется более плотная окисная пленка, она хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку затруднена и поэтому крупные частицы алюминия, бериллия гореть не способны. Как правило, нелетучие металлы горят в виде стружки, порошка аэрозолей. Их горение проходит без об­разования плотного дыма. При горении металлических пылей следует знать особенности, отличающие их от горения органических пылей:

1) при приближении состава горючей смеси (металл- воздух) к стехиометрической (a = 1) скорость распространения пламени возрастает;

2) скорость горения металлических пылей одного порядка с горением смесей предельных углеводородов;

3) горение металлов возможно не только в окислительной среде, но и в продуктах горения органических веществ, в этом случае горение протекает за счет экзотермической реакции воспламенения воды до водорода.

4) аэрогель металлов повышает свои пожароопасные свойства при увлажнении. Склонен к самовозгоранию. И при воспламенении развивает температуру, в десятки раз превышающую горение сухой аэровзвеси. Так, испытания, проведенные ФГУ ВНИИПО МЧС России, показали следующиерезультаты:

· для испытаний были приготовлены две 40-литровые фляги с порошком циркония. Порошок в одном случае был сухой, в другом увлажненный. При воспламенении сухого циркония горение продолжалось 30 мин, Тпл = 1200 0 С, температура воздуха на расстоянии 40 м от фляги составила 300 0 С;

· при воспламенении увлажненного порошка циркония процесс горения не превысил 5 минут, столб пламени имел высоту около 30 м, температура воздуха на расстоянии 40 м от очага горения составила 1300 0 С.

Вопрос №3 – «Особенности горения металлов.»

(30 минут)

Общей закономерностью для всех металлов является то, что пожарная опасность их в чистом виде возрастает с уменьшением номера группы и увеличением номера периода.

Характерные признаки горения металлов приведены в табл.10.7.

Самыми пожароопасными являются щелочные металлы первой группы

Щелочноземельные металлы (II группа, главная подгруппа) плавятся при нагревании до 600-800°С и в присутствии воздуха легко загораются.

Металлы III группы главной подгруппы (B, Al и их аналоги) плавятся при нагревании до 150-700°С и энергично окисляются, т.е. медленно горят, легко воспламеняются и быстро горят в порошкообразном состоянии.

Мышьяк, сурьма и висмут (V группа, главная подгруппа) легко сгорают в расплавленном состоянии при 250-700 °С.

Остальные металлы более тугоплавки, температура их плавления выше 1000 6о 0С. В монолитном виде (слитки, массивные изделия) они не горят активно даже при нагревании, за исключением титана и циркония, однако многие из них пирофорны в порошкообразном и губчатом состоянии (Fе, Аl, Zn, Cо и др.).

Многие оксиды металлов тугоплавки, температура их плавления выше 1000 °С, а некоторые плавятся даже при 2000-3000 °С и выше. Такие

оксиды покрывают поверхность горящего металла, изолируя его от воздуха.

Сопротивление оксидной пленки зависит от объемного отношения

j— это отношение объема оксида к объему сгоревшего металла. Если

Электронная библиотека

Металлы отличаются от других твердых горючих веществ тем, что на их поверхности в процессе окисления образуются твердые оксиды, пленка которых препятствует прямому контакту реагирующих веществ. Опыты по возгоранию металлов показали, что некоторые из них (Fe, Al, Zn, Sn) в компактном состоянии способны гореть только в виде кусочков, проволочек, фольги, ленты. В виде же порошка они способны даже самовозгораться и гореть в большой массе. Другие металлы (К, Na, Li) способны возгораться и гореть в компактном состоянии и в большой массе.

На способность металлов возгораться и гореть большое влияние оказывают химические и физические свойства как самих металлов, так и их оксидов. Особенно большое влияние на возгораемость и характер горения оказывают температуры плавления и кипения металлов и их оксидов. По этим физическим свойствам металлы подразделяются на летучие и нелетучие.

Все эти металлы имеют низкую температуру плавления и при горении находятся в жидком состоянии. Температура кипения их (кроме калия) ниже температуры плавления оксидов, поэтому на жидком металле могут находиться твердые оксиды.

При контакте металлов с источником зажигания, например с пламенем, они нагреваются и окисляются. Оксиды всех металлов, приведенные в табл. 7.7, пористы и не способны изолировать поверхность металла от дальнейшего окисления, а следовательно, и нагревания. Через некоторое время металл расплавляется и начинает испаряться.

Пары его диффундируют сквозь пористый твердый оксид в воздух. Когда концентрация паров в воздухе будет достаточная для воспламенения, возникает горение. Зона диффузионного горения (короткое пламя) устанавливается вблизи поверхности оксида, и большая часть теплоты реакции передается металлу, в результате этого он нагревается до температуры кипения. Кипение металла вызывает разрыв корки оксида и более интенсивное горение.

Влияние легирующих элементов на разрезаемость стали при кислородной резке

Обычно наличие легирующих элементов затрудняет кислородную резку. Эти компоненты влияют на работу по-разному:

  • кремний (Si), если его содержание ниже 4 %, затрудняет процесс;
  • марганец (Mn), если его содержание выше 4 %, затрудняет процесс;
  • хром (Cr), если его содержание выше 5 %, затрудняет процесс, вызывает самозакалку кромок, уменьшает антикоррозийную стойкость материала;
  • никель (Ni), если его содержание выше 7 %, затрудняет процесс, вызывает образование трещин на кромках;
  • титан (Ti) хорошо влияет на разрезаемость;
  • вольфрам (W), если его содержание выше 10 %, затрудняет процесс, повышает хрупкость и твердость стали.

Сущность процессов горения и взрывов

В наиболее общей формулировке горение представляет собой быстро протекающую физико-химическую реакцию с выделением тепла и света. В природе и в технике чаще всего наблюдаются процессы горения, связанные с окислением горючих веществ кислородом воздуха. Однако многие вещества вступают между собой в реакцию горения и при отсутствии кислорода. Так, водород и некоторые металлы горят в газообразном хлоре, медь — в парах серы, алюминий в броме и т. п.

Наряду с реакциями горения, протекающими в результате химического соединения различных веществ, происходят реакции горения, связанные с разложением газов, жидкостей и твердых веществ (ацетилен, нитроглицерин, нитроклетчатка, азид свинца и др.).

Литература:

  1. Чибисов А.Л., Соина Е.А., Габриэлян С.Г., Смирнова Т.М., Габриэлян Г.С. Предельные условия и особенности воспламенения, горения и тушения различных металлов// Водородное материаловедение и химия гидридов металлов: Сборник тезисов VII международной конференции.-Украина, Ялта, 2001.-С.416.
  2. Чибисов А.Л., Смирнова Т.М., Громов А.Д., Акинин Н. И. Определение безопасной удельной скорости выделения водорода в технологическом процессе// Водородное материаловедение и химия гидридов металлов: Сборник тезисов VIII международной конференции.-Украина, Ялта, 2003. С.356-357.
  3. Габриэлян С. Г., Габриэлян Г. С. Рекомендации по тушению жидкого натрия и пирофорных алюмоорганических катализаторов М.: Изд. ВНИИПО, 2000, 19 с.

Другие статьи по теме:

  • Основные неисправности подвески и рулевого управления — часть 1
  • Техника безопасности и основные требования ТБ во время разборки
  • Заточка и правка режущих инструментов
  • Основные неисправности подвески и рулевого управления — часть 2
  • Основные элементы системы зажигания. Катушка зажигания. Часть 2
  • Основные элементы системы зажигания. Катушка зажигания. Часть 1
  • Техника безопасности при эксплуатации моечного оборудования и применении моющих средств
  • Рабочее место. Особенности организации и ТБ
  • Техника безопасности при применении бензола и антифриза
  • Техника безопасности при работе на линии

Пожарная опасность твердых горючих веществ

При горении твердых веществ наблюдаются процессы пламенного и беспламенного горения. При беспламенном горении окисление горючего вещества происходит в поверхностном слое. Одним из основных горючих газов при гашении веществ, содержащих углерод, является окись углерода.

Щелочные металлы начинают гореть после их расплавления (некоторые из них образуют пламя при взаимодействии с водой). Горение алюминия, магния и кальция сопровождается образованием значительного количества белого дыма, состоящего из окислов этих металлов. Процесс горения щелочных металлов значительно интенсифицируется при их измельчении. Так, стружка магния и магниевых сплавов (например, электрон) горит весьма интенсивно. Пыль этих металлов в состоянии аэрогеля (в виде отложений) горит медленно, однако, будучи приведена во взвешенное состояние, она взрывается.

Фаза пламенного горения древесины постепенно, по мере образования на ее поверхности слоя угля, уменьшается и наступает фаза беспламенного горения этого угля. После выгорания слоя угля вновь интенсивно выделяются горючие газы и появляется пламя. Затем образуется новый слой угля и наступает фаза беспламенного горения и т. д.

По окончании ряда циклов пламенного и беспламенного горения, когда вся древесина разложилась, происходит горение остатков древесного угля без выделения пламени. Следует отметить, что при длительном нагревании древесины в последней возникают процессы разложения и окисления, что может снизить температуру воспламенения древесины до 110—130 °С.

Оборудование для кислородной резки

Поскольку для работы часто используют ацетилен, то в качестве оборудования нередко берут установки для ацетиленовой сварки. Вместо сварочных горелок там применяются газовые резаки. Наиболее распространенный вариант — резак инжекторного типа.

По своей конструкции резаки существенно отличаются от горелок. Они имеют дополнительные трубки, через которые подается режущий кислород, и наконечники с мелкими отверстиями для смеси газов. Центральное отверстие предусмотрено для подачи режущего кислорода.

Рисунок 4 — Схема установки для кислородной резки

Принцип работы машины для кислородной резки:

  1. заготовка располагается горизонтально, вентили резака закрыты;
  2. открывается кислородный вентиль, а после — вентиль горючего газа;
  3. смесь воспламеняется и регулируется по мощности;
  4. металл нагревается по площади реза;
  5. открывается вентиль с режущим кислородом, активирующим горение при достижении разогретого металла;
  6. в процессе появляются окислы, они удаляются струей кислорода;
  7. при окончании работы сначала закрывают вентиль режущего кислорода, потом горючего газа, в завершении — горелки.

Основной инструмент комплекта кислородной резки — резак. Существуют классификации этих элементов:

  • по виду горючего газа (резаки для жидких горючих смесей, ацетилена, газов-заменителей);
  • степени автоматизации (ручные, машинные);
  • назначению (специальные и универсальные);
  • смешиванию газов (безинжекторные и инжекторные);
  • мощности пламени (большая, средняя, малая).

Пожарная опасность жидких горючих веществ

Пожарная опасность горючих жидкостей определяется температурой вспышки паров испаряющейся жидкости при (внесении источника тепла. Температура вспышки представляет собой наименьшую температуру, при которой пары горючего вещества создают над его поверхностью паровоздушную смесь, воспламеняющуюся при внесении источника тепла (например, открытого огня).

За время вспышки поверхность горючей жидкости не прогревается до температуры, достаточной для интенсивного испарения жидкости, и дальнейшее горение прекращается. Если температура жидкости в момент вспышки окажется достаточной для того, чтобы вслед за вспышкой последовало горение, то такую температуру называют температурой воспламенения горючей жидкости.

Чем ниже температура вспышки горючей жидкости, тем больше пожарная опасность По существующей классификации все горючие жидкости разделяются на два класса. К I классу относятся жидкости с температурой вспышки менее 45°С (например, бензин, спирт, эфир, керосин и др.), а ко II классу—жидкости с температурой вспышки более 45 0 С (например, масла, мазуты и др.). Огнеопасные жидкости I класса относят к легковоспламеняющимся жидкостям, а жидкости II класса — к горючим.

Следует отметить, что пожарная опасность ряда твердых веществ (например, нафталин, фосфор, камфора и др., которые испаряются при нормальной температуре) также характеризуется температурой вспышки.

У легковоспламеняющихся жидкостей небольшая (1—2°С) разница между температурой вспышки паров и температурой воспламенения. У горючих жидкостей эта разница достигает 30 0 С и более.

Пожарная опасность жидкостей увеличивается с понижением температуры вспышки, температуры воспламенения и самовоспламенения, а также с увеличением скорости испарения и уменьшением нижнего предела концентрации взрывоопасной смеси паров жидкости с воздухом.

Пожарная опасность пыли

Пыль горючих веществ в состоянии аэрогеля (в виде отложений пыли) может тлеть и гореть, а находясь в форме аэрозоля, т. е. будучи взвешенной в воздухе, она способна взрываться, образуя взрывоопасные пылевоздушные смеси. Горению пыли в значительной мере способствует адсорбция пылью кислорода воздуха. Взрывоопасность пыли повышается с уменьшением частиц пыли вследствие увеличения ее удельной поверхности. Температура самовоспламенения горючей пыли обычно колеблется в пределах 700—900°С, но некоторые виды пыли имеют относительно низкую температуру самовоспламенения (например, сажа взрывается при 360 °С).

Пределы взрывоопасной концентрации пыли зависят от влажности, дисперсности, температуры и мощности источника тепла и других факторов. Развиваемое при взрывах пыли давление обычно не превышает 0,4—0,6 мн/м 2 (4—6 атм).

поверхностная фаза горения характерна для горения каких металлов

По характеру горения металлы делятся на две группы: летучие и нелетучие. Летучие металлы обладают относительно низкимитемпературами фазового перехода, температура их плавления менее1000 К, температура кипения < 1500 К. К этой группе относятся щелочные металлы (литий, натрий, калий) и ще­лочноземельные (магний, кальций). Температуры фазового перехода нелетучих металлов значительно выше Тплав > 1000 К, а Ткип > 2500 К. Механизм горения металлов во мно­гом определяется состоянием их оксидов. Температура плавления летучих металлов зна­чительно ниже температуры плавления их оксидов. При этом оксиды представ­ляют собой достаточно пористые соединения.

У нелетучих металлов при горении на поверхности образуется более плотная окисная пленка, она хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку затруднена и поэтому крупные частицы алюминия, бериллия гореть не способны. Как правило, нелетучие металлы горят в виде стружки, порошка аэрозолей. Их горение проходит без об­разования плотного дыма. При горении металлических пылей следует знать особенности, отличающие их от горения органических пылей:

1) при приближении состава горючей смеси (металл-
воздух) к стехиометрической (a = 1) скорость распространения
пламени возрастает;

· для испытаний были приготовлены две 40-литровые фляги с порошком циркония. Порошок в одном случае был сухой, в другом увлажненный. При воспламенении сухого циркония горение продолжалось 30 мин, Тпл = 1200 0 С, температура воздуха на расстоянии 40 м от фляги составила 300 0 С;

Вопросы для самоконтроля

1. Как классифицируются органические, неорганические ТГМ?

2. Какие соединения относятся к комплексным ТГМ?

3. Как ведут себя при нагревании каучуки, термопласты?

4. Как ведут себя при нагревании древесина, реактопласты?

5. Какие ТГМ горят по гетерогенному механизму?

6. В чем состоит принцип действия огнезащиты ТГМ?

7. Какие способы теплопередачи участвуют в распространении горения по ТГМ?

8. От каких факторов зависит скорость горения ТГМ?

9. В чем сходство в горении жидкостей и ТГМ?

10. Что происходит при воспламенении древесины?

11. Как протекает процесс термического разложения (пиролиза) древесины?

12. При какой температуре происходит прекращение выхода летучих соединений и начало горения углеродистого остатка древесины?

Механизм горения твердых горючих материалов

Горение конденсированных систем, к которым относятся твердые материалы, вотличие от газов характеризуются наличием стадии разложения и газификации твердой фазы. Горение твердых материалов в среде воздуха происходит в результате воспламенения лету­чих продуктов пиролиза. Его можно рассматривать как диффузионное квазигетерогенное, поскольку оно протекает не на границе раздела фаз, а в основном в газовой фазе. Истинно гетерогенными является горение нелетучих металлов.

При распространении волны горения по твердым материалам выде­ляются следующие зоны (рис. 5.3):


Рис. 5.3. Модель горения твердых материалов

Зона без реакции – зона прогрева конденсированной фазы.
У термопластичных материалов эта зона ограничивается слоем расплава. Толщина зоны прогрева зависит от соотношения коэффициента температуропроводности и скорости горения. Для многих материалов толщина этой зоны составляет около 3 мм.

Зона пиролиза – реакционная зона в конденсированной фазе, в которой происходит разложение твердого материала на газообразные продукты.

Предпламенная зона в газовой фазе, в которой низкомолекулярные продукты пиролиза дополнительно разлагаются. Здесь же начинается процесс воспламенения, который инициируется атомами водорода, диффундирующими в предпламенную зону из зоны пламени.

Зона пламени или реакционная зона в газовой фазе. В этой зоне протекают основные реакции окисления, выделяется основная часть тепла и наблюдается максимальная температура.

Зона продуктов сгорания содержит предельные оксиды, образующиеся при полном сгорании.

Таким образом, характерной особенностью горения твердых мате­риалов является многостадийный процесс их превращения в конечные продукты сгорания.

Этот процесс включает в себя следующие стадии: поглощение твердым материалом тепловой энергии от ИЗ; разложение конденсированной фазы с образованием летучих продуктов икарбонизированного остатка; воспламенение газообразных продуктов пиролиза; горение газообразных продуктов пиролиза.

Возникновению и распространению пламени предшествует нагрев и термическое разложение твердого материала. Первичное возникновение пламени рассматривается как процесс зажигания. Зажигание является сложным нестационарным процессом, который заключается в быстром разогреве локального участка твердого материала до высокой температу­ры открытым пламенем, электрической искрой, накаленным телом. В ре­зультате такого воздействия над поверхностью твердого материала возни­кает пламя. Для устойчивого зажигания температура поверхности должна быть доведена до температуры, близкой к температуре поверхности при горении в условиях стационарного процесса. Переход от зажигания к ста­ционарному режиму горения твердого материала возможен с момента по­явления пламени.

Воспламенение твердых материалов в воздухе рассматривается с по­зиций теории воспламенения газов. Однако возможны условия, когда процесс горения начинается вследствие гетерогенной реакции взаимодей­ствия кислорода с поверхностным слоем.

Характер переноса тепла к твердому материалу для его нагрева и воспламенения зависит от вида ИЗ и условий воздейст­вия теплового потока на поверхность. В условиях пожара твердые мате­риалы разогреваются в основном за счет конвективного и радиационного переноса тепла от пламени. Поглощение тепла твердым материалом при излучении зависит от спектральных характеристик материала и источника теплового потока.

В нагретом под действием потока тепла поверхностном слое происхо­дит пиролиз твердых материалов. При этом основную роль играет термо­окислительная деструкция. Однако преобладание термической или термо­окислительной деструкции в процессе газификации твердых материалов при горении зависит от природы материала, механизма его разложения, температуры пиролиза, зависящей от температуры поверхности горящего материла, а также от условий диффузии кислорода к горящей поверхности.

Летучие продукты пиролиза твердых материалов состоят из горючих и негорючих соединений. Основными негорючими продуктами являются Н2О, СО2 и галогенводороды. Горючая часть состоит из Н2, СО, насыщенных и ненасыщенных углеводородов, альдегидов, спиртов, кетонов и других органических соединений. Количество и состав продуктов пиролиза зависят от природы материала, механизма и кинетики процесса пиролиза, температуры разложения.

Воспламенение твердых материалов происходит, если содержание горючих газообразных продуктов пиролиза в газовой фазе достигает НКПРП. Это условие является необходимым, но недостаточным для возникновения устойчивого горения. Для того, чтобы пламя не погасло, необходимо передать твердому материалу такое количество тепла, которое обеспечивает непрерывную подачу в зону горения достаточного количества горючих газообразных веществ.

После воспламенения твердого материала начинается процесс перемещения фронта пламени по его поверхности. Количественной характеристикой этого процесса является линейная скорость распространения пламени – расстояние, пройденное фронтом пламени в единицу времени (см. рис. 5.4).


Рис. 5.4. Схема распространения фронта пламени по поверхности твердого материала: 1 – твердый материал, 2 – зона диффузионного горения, 3 – передняя кромка пламени, 4 – зона пиролиза, 5 – зона газообразных продуктов разложения, 6 – зона начала разложения твердого материала перед фронтом пламени, 7 – газообразные продукты горения

Перемещение фронта пламени осуществляется за счет передачи части тепла, выделяющегося в зоне горения. Передача тепла от факела пламени к поверхности твердого материала осуществляется радиацией, конвекцией и теплопроводностью. В зависимости от условий горения доля тепла, поступающего к поверхности материала по тому или иному механизму, может быть различной. Поэтому значение скорости горения для одного и того же материала в зависимости от условий горения может изменяться в значительных пределах.

Прогрев участков поверхности твердого материала перед фронтом пламени сопровождается термическим разложением с образованием летучих продуктов. Поэтому распространение пламени происходит, по существу, по газовой фазе.

В отличие от жидкостей, поверхность которых всегда горизонтальна, распространение пламени по твердым материалам может происходить при различной их ориентации в пространстве: горизонтальной, вертикальной или промежуточной. В зависимости от ориентации поверхности изменяется скорость распространения пламени: она максимальна для ус­ловий распространения пламени снизу вверх для вертикальной поверхно­сти и минимальна для распространения пламени сверху вниз. В остальных случаях скорости имеют промежуточное значение (см. рис. 5.2).

Существенное влияние на скорость распространения пламени ока­зывает толщина материала. При оценке условий распространения пламени различают термически толстые и термически тонкие материалы. Такое разделение основано на сравнении реальной толщины материала с терми­ческой – толщиной слоя твердого материала, прогретого перед фронтом пламени выше начальной температуры (см. рис. 5.5).

На схеме показано распределение температуры в материале не­посредственно перед фронтом пламени, при горении термически толстого (рис. 5.5, а) и термически тонкого (рис. 5.5, б) материала. Если реальная толщина превышает термическую толщину, материал называют термиче­ски толстым, если наоборот – термически тонким.

Из представленной схемы видно, что температура поверхности тер­мически толстого материала, противоположной поверхности горения, равна начальной, а в случае термически тонкого материала – значительно выше.


Рис. 5.5. Поля температур при распространении пламени по твердым материалам а) термически толстый материал; б) термический тонкий материал; dреальн – фактическая толщина материала, dтерм – термическая толщина материала, Т0 – начальная температура, Тпов – температура поверхности при горении

Данное обстоятельство необходимо учитывать при оценке условий распространения пламени по отделочным материалам, покрывающим строительные конструкции. Если материал конструкции обладает большим коэффициентом теплопроводности, чем у отделочного материала, то при горении последнего интенсифицируется отток тепла, поступающего от зоны пламени к поверхности горючего, вглубь твердой фазы. При этом, чем меньше толщина горючего материала, тем выше скорость теплоотвода от поверхности. Такой процесс замедляет повышение температуры поверхностного слоя и, соответственно, уменьшает скорость распространения фронта пламени. При некоторой минимальной толщине горючие покрытия уже не распространяют горение. Из рассмотренной схемы следует вывод: чем выше теплопроводность подложки, тем интенсивнее теплоотвод от поверхности горючего отделочного материала, и тем при большей его толщине прекращается процесс распространения пламени.

Одновременно с распространением пламени по поверхности твердого материала происходит процесс распространения горения вглубь материала – процесс выгорания. Интенсивность выгорания существенно зависит от закономерностей превращения твердой фазы в газообразные продукты.

Основной количественной характеристикой процесса выгорания является массовая скорость выгорания, используемая при расчетах температурного режима пожара, допустимого времени эвакуации людей при пожаре, требуемого предела огнестойкости строительных конструкций.

В практике используется величина приведенной массовой скорости выгорания, которая представляет собой количество вещества, выгораю­щего в единицу времени с единицы площади пожара. Связь между массо­вой и приведенной скоростями выгорания выражается соотношением:

где Vпр – приведенная скорость выгорания, кг/м 2. сек;

Vвыг – удельная массовая скорость выгорания, кг/м 2. сек;

Кп–коэффициент поверхности горения.

где FПГ–площадь поверхности горения, м 2 ;

Fпож –площадь пожара, м 2 .

Например, для случая горения твердого материала в виде куба, ле­жащего на одной из граней, Кп = 5.

Массовая скорость выгорания твердых материалов не является по­стоянной величиной. Она существенно зависит от условий горения.

Читайте также: