Процесс восстановления металлов из соединений другими металлами

Обновлено: 17.05.2024

Процессы восстановления металлов из руд различаются по природе восстановителя и по условиям восстановления. В качестве восстановителей применяют химические вещества ( водород, оксид углерода ( II), углерод, металлы) или электрический ток, а процесс восстановления можно проводить в растворе, в расплаве или в твердой фазе. [2]

Процессы восстановления металлов и получения нитрида титана и треххлористого титана - гетерофазные. В случае восстановления металлов фазовый переход влияет на перемешивание на стадиях ввода реагента и вывода продукта. В случае получения нитрида титана и треххлористого титана фазовый переход осуществляется на стадии вывода продукта. Сами же реакции происходят в газовой фазе. [3]

Процессы восстановления металлов из водных растворов их солей относятся к области гидрометаллургии; они осуществляются при обычных температурах, причем восстановителями могут служить или сравнительно более активные металлы, или электроны катода при электролизе. Процессы катодного восстановления металлов как из растворов, так и из расплавов называют электрометаллургическими. [4]

Процесс восстановления металлов из их соединений углеродом ( или другими восстановителями) заключается в том, что углерод ( или другой восстановитель) отдает свои валентные электроны положительно заряженным атомам металлов; последние, получив недостающие им электроны, нейтрализуются и превращаются в нейтральные атомы металлов. Для восстановления этих металлов применяется более энергичный восстановитель - электрический ток, который, как известно, представляет собой поток электронов. Указанные металлы получаются электролизом своих расплавленных соединений, на чем в дальнейшем мы еще остановимся. [5]

Процесс восстановления металла из его оксида с помощью другого металла, называется металлотермией. Если, в частности, в качестве восстановителя применяется алюминий, то процесс носит название алюминотермии. [6]

Процесс восстановления металла в активированном слое сопровождается образованием продуктов реакции, которые, достигая определенной концентрации, замедляют, а затем и останавливают его. Очевидно, что в процессе восстановления их концентрация выше всего на границе раздела раствора и активированного слоя. Поэтому при восстановлении предпочтение следует отдавать способам распыления и обливания. Восстановление в ваннах проводят в проточном растворе. [7]

Процесс восстановления металла из его окисла с помощью другого металла называется металлотермией. Если, в частности, в качестве восстановителя применяется алюминий, то процесс носит название алюминотермии. [8]

Процесс восстановления металла из его окисла с помощью другого металла называется металлотермией. Если в качестве восстановителя применяется алюминий, то процесс носит название алюминотермии. [9]

Процесс восстановления металлов из их окислов алюминием называется алюминотермией. [10]

Процесс восстановления металла из его оксида другим, более активным металлом называется металлотермией. [11]

Процессы восстановления металлов из водных растворов их солей осуществляются при обычных температурах, причем восстановителями могут служить или сравнительно более активные металлы, или же непосредственно электроны, выделяемые катодом при электролизе. При гидрометаллургическом восстановлении металлы обычно получаются в мелкораздробленном состоянии. [12]

Процессы восстановления металлов из растворов их солей электронами катода относятся уже к области электрометаллургии. [13]

Имеется группа процессов восстановления металлов и элементов, которые из-за низких температур кипения удаляются из печи в газовой фазе вместе с оксидом углерода. [15]

Восстановление металлов

процесс получения металлов из руд при помощи восстановительных реакций. Под В. м. первоначально понимались реакции получения металлов из их окислов путём применения веществ, отличающихся более высоким сродством к кислороду, чем металл. Простейший пример — получение металлического железа из его закиси:

где MeO — окисел металла, В — восстановитель. Если при этой реакции (при постоянных температуре и давлении) сумма свободных энергий Me и BO меньше, чем MeO и В, то процесс протекает слева направо с образованием металла. Процесс облегчается, если конечный продукт — металл — находится в виде раствора (твёрдого или жидкого), так как растворение сопровождается уменьшением свободной энергии. Этим объясняется, что при В. м. из некоторых особенно прочных окислов получают в качестве конечных продуктов соответствующие сплавы. Таким образом, для В. м. необходимо наличие определённого термодинамического стимула. Наряду с этим большое значение имеют и кинетические условия восстановления, которые определяются кристаллохимическими превращениями (в случае твёрдых окислов), механизмом химических реакций на границах фаз, условиями массопереноса реагентов, например диффузией (См. Диффузия).

В более общем, химическом смысле В. м. сводится к присоединению электронов к атому или группе атомов. Поэтому к В. м. относятся и процессы получения металлов электролизом из солевых расплавов или растворов на катоде, например для меди:

Наиболее важные примеры подобных процессов в технике — производство Al электролизом глинозёма из расплавов и Cu из водных растворов CuSO4. В. м. осуществляется в цветной металлургии при получении металлов из сульфидов, хлоридов и других соединений. Так как для восстановления необходимы электроны, которые отдаёт восстановитель, то восстановительные процессы неразрывно связаны с окислительными.

Лит.: Гельд П. В., Есин О. А., Процессы высокотемпературного восстановления, Свердловск, 1957; Полинг Л., Общая химия, пер. с англ., М., 1964.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Полезное

Смотреть что такое "Восстановление металлов" в других словарях:

восстановление (металлургия) — восстановление 1. Присоединение эл нов атомом, молекулой или ионом, приводящее к понижению степени окисления. 2. Отнятие и связывание кислорода, хлора и т.п. из оксидов, хлоридов и др. соединений металлов, а также из руд с помощью восстановителей … Справочник технического переводчика

ВОССТАНОВЛЕНИЕ — ВОССТАНОВЛЕНИЕ, или редукция, химический процесс, заключающийся или в отнятии кислорода от данного вещества, или в замене кислорода водородом, или в присоединении к этому веществу водорода. Если реагирующее вещество находится в виде ионов, то под … Большая медицинская энциклопедия

Восстановление — Алхимики принимали, что металлы суть тела сложные, состоящие из духа, души и тела, или ртути, серы и соли; под духом, или ртутью, они понимали не обыкновенную ртуть, а летучесть и металлические свойства, напр., блеск, ковкость; под серою (душою)… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Восстановление — [reduction; recovery] 1. Присоединение электронов атомом, молекулой или ионом, приводящее к понижению степени окисления. 2. Отнятие и связывание кислорода, хлора и т. п. из оксидов, хлоридов и других соединений металлов, а также из руд с помощью… … Энциклопедический словарь по металлургии

Восстановление (химия) — Окислительно восстановительные реакции это химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом окислителем и атомом… … Википедия

Окисление - восстановление — Окисление восстановление, окислительно восстановительные реакции, химические реакции, сопровождающиеся изменением окислительных чисел атомов. Первоначально (со времени введения в химию кислородной теории горения А. Лавуазье, конец 18 в.)… … Большая советская энциклопедия

Окисление-восстановление — окислительно восстановительные реакции, химические реакции, сопровождающиеся изменением окислительных чисел (См. Окислительное число) атомов. Первоначально (со времени введения в химию кислородной теории горения А. Лавуазье, конец 18 в.)… … Большая советская энциклопедия

Электрохимический ряд активности металлов — Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ0, отвечающих… … Википедия

металлотермическое восстановление — [metal lothermic (metallic) reduction] восстановление металлов и оксидов или других соединений, например, хлоридов, более активными металлами с выделением теплоты. Смотри также: Восстановление совместное восстановление прямое восстановление … Энциклопедический словарь по металлургии

Металлотермия

Металлотермия — восстановление металлов из их соединений другими металлами, химически значительно более активными, чем восстанавливаемые, при повышенных температурах, например, алюминотермия (алюмотермия), где восстановителем является алюминий.

Как восстановители применяют кремний (обычно в виде ферросилиция), кальций, барий, магний, натрий, литий, лантан и др.

Металлотермию используют для производства некоторых цветных и редких металлов. Выбор металла-востановителя определяется экономическими показателями и термодинамическими показателями, и сильно зависит от природы восстанавливаемого соединения.

Металлотермическому восстановлению подвергаются: оксиды, фториды, хлориды металлов и изредка сложные смеси оксидов и галогенидов, или непосредственно руды.

Выбор металла-восстановителя так же определяется желательным отсутствием сплавления его с получаемым продуктом или легкую отделяемость методами химической обработки (выщелачиванием водой, щелочами или кислотами).

Содержание

История металлотермии

Согласно замыслу одного из участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел.

Области применения

Примечания

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Металлотермия" в других словарях:

металлотермия — металлотермия … Орфографический словарь-справочник

МЕТАЛЛОТЕРМИЯ — (от металлы и греч. therme жар тепло), металлургические процессы, основанные на восстановлении металлов из их соединений (оксидов, галогенидов и др.) более активными металлами и протекающие с выделением теплоты (напр., алюминотермия,… … Большой Энциклопедический словарь

металлотермия — сущ., кол во синонимов: 1 • силикотермия (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

металлотермия — Металлургич. процессы получения металлов из их соединений (оксидов, галидов, комплексных соединений и др.) восстановлением более активными металлами (Al, Mg, Si и пр.), сопровождаемым выделением теплоты. Основоположник м. — рус. ученый Н. И … Справочник технического переводчика

металлотермия — (от металлы и греч. thérmē жар, тепло), металлургические процессы, основанные на восстановлении металлов из их соединений (оксидов, галогенидов и др.) более активными металлами и протекающие с выделением теплоты (например, алюминотермия,… … Энциклопедический словарь

металлотермия — (металл гр. therme теплота, жар) металлургические процессы восстановления металлов (и сплавов) из их соединений (напр., окислов) с использованием в качестве восстановителей других металлов, легко соединяющихся с кислородом (см. алюминотермия и… … Словарь иностранных слов русского языка

металлотермия — metalotermija statusas T sritis chemija apibrėžtis Metalų redukavimas iš jų oksidų ar halogenidų kitais metalais. atitikmenys: angl. metallothermy rus. металлотермия … Chemijos terminų aiškinamasis žodynas

Металлотермия — (от Металлы и греч. thérme теплота) процессы, основанные на восстановлении металлов из их соединений (окислов, галлоидов и др.) более активными металлами (алюминием, магнием, кремнием, условно принимаемым за металл, и др.), протекающие с… … Большая советская энциклопедия

металлотермия — металлотермия, металлотермии, металлотермии, металлотермий, металлотермии, металлотермиям, металлотермию, металлотермии, металлотермией, металлотермиею, металлотермиями, металлотермии, металлотермиях (Источник: «Полная акцентуированная парадигма… … Формы слов

металлотермия — процесс получения металлов восстановлением из оксидов, хлоридов, фторидов, комплексных соединений другими металлами (алюминий, магний, кальций, натрий). Металл восстановитель должен быть активным, т. е. иметь большое сродство к кислороду или… … Энциклопедия техники

процессы получения металлов, основанные на восстановлении их оксидов и галогенидов другими, более активными металлами; протекают с выделением тепла. С помощью М. получают такие металлы, как, напр., Ti, U, РЗЭ, Nb, Та, безуглеродистые сплавы, отличающиеся высокой чистотой (гл. обр. по углероду). Высокая чистота конечных продуктов металлотермич. восстановления обусловливает, напр., высокую пластичность полученных металлов, т. к. содержание мн. примесей в них, в первую очередь примесей внедрения, на очень низком уровне.

Металлотермич. процессы инициируются теплом. Исходным соед. для М. в осн. служат оксиды, хлориды и фториды. Хлориды и фториды обычно используют в тех случаях, когда содержание кислорода в получаемом металле (напр., Ti) должно быть ограничено либо разделение металлич. и шлаковой оксидной фаз затруднено из-за высокой хим. активности восстановленных металлов (РЗЭ). Осн. требования к исходному соед. - высокое тепловыделение при восстановлении, простота и полнота отделения исходного соед. от получаемого металла.

Р-ция металлотермич. восстановления MX + М'

На рис. 1 представлены диаграммы зависимости величин DG 0 обp оксидов, хлоридов и фторидов из простых в-в от т-ры, из к-рых видно, что среди относительно распространенных и доступных металлов наиб. прочные оксиды и галогениды образуют Al, Mg, Ca, а также щелочные металлы. Поэтому наиб. распространенные восстановители в M.-Na (реже Li), Al, Mg, Ca, иногда La и др. металлы. Соотв. М. подразделяют на натриетермию, алюминотермию, магниетермию и т. д.; к М. условно относят также и силикотермию.

Для сдвига равновесия металлотермич. восстановления и повышения теплового эффекта р-ции (как, напр., в случае восстановления алюминием СаО или ThO 2 , имеющих большее, чем у Аl 2 О 3 , абс. значение величины DG 0 обр ) используют спец. приемы - вводят добавки (напр., Si) для связывания выделяющегося металла и получают в качестве конечного продукта не индивидуальный металл, а прочный металлид (напр., силициды РЗЭ), проводят М. в вакууме, вводят добавки для связывания компонентов шлака в прочные соед. (напр., Аl 2 О 3 -в алюминаты при алюминотермии). Так, DG 0 обр силицидов РЗЭ составляет ок. Ч 270 кДж/моль, поэтому DG 0 р-ции алюминотермич. восстановления оксидов РЗЭ в присут. Si становится величиной отрицательной (рис. 2).

При проведении М. в вакууме восстанавливаемый металл переходит в пар, сдвигая тем самым равновесие р-ции вправо. Величина этого сдвига возрастает с повышением т-ры и понижением давления в системе и составляет 100-150 кДж в интервале т-р 1000-2000 К и давлении 1 Па. Напр., силикотермич. восстановление MgO (эндотермич. р-ции 2MgO + Si

Механизм металлотермич. восстановления изучен недостаточно. Гетерог. р-ции М. протекают, как правило, между жидкой и твердой (напр., алюминотермич. восстановление оксидов) или жидкой и паровой фазами (магниетермич. восстановление TiCl 4 ). Часто реагенты находятся в двух агрегатных состояниях; напр., Са при кальциетермии реагирует как в жидком, так и в парообразном состоянии.

Среди металлотермич. процессов наиб. распространена алюминотермия. Этим методом получают сплавы большинства технически важных металлов (Nb, Ti, W, Zr, РЗЭ, Сг, Ва, Са, V, Та, Sr), к-рые используют для легирования сталей, чугунов и цветных металлов и как исходные материалы для произ-ва самих металлов. Алюминотермич. процессы подразделяют на 3 осн. группы: процессы, в к-рых благодаря экзотермич. эффекту р-ции выделяется тепла больше, чем необходимо для нормального протекания р-ции (расплавления всех компонентов, разделения металлич. и шлаковой фаз в результате разности в плотностях расплавов); процессы, в к-рых тепла выделяется больше, чем необходимо для расплавления продуктов р-ции, но недостаточно для покрытия тепловых потерь; процессы, в к-рых тепло выделяется в недостаточном кол-ве для расплавления продуктов р-ции.

3009-6.jpg

Процессы первой группы проводят внепечным методом. Перемешанную шихту загружают в горн и поджигают запалом из стружки Mg. Плавку проводят как с выпуском металла, так и без (плавка на "блок"). Средняя продолжительность такого процесса (на 4-6 т шихты) 15-20 мин. Степень извлечения металла ок. 70-80%. Шлак и металл разделяют либо механически после остывания, либо путем раздельного выпуска. Внепечным методом получают легковосстанавливаемые металлы (V, Nb и др.), а также лигатуры, содержащие относительно трудновосстанавливаемые металлы.

3009-7.jpg

Рис. 2. Температурная зависимость DG 0 восстановления оксидов La и Y алюминием.

Процессы второй группы проводят также в горне. Дополнит. тепло, необходимое гл. обр. для компенсации потерь на нагрев стенок горна, получают путем введения термитных добавок-смесей порошка Аl с оксидами металлов (напр., NiO), при взаимод. к-рых выделяется большое кол-во тепла.

Процессы третьей группы проводят в электропечах, гл. обр. в дуговых сталеплавильного типа. Так, напр., лигатуры, содержащие РЗЭ, выплавляют в наклоняющейся дуговой печи. Печь разогревают до 1700-1750 °С, зажигают дугу и загружают шихту. После плавления шихты и выдержки расплав сливают в изложницу, из к-рой после отстоя и кристаллизации шлака производят выпуск лигатуры.

М а г н и е т е р м и я получила свое развитие в связи с произ-вом U путем восстановления магнием UF 4 , а также в связи с организацией пром. произ-ва Ti. Восстановление очищенного ТiСl 4 проводят в инертной атмосфере в герметичных ретортных печах с электрич. и др. видами нагрева. Производительность совр. печей ок. 4 т за один рабочий цикл. В реторту подают расплавл. Mg спец. дозатором, а затем после достижения 740-780 °С-ТiСl 4 ; периодически производят слив MgCl 2 через спец. отверстия в ниж. части реторты. Процесс оканчивают, когда израсходовано 60-70% Mg; остальной восстановитель располагается в порах образовавшейся титановой губки, что затрудняет его контакт с ТiСl 4 . Реакц. масса содержит 50-70% титановой губки, 30-35% Mg и 15-20% MgCl 2 ; ее разделяют вакуумной сепарацией, нагревая до 1100 °С. Отгоняющиеся Mg и MgCl 2 собирают в конденсаторе, представляющем собой также реторту, устанавливаемую сверху и охлаждаемую водой. После охлаждения титановую губку извлекают, а верх. реторту (конденсатор) догружают Mg и используют для след. восстановления (т. наз. оборотная реторта). Магниетермия перспективна также для получения Zr, Nb и др. металлов.

Наиб. активный восстановитель - Са. Кальциетермией получают U, Zr, Hf, Ti, РЗЭ. Т. к. применение оксидов и хлоридов U и РЗЭ затруднено, то в качестве исходного соед. для восстановления используют их безводные фториды. Кальций загружают в виде стружки. Процесс проводят до расплавления всех компонентов при т-ре до 1800 °С в герметичных электропечах и инертной атмосфере. Разделение металлич. и шлаковой фаз происходит в результате различия в их плотностях.

При кальциетермич. получении тонкодисперсных порошков Zr, Hf и Ti восстанавливают их оксиды при т-ре ок. 1100°С. Шлак отделяют путем растворения СаО в к-тах. Для удобства диспергирования Са часто используют в виде хрупкого гидрида СаН 2 , к-рый перед смешением с оксидами измельчают. Этот процесс применяют для произ-ва порошков магн. материалов SmCo 5 и Nd-Fe-B.

М. открыл Н. Н. Бекетов, в 1859-65 он показал, что Аl при высоких т-рах восстанавливает оксиды металлов (СаО, ВаО и др.) до металлов.

Лит.: Вольский А. Н., Сергиевская Е. М., Теория металлургических процессов, М., 1968; Самсонов Г. В., Перминов В. П., Магниетермия, М., 1971; Алюминотермия, М., 1978; Михайличенко А. И., Михлин Е. Б., Патрикеев Ю. Б., Редкоземельные металлы, М., 1987. Ю. Б. Патрикеев.

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Понятие о металлургии: общие способы получения металлов

Металлургия — это наука о промышленных способах получения металлов. Различают черную и цветную металлургию.

Черная металлургия — это производство железа и его сплавов (сталь, чугун и др.).

Цветная металлургия — производство остальных металлов и их сплавов.

Широкое применение находят сплавы металлов. Наиболее распространенные сплавы железа — чугун и сталь.

Чугун — это сплав железа, в котором содержится 2-4 масс. % углерода, а также кремний, марганец и небольшие количества серы и фосфора.

Сталь — это сплав железа, в котором содержится 0,3-2 масс. % углерода и небольшие примеси других элементов.

Легированные стали — это сплавы железа с хромом, никелем, марганцем, кобальтом, ванадием, титаном и другими металлами. Добавление металлов придает стали дополнительные свойства. Так, добавление хрома придает сплаву прочность, а добавление никеля придает стали пластичность.

Основные стадии металлургических процессов:

  1. Обогащение природной руды (очистка, удаление примесей)
  2. Получение металла или его сплава.
  3. Механическая обработка металла

1. Нахождение металлов в природе

Большинство металлов встречаются в природе в виде соединений. Наиболее распространенный металл в земной коре — алюминий. Затем железо, кальций, натрий и другие металлы.

2. Получение активных металлов

Активные металлы (щелочные и щелочноземельные) классическими «химическими» методами получить из соединений нельзя. Такие металлы в виде ионов — очень слабые окислители, а в простом виде — очень сильные восстановители, поэтому их очень сложно восстановить из катионов в простые вещества. Чем активнее металл, тем сложнее его получить в чистом виде — ведь он стремится прореагировать с другими веществами.

Получить такие металлы можно, как правило, электролизом расплавов солей, либо вытеснением из солей другими металлами в жестких условиях.

Натрий в промышленности получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl = 2Na + Cl2

Калий получают пропусканием паров натрия через расплав хлорида калия при 800°С:

KCl + Na = K↑ + NaCl

Литий можно получить электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl = 2Cs + CaCl2

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий получают из оксида восстановлением алюминием в вакууме при 1200 °C:

4BaO+ 2Al = 3Ba + Ba(AlO2)2

Алюминий получают электролизом раствора оксида алюминия Al2O3 в криолите Na3AlF6:

3. Получение малоактивных и неактивных металлов

Металлы малоактивные и неактивные восстанавливают из оксидов углем, оксидом углерода (II) СО или более активным металлом. Сульфиды металлов сначала обжигают.

3.1. Обжиг сульфидов

При обжиге сульфидов металлов образуются оксиды:

2ZnS + 3O2 → 2ZnO + 2SO2

Металлы получают дальнейшим восстановлением оксидов.

3.2. Восстановление металлов углем

Чистые металлы можно получить восстановлением из оксидов углем. При этом до металлов восстанавливаются только оксиды металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо получают восстановлением из оксида углем:

2Fe2O3 + 6C → 2Fe + 6CO

ZnO + C → Zn + CO

Оксиды металлов, расположенных в ряду электрохимической активности до алюминия, реагируют с углем с образованием карбидов металлов:

CaO + 3C → CaC2 + CO

3.3. Восстановление металлов угарным газом

Оксид углерода (II) реагирует с оксидами металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо можно получить восстановлением из оксида с помощью угарного газа:

3.4. Восстановление металлов более активными металлами

Более активные металлы вытесняют из оксидов менее активные. Активность металлов можно примерно оценить по электрохимическому ряду металлов:

Восстановление металлов из оксидов другими металлами — распространенный способ получения металлов. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

Активные металлы вытесняют менее активные из растворов их солей.

Например , при добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

Медь покроется белыми кристаллами серебра.

При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

CuSO4 + Fe = FeSO4 + Cu

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

3.5. Восстановление металлов из оксидов водородом

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Как правило, взаимодействие оксидов металлов с водородом протекает в жестких условиях – под давлением или при нагревании.

CuO + H2 = Cu + H2O

4. Производство чугуна

Чугун получают из железной руды в доменных печах.

Печь последовательно загружают сверху шихтой, флюсами, коксом, затем снова рудой, коксом и т.д.


1- загрузочное устройство, 2 — колошник, 3 — шахта, 4 — распар, 5 — горн, 6 — регенератор

Доменная печь имеет форму двух усеченных конусов, соединенных основаниями. Верхняя часть доменной печи — колошник, средняя — шахта, а нижняя часть — распар.

В нижней части печи находится горн. Внизу горна скапливается чугун и шлак и отверстия, через которые чугун и шлак покидают горн: чугун через нижнее, а шлак через верхнее.

Наверху печи расположено автоматическое загрузочное устройство. Оно состоит из двух воронок, соединенных друг с другом. Руда и кокс сначала поступают в верхнюю воронку, а затем в нижнюю.

Из нижней воронки руда и кокс поступают в печь. во время загрузки руды и кокса печь остается закрытой, поэтому газы не попадают в атмосферу, а попадают в регенераторы. В регенераторах печной газ сгорает.

Шихта — это железная руда, смешанная с флюсами.

Снизу в печь вдувают нагретый воздух, обогащенный кислородом, кокс сгорает:

Образующийся углекислый газ поднимается вверх и окисляет кокс до оксида углерода (II):

CO2 + С = 2CO

Оксид углерода (II) (угарный газ) — это основной восстановитель железа из оксидов в данных процессах. Последовательность восстановления железа из оксида железа (III):

Последовательность восстановления оксида железа (III):

FeO + CO → Fe + CO2

Суммарное уравнение протекающих процессов:

При этом протекает также частичное восстановление примесей оксидов других элементов (кремния, марганца и др.). Эти вещества растворяются в жидком железе.

Чтобы удалить из железной руды тугоплавкие примеси (оксид кремния (IV) и др.). Для их удаления используют флюсы и плавни (как правило, известняк CaCO3 или доломит CaCO3·MgCO3). Флюсы разлагаются при нагревании:

и образуют с тугоплавкими примесями легкоплавкие вещества (шлаки), которые легко можно удалить из реакционной смеси:

Читайте также: