При освещении металлической пластины монохроматическим светом

Обновлено: 05.10.2024

Задания Д32 C3 № 9296

На рисунке представлен график зависимости фототока из металлической пластины от величины запирающего напряжения. Мощность падающего излучения составляет 0,21 Вт. Чему равна частота фотонов, если известно, что в среднем каждые 30 фотонов, падающих на металлическую пластинку, выбивают один электрон.

Из графика находим величину тока насыщения, которая равна 2 мА. Ток насыщения соответствует максимальному потоку электронов, которое способно выбивать в единицу времени излучение с определенной мощностью

По определению, сила тока — это количество заряда, прошедшего за единицу времени:

Мощность светового потока — это энергия, которую несут фотоны за единицу времени:

Учтем, что один электрон выбивается каждые 30 фотонов, т. е.

Задания Д16 B27 № 1936

При освещении металлической пластины с работой выхода А монохроматическим светом длиной волны происходит фотоэлектрический эффект, максимальная кинетическая энергия освобождаемых электронов равна Каким будет значение максимальной кинетической энергии фотоэлектронов при освещении монохроматическим светом длиной волны пластины с работой выхода ?

Принимая во внимание связь между длиной волны и частотой выпишем уравнения фотоэффекта для обоих опытов:

Отсюда получаем, что

Задания Д11 B20 № 2231

При освещении металлической пластины монохроматическим светом с частотой происходит фотоэлектрический эффект. Максимальная кинетическая энергия освобождаемых электронов равна 2 эВ. При освещении этой пластины монохроматическим светом с частотой значение максимальной кинетической энергии фотоэлектронов будет

3) больше 2 эВ, но меньше 4 эВ

Задания Д11 B20 № 2232

При освещении металлической пластины монохроматическим светом с частотой происходит фотоэлектрический эффект, максимальная кинетическая энергия освобождаемых электронов равна 2 эВ. Каким будет значение максимальной кинетической энергии фотоэлектронов при освещении этой пластины монохроматическим светом с частотой если фотоэффект происходит?

3) больше 1 эВ, но меньше 2 эВ

В решении ответом является номер 1, но на проверке - номер 4.

В решении получился ответ — это 4-й вариант.

Задания Д11 B20 № 2238

При освещении металлической пластины с работой выхода А монохроматическим светом частотой происходит фотоэлектрический эффект, максимальная кинетическая энергия освобождаемых электронов равна Каким будет значение максимальной кинетической энергии фотоэлектронов при освещении этим же монохроматическим светом пластины с работой выхода 2А, если фотоэффект происходит?

Покажите,пожалуйста,ваши подробные вычисления,а то не получается у меня

Приравняйте 2 равенства и все олучится

Отсюда сразу ответ следует

Тип 18 № 2302

Металлическую пластину освещают светом с энергией фотонов 6,2 эВ. Работа выхода для металла пластины равна 2,5 эВ. Какова максимальная кинетическая энергия образовавшихся фотоэлектронов? (Ответ дать в электрон-вольтах.)

Задания Д21 № 3116

Металлическую пластину освещали монохроматическим светом с длиной волны нм. Что произойдет с частотой падающего света, импульсом фотонов и кинетической энергией вылетающих электронов при освещении этой пластины монохроматическим светом с длиной волны нм одинаковой интенсивности? Фотоэффект наблюдается в обоих случаях.

Для каждой величины определите соответствующий характер изменения:

3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Частота падающего светаИмпульс фотоновКинетическая энергия фотоэлектронов

Частота света связана с длиной волны и скоростью света соотношением Следовательно, увеличение длины волны падающего света соответствует уменьшению частоты (A — 2). Импульс фотона обратно пропорционален длине его волны: Таким образом, при увеличении длины волны, импульс фотонов уменьшается (Б — 2). Кинетическая энергия вылетающих электронов связана с энергией фотонов и работой выхода, согласно уравнению фотоэффекта, соотношением

Работа выхода зависит только от химических свойств металлов, а значит, в результате увеличения длины кинетическая энергия фотоэлектронов уменьшится (В — 2).

Тип 19 № 26055

Металлическую пластину освещали монохроматическим светом с длиной волны нм. Что произойдет с частотой падающего света и импульсом фотонов при освещении этой пластины монохроматическим светом с длиной волны нм одинаковой интенсивности? Фотоэффект наблюдается в обоих случаях.

Частота падающего светаИмпульсом фотонов

Частота света связана с длиной волны и скоростью света соотношением Следовательно, увеличение длины волны падающего света соответствует уменьшению частоты (2). Импульс фотона обратно пропорционален длине его волны: Таким образом, при увеличении длины волны, импульс фотонов уменьшается (2).

Тип 19 № 26056

Металлическую пластину освещали монохроматическим светом с длиной волны нм. Что произойдет с импульсом фотонов и кинетической энергией вылетающих электронов при освещении этой пластины монохроматическим светом с длиной волны нм одинаковой интенсивности? Фотоэффект наблюдается в обоих случаях.

Импульс фотоновКинетическая энергия вылетающих электронов

Импульс фотона обратно пропорционален длине его волны: Таким образом, при увеличении длины волны, импульс фотонов уменьшается (2). Кинетическая энергия вылетающих электронов связана с энергией фотонов и работой выхода, согласно уравнению фотоэффекта, соотношением

Работа выхода зависит только от химических свойств металлов, а значит, в результате увеличения длины кинетическая энергия фотоэлектронов уменьшится (2).

Тип 18 № 27097

На рисунке изображён график зависимости максимальной скорости V фотоэлектронов от длины волны света, падающего на поверхность металлической пластины. Определите, чему равна работа выхода электрона с поверхности этого металла. Ответ запишите в электрон-вольтах.

Работа выхода — это минимальная энергия фотона, необходимая для вылета электронов с поверхности металла, при этом максимальная скорость электронов равна 0. Из этих соображений находим из графика максимальную длину волны Тогда работа выхода равна

Тип 18 № 27131 Задания Д16 B27 № 2322

В опытах по фотоэффекту пластину из металла с работой выхода освещали светом частотой Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с,

1) увеличилось в 1,5 раза

2) стало равным нулю

3) уменьшилось в 2 раза

4) уменьшилось более чем в 2 раза

Для металлической пластины с работой выхода красная граница фотоэффекта равна Поскольку в изначальном эксперименте пластину освещали светом с частотой, большей чем фотоэффект наблюдался. После уменьшения частоты света в 2 раза, она стала равна то есть стала меньше, чем Следовательно, фотоэлектроны перестали вылетать с поверхности металла, несмотря на то, что число фотонов, падающих на пластину за 1 с, увеличили в 1,5 раза. Таким образом, число фотоэлектронов стало равным нулю.

Тип 11 № 19697

Вода массой 5 г испаряется с тёплой металлической пластинки. Вода и пластинка обмениваются энергией только друг с другом. Как в результате данного процесса изменяются внутренняя энергия этой порции воды и температура пластинки? Для каждой величины определите соответствующий характер её изменения:

3) не изменяется

Внутренняя энергия порции водыТемпература пластинки

1. Внутренняя энергия порции воды. При испарении жидкости внутренняя энергия увеличивается, т. к. внутренняя энергия пара больше внутренней энергии жидкости.

2. Температура пластинки. Жидкость для испарения поглощает количество теплоты, которое в результате теплообмена получено от металлической пластины, значит, температура пластины уменьшается.

Аналоги к заданию № 19665: 19697 Все

Задания Д16 B27 № 3289

В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,5 эВ и стали освещать ее светом частоты Затем частоту падающей на пластину световой волны уменьшили в 4 раза, увеличив в 2 раза интенсивность светового пучка. В результате этого число фотоэлектронов, покидающих пластину за 1 с,

1) осталось приблизительно таким же

2) уменьшилось в 2 раза

3) оказалось равным нулю

4) уменьшилось в 4 раза

Для металлической пластины с работой выхода красная граница фотоэффекта равна Поскольку в изначальном эксперименте пластину освещали светом с частотой, большей чем фотоэффект наблюдался. После уменьшения частоты света в 4 раза, она стала равна то есть стала меньше, чем Следовательно, несмотря на увеличение интенсивности света, фотоэлектроны перестали вылетать с поверхности металла. Таким образом, число фотоэлектронов уменьшилось до нуля.

Тип 24 № 29731

На металлической пластинке, которая лежит на земле, лежит очень маленький металлический шарик. Над ним параллельно земле расположена другая пластинка, подключённая к клеммам высоковольтного выпрямителя, на который подают отрицательный заряд. Опираясь на законы механики и электростатики, объясните, как будет двигаться шарик.

1. Вокруг верхней отрицательно заряженной пластины создается электрическое поле. В результате электростатической индукции пластина, лежащая на земле, и металлический шарик приобретают положительный заряд.

2. Между двумя пластинами возникает электростатическое поле, вектор напряженности которого направлен вертикально вверх. Данное поле действует на шарик электрической силой направленной вертикально вверх.

3. Так как источник имеет высокое напряжение, можно предположить, что сила действия электрического поля больше силы тяжести, действующей на шарик. Поэтому равнодействующая данных сил будет направлена вверх. Тогда шарик начнет двигаться вверх до соприкосновения с верхней пластиной.

4. При касании произойдет изменение заряда шарика с положительного на отрицательный. Тогда сила действия электрического поля на шарик станет направленной вниз. Равнодействующая сил также будет направлена вниз, что приведет к падению шарика.

5. При касании шарика о нижнюю пластину, заряд у шарика снова сменится с отрицательного на положительный. Таким образом, шарик будет совершать колебания между двумя пластинами.

При освещении металлической пластины монохроматическим светом

Задания Д32 C3 № 25386

Металлическая пластина облучается в вакууме светом с длиной волны, равной 200 нм. Работа выхода электронов из данного металла Aвых = 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в электрическое поле напряженностью Е = 260 В/м, причем вектор напряженности перпендикулярен поверхности пластины и направлен к этой поверхности. Измерения показали, что на некотором расстоянии L от пластины максимальная кинетическая энергия фотоэлектронов равна W = 15,9 эВ. Определите значение L/

На фотоэлектроны со стороны электрического поля действует сила направленная от пластины, заряд электрона отрицательный. По теореме о кинетической энергии работа электрического поля равна изменению кинетической энергии электронов Работа электрического поля A = eU, разность потенциалов U = EL.

Применим уравнение Эйнштейна для фотоэффекта Учитывая, то , уравнение имеет вид Тогда расстояние от пластины до данной точки

Тип 28 № 5631

В цепи, изображённой на рисунке, ЭДС батареи равна 100 В; сопротивления резисторов: и а ёмкости конденсаторов и В начальном состоянии ключ К разомкнут, а конденсаторы не заряжены. Через некоторое время после замыкания ключа в системе установится равновесие. Какое количество теплоты выделится в цепи к моменту установления равновесия?

1. После установления равновесия ток через резисторы прекратится, конденсатор будет заряжен до напряжения, равного ЭДС батареи, а — разряжен (его пластины соединены между собой через резисторы): При этом через батарею пройдёт заряд

2. Энергия заряженного конденсатора равна

3. Работа сторонних сил источника тока пропорциональна заряду, прошедшему через него: Эта работа переходит в энергию конденсаторов и теплоту:

4. Подставляя значения физических величин, получим

Источник: Демонстрационная версия ЕГЭ—2014 по физике., ЕГЭ по физике 06.06.2013. Основная волна. Урал. Вариант 2., ЕГЭ по физике 06.06.2013. Основная волна. Урал. Вариант 4.

Тип 18 № 3641

В опыте по изучению фотоэффекта одну из пластин плоского конденсатора облучают светом с энергией фотона 6 эВ. Напряжение между пластинами изменяют с помощью реостата, силу фототока в цепи измеряют амперметром. На графике приведена зависимость фототока I от напряжения U между пластинами. Какова работа выхода электрона с поверхности металла, из которого сделаны пластины конденсатора? (Ответ дать в электрон-вольтах.)

Из графика видно, что фототок пропадает, если подать на пластины конденсатора обратное напряжение в 4 В. Это так называемое запирающее напряжение, когда все вылетающие фотоэлектроны, не успев долететь до противоположной пластины, возвращаются назад под действием электрического поля пластин. Согласно уравнению фотоэффекта Эйнштейна, энергия фотонов связана с работой выхода и запирающим напряжением соотношением: Следовательно, работа выхода для пластины конденсатора равна:

Задания Д32 C3 № 4653

Металлическая пластина облучается светом частотой Гц. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м, причём вектор напряжённости поля направлен к пластине перпендикулярно её поверхности. Измерения показали, что на расстоянии 10 см от пластины максимальная кинетическая энергия фотоэлектронов равна 15,9 эВ. Определите работу выхода электронов из данного металла.

Согласно уравнению фотоэффекта, работы выхода фотоэлектронов равна

Направление напряженности электрического поля совпадает с направлением силы, действующей на положительный заряд. Электроны заряжены отрицательно, поэтому поле, направленное перпендикулярно к пластине, будет ускорять электроны. На отрезке длиной x электрическое поле совершит работу по разгону электрона величиной Таким образом, максимальная кинетическая энергия электронов на расстоянии 10 см от пластины равна

Таким образом, работа выхода равна

Задания Д32 C3 № 4583

Металлическая пластина облучается светом. Работа выхода электронов из данного металла равна 3,7 эВ. Вылетающие из пластины фотоэлектроны попадают в однородное электрическое поле напряжённостью 130 В/м. Вектор напряжённости поля направлен к пластине перпендикулярно её поверхности. Измерения показали, что на расстоянии 10 см от пластины максимальная кинетическая энергия фотоэлектронов равна 15,9 эВ. Определите частоту падающего на пластину света.

Согласно уравнению фотоэффекта, частота света равна

Таким образом, работа частота равна

Тип 28 № 10336

Плоский конденсатор, заполненный диэлектриком с диэлектрической проницаемостью ε = 7, имеет ёмкость С = 2800 пФ и присоединён к источнику постоянного напряжения U. Диэлектрическую пластину медленно извлекают из конденсатора, не отсоединяя его от источника и совершая при этом работу A = 1,5 мкДж. Чему равно U? Потерями на трение при удалении пластины из конденсатора можно пренебречь.

1. При медленном извлечении диэлектрической пластины из плоского конденсатора в условиях постоянного напряжения на нём заряд с пластин стекает, ток в цепи очень мал, и потерями на выделение теплоты по закону Джоуля — Ленца в проводах можно пренебречь, как и потерями на трение.

2. Согласно уравнению для связи заряда и напряжения на конденсаторе так что заряд, стекающий с пластин конденсатора при постоянном напряжении, равен

3. Ёмкость конденсатора с диэлектриком в ε раз больше, чем без него, поэтому

4. Согласно закону сохранения энергии работа источника напряжения расходуется на изменение энергии конденсатора и совершение механической работы Aп силами электрического поля. Поскольку работа сил поля Aп отрицательна и равна −A.

5. Таким образом, и

Тип 28 № 10368

Плоский конденсатор, заполненный диэлектриком с диэлектрической проницаемостью ε = 5, имеет ёмкость С = 2500 пФ и присоединён к источнику постоянного напряжения U. Диэлектрическую пластину медленно извлекают из конденсатора, не отсоединяя его от источника и совершая при этом работу A = 2 мкДж. Чему равно U? Потерями на трение при удалении пластины из конденсатора можно пренебречь.

4. Согласно закону сохранения энергии, работа источника напряжения расходуется на изменение энергии конденсатора и совершение механической работы Aп силами электрического поля. Поскольку работа сил поля Aп отрицательна и равна −A.

Аналоги к заданию № 10336: 10368 Все

Задания Д9 B15 № 6926

Пластины плоского конденсатора несут заряды +q и −q. Для того чтобы изменить разность потенциалов между пластинами конденсатора, пробный заряд ΔQ можно перенести с положительно заряженной пластины на отрицательно заряженную либо по пути A, либо по пути B. Работа, совершённая электростатическим полем конденсатора при перемещении пробного заряда, будет

1) больше при движении по пути A, так как снаружи конденсатора напряжённость электрического поля меньше, чем между пластинами

2) больше при движении по пути B, так как перемещение пробного заряда при движении по пути B больше, чем при движении по пути A

3) одинакова при движении по пути A и по пути B, так как работа электростатической силы не зависит от вида траектории, по которой перемещается пробный заряд

4) равна нулю и при движении по пути A, и при движении по пути B, так как суммарная работа при перемещении пробного заряда по замкнутому контуру равна нулю

На положительный точечный заряд q в электростатическом поле с напряженностью действует сила При перемещении заряда q на произвольном конечном отрезке из точки 1 в точку 2 силами поля совершается работа Из формулы видно, что работа не зависит от формы пути, а определяется только начальным и конечным положениями заряда

При освещении металлической пластинки монохроматическим светом запирающее напряжение равно 1, 6В?

При освещении металлической пластинки монохроматическим светом запирающее напряжение равно 1, 6В.

Если увеличить честоту падающего света в 2 раза, запирающее напряжение станет 5, 1В.

Определить работу выхода из этого металла?


eU1 - hv1 = eU2 - hv2

v1 = e(U2 - U10 / h = 1.

63 * 10( - 34) = 0, 84 * 10(15)Гц

84 * 10(15)Гц = 3 * 10( - 19)Дж.


На платиновую пластинку(катод), падают ультрафиолетовые лучи?

На платиновую пластинку(катод), падают ультрафиолетовые лучи.

Напряжение U1 = 3, 7В.

Если пластинку платины заменить пластинкой другого металла, то напряжение нужно увеличить до U2 = 6В.

Определите работу выхода электронов из этого металла.

Работа выхода электронов из платины Авых1 = 8, 5 * 10 - 19стДж.

Элементарный заряд е = 1, 6 * 10 - 19стКл.

При освещении металлической пластинки монохроматическим светом запирающего напряжения равного 1, 6В?

При освещении металлической пластинки монохроматическим светом запирающего напряжения равного 1, 6В.

Если увеличить частоту падающего света в 2 раза, запирающее напряжение будет равно 5, 1ВюОпределить работу выхода из этого металла?


К вакуумному фотоэлементу, у которого катод выполнен из цезия, приложено запирающее напряжение 2 В?

К вакуумному фотоэлементу, у которого катод выполнен из цезия, приложено запирающее напряжение 2 В.

При какой длине волны падающего на катод света появится фототок?

1. Определите значение запирающего напряжения, если катод, изготовленный из платины, освещенный светом с длиной волны 300 нм?

1. Определите значение запирающего напряжения, если катод, изготовленный из платины, освещенный светом с длиной волны 300 нм.

Работа выхода платины равна 5, 3.

Для ионизации атома кислорода необходима энергия около 15 эВ.

Найти частоту излучения, которое может вызвать ионизации.


Решить задачу : Найдите запирающее напряжения для электронов при освещении металла светом длиной волны 320 нм если красная граница фотоэффекта для металла 620 нм?

Решить задачу : Найдите запирающее напряжения для электронов при освещении металла светом длиной волны 320 нм если красная граница фотоэффекта для металла 620 нм.


При облучении ультрафиолетовыми лучами пластинки из никеля запирающее напряжение оказалось равным 3, 7В?

При облучении ультрафиолетовыми лучами пластинки из никеля запирающее напряжение оказалось равным 3, 7В.

При замене из никеля пластинкой из другого металла напряжение потребовалось увеличить до 6 В.

Определите работу выхода электрона с порехности этой пластинки.

Работа выхода электронов их никеля равна 5эВ.

Найдите запирающее напряжение для электронов при освещении металла светом с длинной волны 330нм, сли красная граница фотоэффекта для металла 620 нм?

Найдите запирающее напряжение для электронов при освещении металла светом с длинной волны 330нм, сли красная граница фотоэффекта для металла 620 нм.


Работа выхода электрона из материала пластины равна 2 эв?

Работа выхода электрона из материала пластины равна 2 эв.

Пластина освещена монохроматическим светом.

Чему равна энергия фотонов падающего света , если задерживающее напряжение равно 1, 5 в?


Помогите пожалуйста?

На платиновую пластинку падает свет.

Для прекращения фотоэффекта необходимо приложить задерживающее напряжение.

Если платиновую пластинку заменить пластинкой из другого металла, то задерживающее напряжение надо увеличить на ΔU = 2, 3 В.

Определите работу выхода электрона из этого металла.

Работа выхода платины Авых.


Красная граница фотоэффекта натрия 540 нм?

Красная граница фотоэффекта натрия 540 нм.

Каково значение запирающего напряжения для фотоэлектронов, вылетающих из натриевого фотокатода, освещенного светом частотой 400 нм?

На 74 градусов. Наверное так.

Площадь верхнего основания конуса не имеет никакого значения. Со стороны нижнего основания на стол действует сила mg, распределённая по площади Sa Единственно, надо площадь перевести в квадратные метры Sa = 4 см² = 4 / 10000 м² = 0, 0004 м² P = mg /..


Поскольку за ПЕРИОД грузик пройдет расстояние, равное четырем амплитудам : L₀ = 4 * 3 = 12 см или 0, 12 м то число колебаний : n = L / L₀ = 0, 36 / 0, 12 = 3 Ответ : 3 колебания.

Q = λ * m = 4 * 330000 = 1320000Дж или 1320 кДж.

Решение Q = m * λ Отсюда находим массу m = Q / λ = 0, 1 кг 100 грамм свинца.

V = 72 км / ч = 20 м / с ; = V² / R = 20² / 500 = 0, 8 м / с² ; N = m(g - ) = 500×(10 - 0, 8) = 4600 Н (4500, если брать g за 9. 8 м / с²).

Правильный ответ это б.


0, 3 * m1 = N * 0, 2 0, 1 * N = 0, 3 * M m1 = 2M M = 1, 2 кг.

Потому что перемещение , cкорость, ускорение - величины векторные и работать с векторами труднее чем с проекциями.

Ответ : Объяснение : Дано : S₁ = S / 4V₁ = 72 км / чS₂ = 3·S / 4V₂ = 15 м / с____________Vcp - ? Весь путь равен S. Время на первой четверти пути : t₁ = S₁ / V₁ = S / (72·4) = S / 288 чВремя на остальной части пути : t₂ = S₂ / V₂ = 3·S / (15·4) = 3..

© 2000-2022. При полном или частичном использовании материалов ссылка обязательна. 16+
Сайт защищён технологией reCAPTCHA, к которой применяются Политика конфиденциальности и Условия использования от Google.


При увеличении частоты падающего на металл света в два раза задерживающее напряжение для фотоэлектронов увеличивается в три раза?

При увеличении частоты падающего на металл света в два раза задерживающее напряжение для фотоэлектронов увеличивается в три раза.

Частота первоначально падающего света 1, 2 * 10 ^ 15 Гц.

Определите длину волны (в нм) света, соответствующую «красной границе» для этого металла.

Очень срочно?

При освещении металлической пластины монохроматическим светом задерживающая разность потенциалов равна 1, 6 В .

Если увеличить частоту света в 2 раза, задерживающая разность потенциалов 5, 1В.

Определить красную границу фотоэффекта.

Вы находитесь на странице вопроса При освещении металлической пластинки монохроматическим светом запирающего напряжения равного 1, 6В? из категории Физика. Уровень сложности вопроса рассчитан на учащихся 10 - 11 классов. На странице можно узнать правильный ответ, сверить его со своим вариантом и обсудить возможные версии с другими пользователями сайта посредством обратной связи. Если ответ вызывает сомнения или покажется вам неполным, для проверки найдите ответы на аналогичные вопросы по теме в этой же категории, или создайте новый вопрос, используя ключевые слова: введите вопрос в поисковую строку, нажав кнопку в верхней части страницы.

Читайте также: