Правила гибки листового металла

Обновлено: 04.10.2024


Если вы сами создаете чертежи, вам нужно знать следующее. Процесс гибки удлиняет материал. Это означает, что нейтральная линия или ось, о которой мы говорили в предыдущей статье, на самом деле находится не посередине материала. Но плоская деталь должна быть сформирована в соответствии с нейтральной линией. И для нахождения ее положения требуется коэффициент k.

Коэффициент K - это эмпирическая константа, то есть его значение было определено в результате испытаний. Он варьируется в зависимости от материала, его толщины, радиуса изгиба и метода гибки. По сути, коэффициент k смещает нейтральную линию, чтобы обеспечить плоский рисунок, отражающий реальность. Используя его, вы получаете допуск на изгиб, который, по сути, является длиной изогнутой нейтральной оси.

Первую часть данной статьи вы можете найти в нашем блоге по ссылке. Примечание: данная статья является переводом.

Формула коэффициента K:


Формулы припусков на изгиб:


Для изгибов от 90 до 165 градусов формула имеет вид:


Для изгибов более 165° нет необходимости рассчитывать припуски на изгиб, так как нейтральная ось остается практически посередине детали.


Для расчета плоской детали необходимо использовать длину дуги нейтральной оси

Расчет допуска на изгиб:

Допустим, у вас есть деталь, похожая на ту, что на изображении выше - у нее прямая ножка 20 мм и другая 70 мм. Угол изгиба составляет 90°, толщина листа - 5 мм, а внутренний радиус - 6 мм. Мы хотим узнать конечную длину детали. Во-первых, мы должны начать с коэффициента k:


Другой способ определения коэффициента k - следовать "правилу большого пальца". Просто выберите коэффициент k в соответствии с вашим материалом из приведенной ниже таблицы. Это дает достаточно точные результаты для большинства случаев.


Теперь мы можем перейти к припускам на изгиб:


Для получения окончательной длины мы просто прибавляем две длины ног к припуску на подгибку:


Советы по гибке листового металла:

Итак, я поговорил с нашим опытным менеджером по продажам, который знает толк в гибке листового металла. Он загорелся и решил воспользоваться возможностью и поделиться своими знаниями о гибке листового металла. Таким образом, он привел список распространенных ошибок и решений, как их избежать.

Минимальная длина фланца:

Существует минимальная длина фланца, как уже говорилось ранее. Для ориентировки смотрите таблицу изгибающих усилий. В зависимости от толщины выбирается ширина штампа. Если вы разработаете слишком короткий фланец, он будет неловко "проваливаться" в щель, и вы не получите желаемого результата.

Боковые стороны с фаской:


Фаска должна заканчиваться перед основанием детали

Если вы хотите сделать фланец с фаской на одном или двух концах, предыдущее правило о минимальной длине фланца остается в силе. Фаски должны оставлять достаточно места для выполнения правильных изгибов, иначе фланец будет выглядеть деформированным, и никто не будет удовлетворен.

Расстояние от отверстия до изгиба:


Близко расположенные отверстия могут деформироваться

Если отверстия расположены слишком близко к изгибу, они могут деформироваться. Круглые отверстия не так проблематичны, как другие типы, но болты все равно могут не пройти. Опять же, смотрите диаграмму изгибающего усилия для минимальных размеров фланца и размещайте отверстия дальше, чем минимальные.

Симметрия:

Чтобы избежать путаницы, прямоугольное отверстие может быть с обеих сторон

Существует большая опасность при изготовлении деталей, которые почти симметричны. Если возможно, делайте их симметричными. Если деталь почти симметрична, оператор гибочного пресса может запутаться. Результат? Ваша деталь будет согнута в неправильном направлении.

Заклепочные гайки:


Заклепочная гайка на пути гибочного инструмента

Если вы используете заклепочные гайки вблизи линии изгиба, известно, что их установка перед изгибом хороша для обеспечения его применимости. После изгиба отверстия могут деформироваться. Тем не менее, убедитесь, что гайки не будут мешать инструментам при гибке.

Маленькие фланцы для больших деталей:


Небольшой изгиб в конце большой детали может привести к трудностям

Лучше отказаться от маленьких фланцев на больших и тяжелых деталях. Это очень усложняет производство, и может потребоваться ручная обработка, которая обойдется дороже, чем простая механическая. В результате, если есть возможность, лучше выбрать альтернативное решение.

Сгибы рядом друг с другом:


Проверьте таблицу изгибающих усилий для минимальной длины фланца

Если вы хотите включить последовательные изгибы, проверьте, выполнимо ли это. Проблема возникает, когда вы не можете установить уже согнутую деталь на штамп. Если изгибы направлены в одну сторону - U-образный изгиб, - то общее правило заключается в том, что промежуточная часть должна быть длиннее фланцев.

Разместите изгибы на одной линии:


Эта часть нуждается в многочисленных корректировках.

Лучше всего проектировать изгибы на одной линии, если у вас есть несколько фланцев подряд. Имея это в виду, вы можете свести количество операций к минимуму. В противном случае оператору необходимо вносить корректировки для каждого отдельного изгиба, а это означает потерю времени и денег.

Линия изгиба параллельна стороне:


Такой вид линий сгиба приводит к неточным результатам

Как говорится в заголовке. Для целей позиционирования должна быть параллельная сторона вашей линии изгиба. Если её нет, выравнивание детали станет настоящей головной болью, и в итоге вы можете получить неудовлетворительный результат.

Рельеф изгиба:


Рельеф изгиба необходим

Для достижения наилучшего результата рекомендуется сделать не просто небольшой разрез лазером, а настоящий вырез по бокам будущего фланца - который должен быть рельефом изгиба. Ширина такого надреза должна превышать толщину материала. Это гарантирует отсутствие разрывов и деформаций при окончательном изгибе. Другой хорошей практикой здесь является включение небольших радиусов в рельефы изгиба, поскольку они также снимают напряжение материала.

Сгибание коробки:


Небольшие зазоры гарантируют выполнение работы

При сгибании коробки необходимо оставлять небольшие зазоры между фланцами. В противном случае последний сгиб может врезаться в существующие, ломая всю конструкцию.

Проверьте плоский шаблон:

Следует помнить о том, что время от времени нужно переключать вид CAD на плоский шаблон. В этом есть много плюсов. Во-первых, если вы увлечетесь фланцами, в итоге может получиться что-то, что не может существовать в плоской схеме. А то, что не может существовать в плоской схеме, не может существовать и в любой другой.

Измерьте макет. Возможно, вы сможете скорректировать конструкцию для оптимальной посадки. Старайтесь не брать лист большего размера, если меньший размер находится в пределах досягаемости. Может быть, вы сможете уместить 2 детали на одном листе, если просто убавите несколько миллиметров? Это отразится на окончательной цене проекта.

Эмпирическое правило для минимального радиуса изгиба:

Будьте проще. Что может быть проще, чем выбрать внутренний радиус (ir), равный толщине материала. Это позволяет избежать последующих проблем, излишних раздумий и глупых ошибок. Уменьшение радиуса ниже этого значения может привести к проблемам. Больший радиус только усложнит некоторые другие расчеты.

Направление изгиба:


Изгиб перпендикулярно прокатке

Не следует проектировать изгибы в том же направлении, в котором производилась прокатка материала. Это особенно важно для алюминия. Конечно, все мы знаем алюминиевые корпуса с 4 сторонами, которые подразумевают гибочные операции, противоположные тем, что мы предлагаем. Тем не менее, лучше избегать этого, если возможно. Результатом могут стать неровные поверхности или даже трещины.

Хотя инженеры-производители заботятся о том, чтобы замечать такие вещи, полезно замечать их самостоятельно. Это помогает учесть расход материала.

Загиб кромок:


Оставляйте внутренний радиус, если это возможно

Если вы хотите укрепить края металлического листа, то загиб кромок - отличный вариант. Тем не менее, здесь применимы некоторые советы. Лучше оставить небольшой радиус внутри загиба. Для полного разрушения радиуса требуется большая мощность и тоннаж. Кроме того, это подвергает материал опасности растрескивания. Оставление радиуса, напротив, снимает эту опасность.

Оцените материал:

Обычные тонкие листы конструкционной стали толщиной 1. 3 мм могут выдержать практически все. После этого необходимо провести исследование. Некоторые материалы гораздо более капризны в обращении с ними. Получение хорошего результата зависит от ваших знаний и от помощи, которую может оказать ваш инженер-технолог.

Если вам понравилась статья, то ставьте лайк, делитесь ею со своими друзьями и оставляйте комментарии!

Технологии гибки и правки металла

Гибка металла, как альтернатива другим способам обработки металла, например, сварке, резке или клепке, имеет следующие преимущества:


Гибка металла представляет собой способ придать заготовке новую форму тем или иным способом. При этом отсутствует выборка материала, резка или сварка. Необходимый результат достигается только за счет его пластического деформирования. При изгибании происходит сжатие одних слоев исходной детали и растяжение других. Такая операция близка по сути правке металла, при которой устраняются дефекты заготовок в виде выпуклостей, вогнутостей или волнистости.

  • экономия материала, так как практически полностью отсутствуют отходы;
  • сохранение механической прочности изделия, благодаря отсутствию сварных швов или других соединений;
  • антикоррозийная стойкость, поскольку в месте деформации не происходит существенного изменения структуры металла по сравнению с той же сваркой;
  • привлекательный вид изделия.

Существует несколько видов гибки металла. Все они определяются типом исходной заготовки, в качестве которой выступает, как правило, стандартный производственный сортамент. Перечислим самые распространенные из них.

Гибка листового металла

Прессовый листогиб


Технология гибки металла, представляющего собой лист, реализуется на специальных станках — листогибах. По способу гиба такие механизмы можно разделить на три вида:

  1. Прессовые. Лист под давлением вводится в неподвижную матрицу посредством пуансона и приобретает при этом нужную форму. Пуансоны бывают нескольких видов, различающихся по форме и радиусу гибки. Матрица, как правило, имеет форму угла или паза. Листогибочный пресс является наиболее универсальным оборудованием, поскольку легко перенастраивается на разные задачи.
  2. Поворотные.
    Главные элементы: станина, подвижная гибочная балка (траверса), прижимная балка, задний упор. Прижимная балка служит для фиксации листа на станине. Для сгибания листа производится посредством гибочной балки, которая и является основным рабочим элементом.
  3. Ротационные — двух, трех или четырехвалковые устройства, в которых рабочие элементы используют вращательное движение.
    Рабочий привод, создающий необходимое усилие на таких станках, может быть реализован одним из следующих способов:
  • ручной — используется мускульная сила человека;
  • гидравлический — используется гидроусилитель;
  • пневматический — используется сжатый воздух;
  • механический — используется энергия раскрученного маховика;
  • электромеханический — применяются электродвигатели с редукторами.

Одной из широко применяемых разновидностей листогибочного оборудования являются фальцегибочные или фальцепрокатные станки, которые предназначены для работы с тонким листом. Такое оборудование используют при изготовлении фальцевой кровли, воздуховодов, дымоходов.

Гибка металлических труб

Арбалетный трубогиб


Гибка труб из металла может выполняться горячим и холодным способами. Последний способ более технологичен и производителен. Приспособления и станки для этой операции используют разные методы гибки. Существуют следующие разновидности трубогибов:

  • рычажные — для ручной гибки труб из мягких металлов, а также стальных небольшого диаметра на угол до 180 градусов;
  • арбалетные — сгибание трубы производится приложением усилия посредине между двумя точками, на которые опирается заготовка;
  • роликовые (валковые) — классическим примером является трехроликовый вальцевый трубогиб.

Роликовые трубогибочные станки используют метод холодной деформации металла, называемой вальцовкой. Такой станок работает с металлами любой твердости: от цветных до титана и его сплавов. Угол загиба может достигать 360 градусов, а длина сгибаемой заготовки нередко превышает 5 метров.

Для гибки тонкостенных труб применяют дорновые трубогибы, в которых используется специальная оснастка, называемая дорном. Это приспособление помещается в полость трубы в месте изгиба и препятствует возникновению деформаций металлических стенок.

Гибка металлопроката

Гибка металлического профиля


Гибка металлического профиля производится методом проката, а не изгиба, в отличие от большинства трубогибов. Гибка стали осуществляется, главным образом, на профилегибочных валковых станках. Количество валков на них варьируется от 3-х до 5. Чем больше число валков — тем меньшего радиуса гиба можно добиться при более высоком качестве изделия. В случае необходимости (большой площади сечения или высокой прочности материала) может производиться разогрев заготовки изгибаемого изделия, например, токами высокой частоты.

Самой сложной, но и самой востребованной у заказчиков технологической операцией, считается гибка стали, в том числе, и нержавеющей. Для того чтобы придать прочному стальному листу нужную конфигурацию, предварительно делается расчет развертки.

Затем она переносится на лист, где с помощью лазера производится его «раскрой». И только после этого заготовку из стали помещают под специальный гидравлический пресс, где по заданным параметрам выполняется процесс гибки.

Кроме нержавейки, в машиностроении часто применяют фасонные детали, выполненные из титановых сплавов. Титан более податливый материал, чем сталь, тем не менее, обработка его методом гнутья не является простым делом. Для работы с титаном используют специальные гибочные прессы. На них можно придать нужную форму титановой заготовке, причем как холодным, так и горячим способом.

Как видим, можно получить готовую деталь любой конфигурации — важно лишь правильно подобрать оборудование и выполнить точные расчеты гиба. Плюсом гибки стали является отсутствие сварных элементов, что означает и отсутствие опасности возникновения коррозии в местах сварных швов.

Технология гибки листового металла

Гибка листового металла — одна из распространенных операций холодного и горячего деформирования. Она отличается малой энергоемкостью.


Гибка листового металла — одна из распространенных операций холодного и горячего деформирования. Она отличается малой энергоемкостью, и при правильной разработке техпроцесса позволяет успешно производить из плоских заготовок пространственные изделия различной формы и размеров.

Классификация и особенности процесса

Технология гибки листового металла


В соответствии с поставленными задачами технология гибки листового металла разрабатывается для следующих вариантов:

  1. Одноугловая (называемая иногда V-образной гибкой).
  2. Двухугловая или П-образная гибка.
  3. Многоугловая гибка.
  4. Радиусная гибка листового металла (закатка) — получение изделий типа петель, хомутов из оцинковки и пр.

Усилия при гибке невелики, поэтому ее преимущественно выполняют в холодном состоянии. Исключение составляет гибка стального листа из малопластичных металлов. К ним относятся дюралюминий, высокоуглеродистые стали (содержащие дополнительно значительный процент марганца и кремния), а также титан и его сплавы. Их, а также заготовки из толстолистового металла толщиной более 12…16 мм, гнут преимущественно вгорячую.

Гибку сочетают с прочими операциями листовой штамповки: резку и гибку, с вырубкой или пробивкой сочетают довольно часто. Поэтому для изготовления сложных многомерных деталей широко используются штампы, рассчитанные на несколько переходов.

Особым случаем гибки листового металла считается гибка с растяжением, которую используют для получения длинных и узких деталей с большими радиусами гибки.

Вертикальный листогибочный пресс


В зависимости от размера и вида заготовки, а также требуемых характеристик продукции после деформирования, в качестве гибочного оборудования используются:

  • Вертикальные листогибочные прессы с механическим или гидравлическим приводом;
  • Горизонтальные гидропрессы с двумя ползунами;
  • Кузнечные бульдозеры — горизонтально-гибочные машины;
  • Трубо- и профилегибы;
  • Универсально-гибочные автоматы.

Для получения уникальных по форме и размерам конструкций, в частности, котлов турбин и т.п., применяют и экзотические технологии гибки листовой стали, например, энергией взрыва. В противоположность этому, вопрос — как гнуть жесть — не вызывает сложностей, поскольку пластичность этого материала — весьма высокая.

Характерная особенность листогибочных машин — сниженные скорости деформирования, увеличенные размеры штампового пространства, сравнительно небольшие показатели энергопотребления. Последнее является основанием для широкого производства ручных гибочных станков, предназначенных для деформации оцинкованного материала. Они особо популярны в небольших мастерских, а также у индивидуальных пользователей.

Несмотря на кажущуюся простоту технологии, баланс напряжений и деформаций состояния в заготовке определить затруднительно. В процессе изгиба материала в нем возникают напряжения, вначале — упругие, а далее — пластические. При этом гибка листового материала отличается значительной неравномерностью деформации: она более интенсивна в углах гибки, и практически незаметна у торцов листовой заготовки. Гибка тонколистового металла отличается тем, что внутренние его слои сжимаются, а наружные — растягиваются. Условную линию, которая разделяет эти зоны, называют нейтральным слоем, и его точное определение является одним из условий бездефектной гибки.

В процессе изгиба металлопрокат получает следующие искажения формы:

  • Изменение толщины, особенно для толстолистовых заготовок;
  • Распружинивание/пружинение — самопроизвольное изменение конечного угла гибки;
  • Складкообразование металлического листа;
  • Появление линий течения металла.

Все эти обстоятельства необходимо учитывать, разрабатывая технологический процесс штамповки.

Этапы и последовательность технологии

Гибка листового металла на станке

Разработка проводится в следующей последовательности:

  1. Анализируется конструкция детали.
  2. Рассчитывается усилие и работа процесса.
  3. Подбирается типоразмер производственного оборудования.
  4. Разрабатывается чертеж исходной заготовки.
  5. Рассчитываются переходы деформирования.
  6. Проектируется технологическая оснастка.

Анализ соответствия возможностей исходного материала необходим для того, чтобы выяснить его пригодность для штамповки по размерам, приведенным на чертеже готовой детали. Этап выполняют по следующим позициям:

  • Проверка пластических способностей металла и сопоставление результата с уровнем напряжений, которые возникают при гибке. Для малопластичных металлов и сплавов процесс приходится дробить на несколько переходов, а между ними планировать межоперационный отжиг, который повышает пластичность;
  • Возможность получения радиуса гиба, при котором не произойдет трещинообразования материала;
  • Определение вероятных искажений профиля или толщины заготовки после обработки давлением, особенно при сложных контурах у детали;

По результатам анализа иногда принимают решение о замене исходного материала на более пластичный, о необходимости предварительной разупрочняющей термической обработки, либо используют подогрев заготовки перед деформацией.


Обязательным пунктом при разработке технологического процесса считается расчет минимально допустимого угла гибки, радиуса гибки и угла пружинения.

Радиус гибки rmin вычисляют с учетом пластичности металла заготовки, соотношения ее размеров и скорости, с которой будет проводиться деформирование (гидропрессы, с их пониженными скоростями передвижения ползуна, предпочтительнее более скоростных механических прессов). При уменьшении значения rmin все металлы претерпевают так называемое утонение — уменьшение первоначальной толщины заготовки. Интенсивность утонения определяет коэффициент утонения λ, %, который показывает, на сколько уменьшится толщина конечного изделия. Если это значение оказывается более критичного, то исходную толщину s металла заготовки приходится увеличивать.

Для малоуглеродистых листовых сталей соответствие между вышеуказанными параметрами приведено в таблице (см. табл. 1).

Таблица 1

Показатели для малоуглеродистых листовых сталей

Таким образом, при определенных условиях металл заготовки может даже несколько выпучиваться.


Не менее важным является и определение минимального радиуса гибки, который также зависит от исходной толщины металла, расположения волокон проката и пластичности материала (см. табл. 2). В том случае, когда радиус гиба слишком мал, то наружные волокна стали могут разрываться, что нарушает целостность готового изделия. Поэтому минимальные радиусы принято отсчитывать по наибольшим деформациям крайних частей заготовки, с учетом относительного сужения ψ деформируемого материала (устанавливается по таблицам). При этом учитывают также и величину деформации заготовки. Например, при малых деформациях используют зависимость

а при больших деформациях — более точное уравнение вида

Таблица 2

Определение минимального радиуса гибки

Эффект вероятного пружинения можно учесть при помощи данных по фактическим углам пружинения β, которые приведены в таблице 3. Данные в таблице соответствуют условиям одноугловой гибки.

Таблица 3

Данные по фактическим углам пружинения β

Определение усилия гибки


Силовые параметры гибки зависят от пластичности металла и интенсивности его упрочнения в ходе деформировании. При этом значение имеет направление прокатки исходной заготовки. Дело в том, что после прокатки металл приобретает свойство анизотропии, когда в направлении оси прокатки остаточные напряжения меньше, чем в противоположном. Соответственно, если согнуть металл вдоль волокон, то при одной и той же степени деформации вероятность разрушения заготовки существенно уменьшается. Поэтому ребро гиба располагают таким образом, чтобы угол между направлением прокатки и расположением заготовок в листе, полосе или ленте был минимальным.

Для расчета силовых параметров уточняют, как будет выполняться деформирование. Оно возможно изгибающим моментом, когда заготовка укладывается по фиксаторам/упорам, и далее деформируется свободно, либо усилием, когда в завершающий момент процесса полуфабрикат опирается на рабочую поверхность матрицы. Свободная гибка проще и менее энергоемка, зато гибка с калибровкой дает возможность получать более точные детали.

Если упрочнение металла невелико (например, гнется изделие из алюминия, либо малоуглеродистой стали), то момент можно вычислить по зависимости:

где σт — предел текучести материала заготовки перед штамповкой.

Больший угол гиба (свыше 45 0 ) должен учитывать интенсивность упрочнения заготовки, которая зависит от размеров ее поперечного сечения:

где b — ширина заготовки.

Для расчета значений технологического усилия Р используют следующие зависимости. При одноугловой свободной гибке

наибольшая деформация сечения заготовки;

σв — значение предела материала на прочность.


Когда гибка — несвободная (с калибровкой в конце рабочего хода ползуна), то для расчета усилия используют зависимость

где Fпр — площадь проекции заготовки, подвергаемой изгибу;

pпр — удельное усилие гибки с калибровкой, которое зависит от материала изделия:

  • Для алюминия — 30…60 МПа;
  • Для малоуглеродистых сталей — 75…110 МПа;
  • Для среднеуглеродистых сталей — 120…150 МПА;
  • Для латуней — 70…100 МПа.

Для выбора типоразмера оборудования, рассчитанные усилия увеличивают на 25…30%, и сравнивают полученный результат с номинальными (паспортными) значениями.

Правила гибки металла

Соблюдение правил гибки металла позволяет минимизировать процент брака на производстве и исключить возможность возникновения несчастных случаев. Для каждого типа металлической заготовки применяются свои правила гибки. Выбор метода зависит от способа обработки, состава, формы изделия и т. д.

При ручной гибке правила допускают определенную погрешность при изготовлении деталей. Чем выше процент автоматизации на производстве, тем требования жестче, а результат, соответственно, точнее.

Ключевые характеристики гибки металла

Под гибкой понимают такую обработку металлов, в процессе которой из-за оказываемого на заготовку давления меняется ее продольная ось.

Ключевые характеристики гибки металла

Гибка бывает нескольких видов:

  • П-образная (двухугловая);
  • М-образная (одноугловая).
  • многоугловая.

Гибка металлов осуществляется несколькими способами:

  • При свободной гибке не требуется фиксации центра симметрии детали, сгибание осуществляется за счет нажима рабочего инструмента (пуансона) на поверхность обрабатываемой заготовки. На форму готовой детали влияет конфигурация пуансона.
  • В процессе гибки калибрующим ударом обрабатываемую деталь помещают в матрицу. От ее конфигурации зависит форма готового изделия.
  • С помощью роликовых матриц, в которых рабочий инструмент поворачивается, формируя конфигурацию детали.

Отличительной чертой гибки является значительная разница в сетке макроструктуры, которая зависит от направления сгибания. Этот нюанс необходимо учитывать при работе с металлами и сплавами небольшой и средней пластичности, поскольку при совпадении направления волокон и оси деформации заготовки в процессе штамповки вероятность ее разрушения минимальна. Если направления не совпадают, частицы металла могут расслаиваться, приводя к возникновению неисправимых дефектов.

Согласно правилам гибки металла до начала обработки требуется:

  • сравнить предельный радиус гиба с фактической толщиной детали;
  • уточнить направление волокон металла;
  • выяснить, каков предел текучести материала заготовки;
  • уточнить, насколько допустимо отклонение конфигурации готовой детали.

Уточнение перечисленных данных необходимо при работе с тонколистовыми металлами. Правила гибки труб и ряда разновидностей профильных металлов (кругов, шестигранников, уголков и т. д.) требуют уточнения допустимой относительной деформации готовой детали.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Гибка металлов не является энергоемкой штамповочной операцией. В процессе обработки не требуется приложения большого усилия, при выборе оборудования следует ориентироваться на такие параметры, как длина рабочей зоны и скорость перемещения деформирующего инструмента. Выполнять гибку тонколистовых металлов зачастую можно при помощи ручных станков – профилегибов, трубогибов и др.

Рекомендуем статьи по металлообработке

Правила гибки металла и специфика его деформации требует использования станков с пониженным числом ходов. В связи с этим более предпочтительными являются не гидравлические, а механические кривошипные прессы. Например, профилирование относится к одному из видов автоматизированной неглубокой гибки.

Основные правила гибки металла

Правила гибки листовых и полосовых металлов требуют точного расположения разметочной риски в тисках. Риска должна находиться на том же уровне, что и губки тисков в сторону изгиба, перекосы недопустимы. Заготовки из полосового металла толще 3 мм изгибают исключительно в сторону неподвижной губки.

Основные правила гибки металла

В соответствии с правилами, прежде чем приступать к гибке заготовок из полос и прутков (уголков, различной формы скоб, крючков, колец и пр.), требуется предварительный расчет длины деталей и общей длины развертки элементов. В процессе разметки следует отмечать места гиба, пользуясь при необходимости мерными оправками.

Массовое производство деталей типа скоб требует использования оправок, соответствующих размерам деталей, поэтому необходимость в текущей разметке области изгиба отсутствует.

Правила гибки листового и полосового металла с использованием необходимых приспособлений требует работы в соответствии с прилагаемой инструкцией по эксплуатации.

Независимо от используемой технологии гибки газовых или водопроводных труб, шов должен быть на внутренней стороне изгиба.

Правила гибки листового и полосового металла

Правила гибки металла вручную

Для работы с небольшими по размеру деталями используют тиски. Заготовку с вкладышем или оправкой, в точности повторяющими форму изгибаемого элемента, фиксируют в тисках, а затем ударами молотка огибают по вкладышу. Если необходимо выполнить гибку детали сложной конфигурации и после первоначальной операции невозможно зафиксировать деталь тисками, используются вставки.

Правила гибки металла вручную

Во избежание повреждения заготовок из-за рифленой поверхности тисков, пользуются нагубниками – уголками, изготовленными из мягких материалов (мягкой стали, латуни). При работе с заготовками, которые невозможно зафиксировать между губками, в тиски вставляют оправку или вкладыш и уже по ним изгибают деталь.

При необходимости обработки единичных заготовок больших размеров их размещают на плитах и огибают по краям плит. Таким образом работают, например, с деталями из листового металла.

Для оптимизации работы с партией таких деталей изготавливается специальное гибочное приспособление.

В соответствии с правилами гибки металла, работа со стальными трубами, диаметр которых составляет 10–30 мм, осуществляется в холодном состоянии. Во избежание образования в процессе обработки складок в сжатой области трубы, в нее засыпают наполнитель (для этой цели используется мелкий сухой песок). Делают это следующим образом: на один из концов трубы устанавливают деревянную заглушку, внутрь засыпают песок, после уплотнения наполнителя второй конец трубы также закрывают заглушкой.

Гибка труб

Согласно правилам гибки металлов, для работы с трубами требуются специальные трубогибочные приспособления, в основании которых неподвижно крепится шаблон или ролик. Радиус гибки зависит от радиуса ролика. Второй ролик – изгибающий – крепится к рычагу, поворачивающемуся вокруг оси неподвижного элемента оборудования. На роликах располагаются желобки, размеры которых соответствуют размерам трубы.

Трубу размещают между роликами и фиксируют при помощи скобы. В процессе обработки рычаг поворачивается, в результате чего происходит гибка трубы подвижным роликом по неподвижному на требуемый угол.

Правила безопасности при гибке металла

Правила безопасности при работе с заготовками на листоправильном оборудовании требуют перед началом обработки проверки заземления и исправности ограждающих элементов. Для контроля функционирования пусковых и выключающих устройств необходимо несколько раз запустить станок вхолостую и выключить его.

Правила безопасности при гибке металла

При правке заготовок с вырезами (окнами) детали подаются за край, а не за вырезы во избежание травмирования мастера, поскольку существует риск затягивания рук в станок. В целях минимизации опасности получения травм при работе необходимо использовать брезентовые рукавицы.

Правила гибки металлов на гибочных станках с ручным приводом требуют предварительной проверки состояния следующих элементов оборудования:

  • гибочных линеек;
  • траверсов;
  • винтового прижима.

Запрещена гибка металла с большей толщиной, чем указано в технической документации к оборудованию.

Обработка металлических изделий на гибочных прессах и профилегибочных установках требует следующих предварительных действий:

  • обязательного ознакомления с инструкциями, регламентирующими технику безопасности;
  • проверки состояния заземления;
  • осмотра ограждений, пусковых и выключающих элементов;
  • проверки правильности размещения штампов и роликов.

Правка и гибка выполняются с помощью молотка, тщательно закрепленного на ручке. Боек молотка следует проверить на предмет отсутствия трещин, забоин и заусенцев. Насадка молотка на ручку также нуждается в периодической проверке.

Обрезки металла собираются и складируются в специальную тару – это необходимо для минимизации риска травмирования (порезов) ног и рук мастера.

Для очистки листов металла используются сначала металлические щетки, затем ветошь.

Для очистки листов металла используются сначала металлические щетки, затем ветошь

Правка выполняется с использованием надежных подкладок, не допускающих скольжения заготовок при ударе.

Рабочие для удержания заготовки должны пользоваться при правке кузнечными клещами.

На одной из заглушек, устанавливаемых на трубу, перед засыпкой песка делается отверстие, через которое будут выходить газы. В противном случае существует вероятность разрыва трубы.

Гибка горячих труб требует использования рукавиц, чтобы не допустить ожогов рук.

Гибка горячих труб

Правила безопасности при гибке металла требуют также:

  • надежной фиксации заготовок в слесарных тисках;
  • использования исправного оборудования;
  • размещения оправки и инструментов как можно дальше от края верстака;
  • расположения левой руки не вблизи места сгиба при работе с проволокой;
  • аккуратного выполнения гибки во избежание травмирования пальцев рук;
  • использования рукавиц и застегнутых халатов.

Дефекты, возникающие при нарушении правил гибки металла

Основными изъянами, возникающими при несоблюдении правил гибки металла, являются:

  • утяжина в зоне изгиба;
  • трещины;
  • складки;
  • неточности размера и формы деталей.

Дефекты, возникающие при нарушении правил гибки металла

Из-за данного дефекта искажается форма детали и снижается ее прочность. Для ликвидации недостатка предварительно набирается металл в месте изгиба либо высаживается заготовка в процессе обработки.

Они появляются на участке изгиба с внешней стороны заготовки, чаще всего при обработке низкопластичного металла (в холодном или подстывшем состоянии). При гибке, к примеру, холодной дюралюминиевой заготовки не только образуются трещины, но и возможно полное разрушение металла.

Соответствие требованиям важно для заготовок, выполненных из высокоуглеродистых, легированных сталей, сплавов. Правила гибки металла требуют выбора подходящего режима обработки, т. е. оптимальной температуры, схемы обработки, минимального радиуса изгиба, последовательности переходов и т. п.

В случае обработки изделий с большим радиусом изгиба, необходимо минимизировать риск появления складок, концентрирующих напряжение и отрицательно воздействующих на прочность деталей.

Причиной возникновения данного дефекта являются ошибки при определении длины (объема) исходной заготовки. Недочет приводит к тому, что деталь получается большей либо меньшей длины, чем необходимо.

Неточность формы может быть вызвана неправильно подобранными переходами гибки, плохой подготовкой заготовки, неверным выбором инструментов или способа обработки, недостаточным опытом мастера.

Правила гибки металла при дефектах и трудностях обработки

При работе с малопластичными сталями (с содержанием углерода более 0,5 %) сложности возникают из-за пружинения, которое приводит к тому, что конфигурация готовой детали не соответствует чертежу. Пружинение является основной проблемой, которую следует учитывать при определении технологического процесса гибки.

Правила гибки металла при дефектах и трудностях обработки

Суть явления заключается в упругом последействии материала, несмотря на снятие рабочей нагрузки. Результатом является искажение формы заготовки (фактический угол пружинения может достигать 12–150°), дефект отрицательно влияет на точность сопряжения готовой детали со смежной.

Ликвидация или уменьшение пружинения возможны следующими приемами:

  • Компенсацией угла пружинения за счет соответствующего изменения настройки рабочей части пуансона и матрицы. Чтобы способ был эффективным, необходимо знать марку металла/сплава либо характеристики его прочности, в т. ч. предел временного сопротивления. В ряде случаев возникает необходимость в проведении технологических проб на загиб. Так, выяснив, что угол пружинения равен 100°, следует увеличить рабочую кромку пуансона на аналогичный угол.
  • Изменением рабочего профиля матрицы, что приводит к постоянному контакту заготовки по всей деформируемой длине с активным рабочим инструментом. Это достигается за счет технологических поднутрений или выемок (при возможности) в матрице.
  • Повышением пластичности металла путем его отжига до начала штамповки. Высокоуглеродистые стали отжигаются при температуре от +570 °С до +6 000 °С, низкоуглеродистые – при +180–2 000 °С.
  • Гибкой в горячем состоянии, поскольку при повышении температуры металла улучшаются его пластические характеристики. Однако в этом случае необходимо дополнительно очистить и поверхность заготовки, и рабочую плоскость матрицы от окалины после каждого хода пуансона.

При соблюдении правил гибки металла получаются высококачественные изделия, а также минимизируется риск причинения вреда здоровью мастеру, работающему с заготовками.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Читайте также: