Производство шаров металлических шаров

Обновлено: 24.04.2024

Изобретение относится к металлургии. Способ включает резку круглой прутковой длинномерной заготовки на мерные длины, передачу разрезанных заготовок в штамповый блок и штамповку шаров, перед резкой круглую прутковую заготовку обжимают в направлении, перпендикулярном продольной оси, с получением двух плоскостей, затем полученную плоскую заготовку подвергают периодическим пережимам в направлении, параллельном полученным плоскостям и перпендикулярном продольной оси, с образованием в этом направлении выпуклых участков поверхности, разрезают полученную полосу на заготовки по поверхностям в местах пережимов в направлении, перпендикулярном плоскостям и продольной оси, причем заготовкам придают форму, удлиненную в направлении, параллельном полученным плоскостям и перпендикулярном продольной оси, и последующую штамповку осуществляют с уменьшением размера заготовки в указанном направлении. Параллельные плоскости на прутковой заготовке получают продольной прокаткой, осадкой или кузнечной протяжкой. Техническим результатом является повышение точности размеров получаемых изделий. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области металлургии, а именно к технике и технологии производства металлических шаров.

Известны способы получения сферических тел из расплава, например, описанные в международной заявке [1]. Недостатком способов является низкая производительность из-за большой продолжительности времени кристаллизации расплава. Известны также способы получения металлических шаров из предварительно отлитых и деформированных цилиндрических заготовок, описанные в книге [2], а также в патентах 3.

Так, в охранных документах СССР, США и Великобритании 3 описан способ винтовой прокатки шаров из круглых прутков, который предусматривает вращение заготовки вокруг ее оси и ее прокату в винтовом калибре. Подобный способ нашел широкое применение при получении шаров винтовой прокаткой на отечественных и зарубежных предприятиях и считается одним из самых производительных. Однако существенным его недостатком является жесткая схема напряженного состояния с преобладанием растягивающих напряжений, что приводит к получению дефектов в виде несплошностей внутри объема шара, а также к возможности его разрушения в результате воздействия термических или иных напряжений. Подобным же недостатком обладает схема деформации в конических валках, снабженных дугообразными канавками, предложенная в патенте Швейцарии [6].

Иная схема деформации принята при получении шаров штамповкой заготовок, полученных из длинномерных прутков. Эта схема характеризуется преобладанием сжимающих напряжений и может быть применена в отношении металлов, не обладающих высокой пластичностью. Так, в патенте ФРГ [7] предложена схема получения шаров из отрезков проволоки деформацией их пуансоном, имеющим возможность возвратно-поступательного перемещения от кулачкового привода. Недостатком способа является нерешенность вопроса резки заготовки на мерные длины и формирования профиля торца, пригодного для формования полностью заполненных полюсов шара.

Наиболее близким по технической сущности является способ, описанный в патентной заявке Великобритании [8], выбранный в качестве прототипа. Способ включает резку круглой прутковой длинномерной заготовки на мерные длины, передачу разрезанных заготовок в штамповый блок и штамповку шаров.

Недостатком способа по прототипу является невозможность правильного оформления шара за один переход штамповки. Многочисленные эксперименты, выполненные как авторами данного изобретения [9], так и другими исследователями [2] , показывают, что при штамповке цилиндрической заготовки с плоскими торцами добиться полного заполнения металлом всей гравюры штампа без переполнения или незаполнения отдельных его областей практически невозможно. При безоблойной штамповке незаполненными остаются области, примыкающие к полюсам шара, что приводит к необходимости реализации создания большого подпора металла при облойной штамповке, последняя схема требует приложения больших напряжений, усилий и в целом повышенных энергозатрат, а также применения операции вырубки облоя, что не позволяет обеспечить высокий выход годного.

Предлагается осуществить резку круглой прутковой длинномерной заготовки на мерные и передавать полученные разрезанные заготовки в штамповый блок, в котором штамповать шары. При этом в отличие от прототипа предлагается перед резкой круглую прутковую длинномерную заготовку обжимать в направлении, перпендикулярном продольной оси, с получением двух плоскостей. Затем полученную плоскую заготовку подвергают периодическим пережимам в направлении, параллельном полученным плоскостям и перпендикулярном продольной оси, с образованием в этом направлении выпуклых цветков поверхности. Затем выполняют разрезку полученной полосы на заготовки по поверхностям в местах пережимов в направлении, перпендикулярном плоскостям и продольной оси, причем заготовкам придают форму, удлиненную в направлении, параллельном полученным плоскостям и перпендикулярном продольной оси, последующую штамповку осуществляют с уменьшением размера заготовки в указанном направлении.

Обжатие круглой заготовки для создания двух плоскостей может производиться методами осадки, прокатки на гладких валках или методом кузнечной протяжки.

Сказанное поясняется схемами, изображенными на фиг. 1-5. В качестве заготовки используют пруток круглого поперечного сечения (фиг. 1), который обжимают (фиг. 2) в направлении B, перпендикулярном продольной оси заготовки AA, с получением двух плоскостей C. Боковая поверхность заготовки D унаследует от цилиндрической поверхности круглого прутка выпуклую форму, что является существенным фактором, позволяющим получить полное заполнение гравюры штампов в районе будущих полюсов шара. Величина обжатия зависит от способа его осуществления (прокатка, кузнечная протяжка). При прокатке соотношение между вытяжкой и уширением зависит от условий трения и от диаметра валков. Аналогичный показатель при кузнечной протяжке зависит от величины подачи, обжатий, условий трения. Поэтому величина обжатия является предметом инженерных расчетов и может быть рекомендована только для частного случая деформации.

Следующим этапом способа является осуществление периодических пережимов в направлении оси E (фиг. 3), параллельной полученным на заготовке плоскостям C и перпендикулярной продольной оси AA, с образованием в этом направлении выпуклых цветков поверхности F. Оформление этих выпуклых участков позволяет предварительно сформировать контур будущего шара и облегчить заполнение гравюры в районе полюсов. Здесь специально следует отметить, что выпуклость боковой поверхности будущего шара к концу этого этапа сформирована в двух взаимно перпендикулярных направлениях, что создает условия для наилучшего заполнения гравюры при последующей штамповке. Параметры кривизны поверхности заготовки задаются с учетом объема шара и характера течения металла при последующих операциях. Этот характер обусловлен влиянием коэффициента трения, распределением температур, анизотропией свойств металла и др.

Затем выполняют разрезку полученной полосы на заготовки по поверхностям в местах пережимов в направлении B, перпендикулярном плоскостям и продольной оси (фиг. 4), причем заготовкам придают форму, удлиненную в направлении E, параллельном полученным плоскостям и перпендикулярном продольной оси, последующую штамповку осуществляют с уменьшением размера заготовки в указанном направлении (фиг. 5). Изложенные приемы отличаются от используемых традиционно приемов тем, что обычно (в том числе в прототипе) длинномерную заготовку режут на мерные длины таким образом, что направление длинной оси мерной заготовки совпадает с направлением оси длинномерной заготовки. В предлагаемой технологической схеме эти направления взаимно перпендикулярны.

На фиг. 1 и 2 изображены соответственно исходная круглая заготовка и полученные на ней продольные плоскости. На фиг. 3-5 изображены этапы деформации заготовки: получение пережимов, разрезки и уменьшения размера заготовки до образования шара.

Способ осуществляется следующим образом. Для получения шаров диаметром 10 мм используют длинномерную заготовку диаметром 11,6 мм. Прокаткой на прокатном стане приток обжимают в направлении, перпендикулярном продольной оси заготовки, с получением двух плоскостей при толщине 5,5 мм. Боковая поверхность заготовки унаследует от цилиндрической поверхности круглого прутка выпуклую форму, характеризуемую максимальной шириной 14,5 мм и минимальной шириной по контактной поверхности 9,0 мм.

Следующим этапом способа является осуществление периодических пережимов на глубину 3,0 мм в направлении оси, параллельной полученным на заготовке плоскостям и перпендикулярной продольной оси, с образованием в этом направлении выпуклых участков поверхности.

Затем выполняют разрезку полученной полосы на заготовки по поверхностям в местах пережимов в направлении, перпендикулярном плоскостям и продольной оси, причем заготовкам придают форму, удлиненного в направлении, параллельном полученным плоскостям и перпендикулярном продольной оси. Окончательный размер заготовок под штамповку составил 7,0х15 мм. Последующую штамповку осуществляют с уменьшением размера заготовки в указанном направлении с получением шара диаметром 10 мм. Колебания размеров шара по диаметру составили 0,1 мм или 2%.

Для сравнения получали шар резкой прутка на мерные длины и получением цилиндрических заготовок, имеющих размеры: диаметр 7,0 мм и длину 13,6 мм с осью цилиндра, ориентированных вдоль оси прутка.

Полученные цилиндры, имеющие плоские торцы, подвергали безоблойной штамповке в штампе со сферической гравюрой до момента начала образования заусенца. Получали шар диаметром 10 мм, у которого в районе полюса имелась плоская поверхность, что говорило о неполном заполнении гравюры штампа. Шар имел максимальный диаметр 10,8 мм по экватору и минимальный размер (высоту) 9,2 мм от полюса до полюса. Колебания размеров шара составили 16%.

По предлагаемому методу форма торцов предназначенной для штамповки заготовки приближена к радиальной, что способствует более полному заполнению гравюры штампа и обеспечивает большую точность оформления изделия. Сравнение точности получения заготовки по предлагаемому методу и методу по прототипу покрывает улучшение этого показателя на 14%.

Техническим результатом от применения заявляемого способа является повышение точности получаемых изделий.

Источники информации 1. Международная заявка PCT (WO) N 89/02324. Способ и устройство для получения сферических тел. МКИ B 21 H 1/12. C 22 C, B 29 B 9/00, C 21 D 1/62, C 21 B 7/00, C 21 C 5/42, B 22 F 1/00. Заявл. 21.09.87. опубл. 23.03.89.

2. Северденко А.П., Мурac B.C., Олендер Р.А. Штамповка шариков. Минск: Наука и техника, 1972, 208 с.

3. Заявка Великобритании N 1389417. Установка для получения металлических шаров из штанг или прутков. МКИ B 21 H 1/16, НКИ ВЗМ. Опубл. 05.04.75.

4. Патент США N 3621692. Устройство для формовки и калибровки шариков. МКИ B 21 H 1/14. 3аявл. 12.06.69, опубл. 23.11.71.

5. А. С. СССР N 1794566. Способ изготовления шариков поперечно-винтовой прокаткой. МКИ B 21 H 1/14. 3аявл. 30.03.89. опубл. 15.02.93, БИ N 06.

6. Патент Швейцарии N 680774. Способ и устройство для формования почти шаровидных тел. МКИ B 21 H 1/14, B 29 C 67/24, B 44 C 3/04. Заявл. 26.02.90, опубл. 13.11.92.

7. Патент ФРГ N 3825128. Пресс для осадки кусков проволоки определенной длины для производства шаров. МКИ B 21 J 9/06. Заявл. 23.07.88, опубл. 25.01.90.

8. Заявка Великобритании N 1459698. Пресс для производства шаров. /Messerschmidt МКИ B 21 K 1/02, B 21 J 9/18, НКИ B3H, B3W. Заявл. 06.02.74. опубл. 22.12.76.

9. Логинов Ю. Н. , Буркин С.П., Луканихин Н.Ю. Исследование штамповки шаров из цилиндрических заготовок. Известия вузов. Черная металлургия, 1998, N 10, с 34-37.

1. Способ производства шаров, включающий резку круглой прутковой длинномерной заготовки на мерные длины, передачу разрезанных заготовок в штамповый блок и штамповку шаров, отличающийся тем, что перед резкой круглую прутковую длинномерную заготовку обжимают в направлении, перпендикулярном продольной оси, с получением двух плоскостей, затем полученную плоскую заготовку подвергают периодическим пережимам в направлении, параллельном полученным плоскостям и перпендикулярном продольной оси, с образованием в этом направлении выпуклых участков поверхности, разрезают полученную полосу на заготовки по поверхностям в местах пережимов в направлении, перпендикулярном плоскостям и продольной оси, причем заготовкам придают форму, удлиненную в направлении, параллельном полученным плоскостям и перпендикулярном продольной оси, и последующую штамповку осуществляют с уменьшением размера заготовки в указанном направлении.

2. Способ по п.1, отличающийся тем, что две параллельные плоскости на круглой прутковой длинномерной заготовке получают продольной прокаткой.

3. Способ по п.1, отличающийся тем, что две параллельные плоскости на круглой прутковой длинномерной заготовке получают осадкой или кузнечной протяжкой.

Применение мелющих шаров в барабанно-шаровых мельницах

Во время добычи горнорудных полезных ископаемых образуется большое количество крупных блоков неправильной формы с острыми рваными краями. Их перед использованием необходимо измельчить. Для измельчения обычно применяются барабанно-шаровые мельницы, в которых обогащение материала осуществляется с помощью небольших стальных шариков. Что собой представляют мелющие шары? Какими нормами ГОСТ регулируется их изготовление?

шары мелющие

Зачем нужны мелющие шары

Производство мелющих шаров регулируется государственными нормативами. В ГОСТ 7524 перечислены основные требования и ряд рекомендаций относительно транспортировки, хранения, контроля, приемки.

Основная сфера применения подобных шаров — это измельчение хрупких, сыпучих, крошащихся материалов с помощью барабанно-шаровых мельниц. Это может быть уголь, цемент, известь, стекло, красящие вещества.

Большинство шариков делаются из стальных сплавов либо из чугуна. Также их делают из силикатов, фарфора, уралита, отходов металлургического производства.

По ГОСТ мелющие стальные шары бывают разного диаметра. Каждый из шариков имеет свою массу: от 14 г до 8 кг. Большое распространение получили шары средних размеров (6-8 см) — они будут обеспечивать качественный помол. Более крупные могут использоваться для измельчения крупной породы. В таком случае в камеру для помола добавляются одновременное крупные и средние шарики. Крупные разбивают основной материал на несколько фрагментов, а маленькие измельчают их до однородной крошки.

Мелющие шары трескаются достаточно редко — но если это произойдет, то испортившуюся деталь всегда можно заменить на новую с минимальными финансовыми потерями.

Барабанно-шаровые мельницы

Барабанно-шаровые мельницы

Основные сферы применения подобных мельниц — горнорудная промышленность, химическая отрасль, производство цемента, создание керамики. Мельницы обладают массой плюсов — небольшой расход электричества, высокое качество измельчения, простота загрузки барабана.

  • Мельницы имеют вид большого электрического барабана, который вращается вокруг своей оси во время работы. Обычно имеют крупные размеры, а монтируются они на территории закрытых индустриальных цехов. Хотя встречаются и компактные установки-лаборатории.
  • Для помола в мельницы загружаются шарики и материал, который подлежит измельчению.
  • Если материал имеет большие размеры, то в таком случае в мельницу могут одновременно загружаться крупные и мелкие шарики. Крупные детали разбивают материал на небольшие фрагменты, а мелкие выполняют непосредственно измельчение.
  • С физической точки зрения помол осуществляется так: после загрузки запускается электромотор, который вращает барабан. Во время вращения мелющие тела движутся по круговой траектории вместе с барабаном (то есть они поднимаются вверх под действием центробежной силы). Однако после небольшого подъема шарики падают вниз и ударяются о материал, что и приводит к его измельчению.

шары стальные мелющие

Производство стальных шаров

Производство деталей для помола регулируется международным стандартом ГОСТ 7524. В соответствии с этим стандартом для производства шаров можно применять следующие технологии — литье, ковка, штамповка, а также винтовой прокат. Самой популярность технологией является прокатка шаров на специальных станах. Основные плюсы прокатки — низкая себестоимость, большой выход, высокая скорость работ, небольшие расходы стали.

Прокатка осуществляется так:

  • Исходное сырье в виде круглых стальных заготовок нагревают до температуры 900-1200 градусов. Нагрев осуществляется в специальных электрических либо газовых печах индукционного типа.
  • При выборе температурного режима нагрева нужно учесть состав исходных заготовок, поскольку присадки могут изменять температуру плавления как в большую, так и в меньшую сторону.
  • Во время нагрева необходимо следить за характером распространения тепла — нагрев должен осуществляться равномерно, чтобы избежать локального перегрева материала.
  • После нагрева стальные заготовки подаются на прокатные валки. Здесь выполняется две операции — формовка полноценных изделий из заготовок, разделение шаров на группы.
  • На завершающем этапе выполняется закалка шарообразных деталей — это позволяет улучшить прочность, твердость шариков. Для закалки используются специальные барабаны, а длительность обработки также зависит от состава заготовки.

Требования к шарам согласно ГОСТ

  • Детали общего назначения, обладающие стандартной прочностью.
  • Обладающие повышенной прочностью. Используются для измельчения крупных горнорудных блоков неправильной формы.
  • Специального назначения, обладающие высокой прочностью. Используются только для помола цемента, огнеупоров, руд цветных металлов.
  • Обладающие сверхвысокой прочностью. Применяются для помола исключительно черных металлов.

По ГОСТ диаметр шаров от 1,5 до 12 сантиметров. Допускаются небольшие отклонения (но не более 5 миллиметров в рамках одной партии). Объем таких деталей — от 1,5 до 1000 кубических сантиметров (чем больше диаметр, тем больше объем).

Плотность материала должна составлять от 7,7 до 8 грамм на кубический сантиметр (идеальный показатель — 7,85 г на куб. см). С учетом плотности материала вес мелющего шара от 17 грамм до 8 килограмм.

Для производства применяют низко- и высоколегированную сталь, а также чугун. Максимальное содержание углерода — 0,7%. Рекомендуется использовать сталь с большим содержанием хрома, никеля — этот материал обладает высокой устойчивостью к коррозии.

производство мелющих шаров

Контроль качества и транспортировка

ГОСТ 7524 контролирует также ряд смежных вопросов. Проведение контрольных измерений, транспортировка, хранение, приемка материалов. По ГОСТ геометрические характеристики шарообразных изделий определяются производителем с помощью замеров, производимых штангенциркулем.

Для проведения замеров берутся две зоны, которые находятся по разные стороны друг от друга. Именно на основании замеров этих участков определяются геометрические характеристики (диаметр + длина отдельных секторов). Для определения дефектов достаточно замеров и внешнего осмотра.

По умолчанию для транспортировки нужно использовать железнодорожный транспорт. Однако по предварительной договоренности исполнитель может использовать автомобильный транспорт. Для автомобильной транспортировки шары необходимо расфасовать в специальные ящики. Сами ящики необходимо прочно прикрепить к грузовику, чтобы шары не рассыпались во время перевозки.

Приемка товара осуществляется партиями; максимальный размер одной партии составляет 150 тонн. В каждой партии должны быть шары одного размера и одной группы. Партия должна иметь надлежащее документальное оформление.

В сопровождающем документе обязательно должна быть указана следующая информация — название, товарный знак, номер партии, результаты контрольных замеров, группа.

Хранить шарики можно в сухом помещении без доступа воды и химических реагентов. Срок хранения в большинстве случаев не ограничен.

мелющие тела

Заключение

Мелющие шары — компактные шарообразные изделия, которые делаются из стальных или чугунных сплавов. Диаметр — от 1,5 до 12 см. Масса — от 14 г до 8 кг. Объем — от 1,5 до 1000 кубических сантиметров. Связь между этими параметрами линейная — чем выше будет диаметр, тем соответственно выше будет масса и объем шариков. Плотность каждого шара является фиксированной и находится в пределах от 7,7 до 8 грамм на кубический сантиметр.

Основная сфера применения мелющих шариков — это измельчение сыпучих материалов и горнорудных полезных ископаемых в специальных барабанных мельницах.

Способ производства стальных мелющих шаров

Способ производства стальных мелющих шаров

Изобретение относится к изготовлению мелющих шаров. Осуществляют нагрев непрерывнолитой заготовки, прокатку на сортовом стане горячей прокатки круглых заготовок соответствующего размера, последующий их нагрев в индукционном устройстве, прокатку из них шаров на стане поперечно-винтовой прокатки при температуре 950-1050°C, подстуживание шаров перед закалкой, закалку и самоотпуск шаров в контейнерах. Изготавливают квадратную непрерывнолитую заготовку сечением (100-150)×(100-150) мм. Нагрев круглых заготовок производят в индукционном устройстве до температуры на выходе из индукторов 1070-1140°C. Подстуживание шаров до температуры закалки 840-900°C осуществляют в подстуживающем барабане со скоростью его вращения в диапазоне 6,0-22,0 об/мин с выравниванием температуры шаров по сечению за счет вращения шаров в барабане в течение менее 2 мин. Закалку шаров производят в закалочном барабане со скоростью его вращения в диапазоне 0,4-2,5 об/мин проточной водой температурой 25-42°C до температуры шаров после закалки 125-160°C. В результате повышается эксплуатационная стойкость шаров, обеспечивается равномерная твердость по сечению шара, высокая твердость на его поверхности и в центральной зоне и исключается образование трещин. 2 з.п. ф-лы, 3 табл.

Изобретение относится к металлургии, в частности к изготовлению мелющих шаров из конструкционной углеродистой, низколегированной и легированной марок стали на стане поперечно-винтовой прокатки.

Известен способ изготовления шаров из низколегированного чугуна с шаровидной формой графита, включающий выплавку чугуна, отливку прутков, прокатку их на стане поперечно-винтовой прокатки, изотермическую закалку с последующим отпуском при температуре 280-320°C (Патент РФ 2082530, МПК B21H 1/14, C22C 37/10, 27.06.1997 г.).

Недостатком известного способа является то, что не обеспечивается разница между твердостью поверхности и ½ радиуса в пределах 5 ед. HRC и, как следствие, ниже износостойкость и ударная стойкость; другим недостатком является более сложная и затратная технология термообработки шаров: необходимость наличия оборудования для проведения изотермической закалки в расплаве солей и отпуска в проходном закалочно-отпускном агрегате для обеспечения требуемой твердости шаров.

Наиболее близким по технической сущности к предложенному изобретению является способ изготовления мелющих шаров, включающий нагрев заготовки, прокатку, сортировку, охлаждение в процессе гидротранспортирования движущимся потоком воды с избыточным статическим давлением, охлаждение в проточной воде до температуры самоотпуска в наклонном желобе в процессе их перемещения в накопительный бункер и самоотпуск в накопительном бункере (Авторское свидетельство СССР 1027244, МПК C21D 9/36, C21D 1/02, 07.07.1983 г.).

Недостатком известного способа является более сложный технический процесс охлаждения шаров, необходимость использования подачи воды высокого давления для закалки шаров, отсутствие устройств для выравнивания температуры шара перед закалкой и, как следствие, неравномерность твердости по сечению шаров, высокая температура самоотпуска (350°C), которая может привести к снижению твердости шаров.

Техническим результатом изобретения является повышение эксплуатационной стойкости шаров, получение равномерной твердости по сечению шара, высокой твердости как на поверхности шаров, так и в центральной зоне, аналогичной объемной твердости, без образования трещин.

Технический результат достигается тем, что в способе производства стальных мелющих шаров диаметром 25-60 мм, включающем нагрев непрерывнолитой заготовки, прокатку на сортовом стане горячей прокатки круглых заготовок соответствующего размера, последующий их нагрев в индукционном устройстве, прокатку из них шаров на стане поперечно-винтовой прокатки при температуре 950-1050°C, подстуживание шаров перед закалкой, закалку и самоотпуск шаров в контейнерах, согласно изобретению изготавливают квадратную непрерывнолитую заготовку сечением (100-150)×(100-150) мм из стали со следующим соотношением элементов: 0,6-1,05% C, 0,15-2,0% Si, 0,2-1,2% Mn, 0,03-1,5% Cr, 0,03-0,40% Cu, Fe и неизбежные примеси - остальное, при этом углеродный эквивалент составляет 0,7-1,4%; нагрев круглых заготовок производят в индукционном устройстве до температуры на выходе из индукторов 1070-1140°C; подстуживание шаров до температуры закалки 840-900°C осуществляют в подстуживающем барабане со скоростью его вращения в диапазоне 6,0-22,0 об/мин с выравниванием температуры шаров по сечению за счет вращения шаров в барабане в течение менее 2 мин; закалку шаров производят в закалочном барабане со скоростью его вращения в диапазоне 0,4-2,5 об/мин проточной водой температурой 25-42°C до температуры шаров после закалки 125-160°C.

Технический результат достигается также тем, что в подстуживающий барабан дополнительного подают воздух для подстуживания шаров до температуры закалки, а для закалки шаров используют воду из оборотного цикла.

Сущность изобретения заключается в следующем.

Использование для производства шаров квадратной непрерывнолитой заготовки сечением (100-150)×(100-150) мм обеспечивает минимальную ликвацию химических элементов в непрерывнолитой заготовке при разливке стали в связи с высокими скоростями кристаллизации и малой продолжительностью затвердевания; минимальный уровень затрат по сквозному переделу от стали до готового шара. Использование непрерывнолитых заготовок больших размеров приведет к неоднородности химического состава стали и, как следствие, к большей неоднородности твердости готовых шаров в партии и различной их стойкости. При использовании непрерывнолитой заготовки больших размеров потребуются дополнительные технические мощности и затраты для обеспечения производства подката для шаров диаметром 25-60 мм.

Заявляемый химический состав стали позволяет осуществлять разливку стали в непрерывнолитую заготовку сечением (100-150)×(100-150) мм, обеспечивать высокую твердость как поверхности, так и внутренней зоны готовых шаров, а также позволяет перекатывать на шары отсортировку с качественных высокоуглеродистых марок стали, повышая себестоимость проката в целом по производству.

Заявляемый химический состав стали подобран исходя из следующих предпосылок.

Нижний предел массовой доли углерода (0,6%) принят исходя из необходимости обеспечения заданной минимальной прокаливаемости и твердости шаров при термообработке, верхний предел (1,05%) определяется технологической пластичностью при прокатке шаров и их стойкостью к раскалываемости при эксплуатации шаров. При концентрации углерода в стали менее 0,6% твердость шаров снижается ниже требуемого уровня, а при увеличении концентрации углерода более 1,05% повышается склонность их к трещинообразованию.

Ограничения по массовой доле кремния обусловлены его влиянием на повышение прочности стали, в том числе при ударных нагрузках, и на прокаливаемость стали. При массовой доле кремния менее 0,15% его влияние на прочность стали значительно снижается, а при массовой доле более 2,0% повышается склонность к трещинообразованию при закалке шаров.

Соотношение марганца выбрано, исходя из его влияния на прочность и твердость шаров, в том числе с учетом углеродного эквивалента стали. При массовой доле марганца менее 0,2% его влияние на прочность стали неэффективно, а при величине более 1,2% повышается склонность шаров к трещинообразованию при закалке и раскалываемости при эксплуатации шаров.

Массовая доля хрома от 0,1 до 1,5% позволяет повысить прокаливаемость стали и твердость шаров. Увеличение массовой доли хрома более 1,5% может привести к трещинообразованию при закалке шаров. При массовой доле хрома менее 0,03% его влияние на твердость не проявляется.

Массовая доля меди в установленном диапазоне позволяет обеспечивать необходимую твердость шаров. Повышение меди более 0,40% приведет к образованию неметаллических включений и разрывов по границам зерен в микроструктуре готовых шаров, что отрицательно влияет на их эксплуатационные характеристики. При массовой доле меди менее 0,03% ее влияние на твердость не проявляется.

Ограничение величины углеродного эквивалента в пределах 0,7-1,4% позволяет гарантированно обеспечивать требуемую твердость шаров согласно нормативной документации. Отклонение от заданного интервала данной характеристики приведет к снижению уровня твердости (при углеродном эквиваленте менее 0,7%) или к закалочным трещинам и снижению стойкости шаров (при углеродном эквиваленте более 1,4%).

Нагрев круглых заготовок производят в индукционном устройстве до температуры на выходе из индукторов 1070-1140°C, что обеспечивает прогрев заготовки по всему сечению; перепад температур по длине и сечению заготовки, достаточный для обеспечения начальной и рабочей температуры прокатки шаров в валках стана. Снижение температуры нагрева круглых заготовок ниже 1070°C приведет к дефектам поверхности на готовых шарах, а также к преждевременному износу или поломке рабочего инструмента, к аварийной остановке прокатного стана. Повышение температуры нагрева круглых заготовок выше 1140°C приведет к повышению температуры перед подстуживающим барабаном и далее не позволит обеспечить необходимую температуру начала закалки шаров.

Прокатку шаров на стане поперечно-винтовой прокатки производят при температуре 950-1050°C, позволяющей обеспечивать количество металла в очаге деформации строго согласно калибровкам и получение готового профиля шаров без дефектов формы. Отклонение от указанного интервала температур приведет к неправильному формоизменению при деформации заготовки в клети ШПС, получению дефектов сортамента (формы и размеров) и к нарушению исходной температуры закалки шаров.

Подстуживание шаров до температуры закалки 840-900°C в подстуживающем барабане позволяет обеспечить требуемую температуру начала закалки. Отклонение от указанного диапазона температур как выше 900°C, так и ниже 840°C не позволяет начать закалку шаров с температур, обеспечивающих полную закалку, при неполной закалке образуется смешанная структура троостита и мартенсита или бейнита и мартенсита, что снижает твердость шаров ниже установленного норматива.

Вращение шаров в подстуживающем барабане по внутренней направляющей барабана со скоростью в диапазоне 6,0-22,0 об/мин позволяет выравнять температуру шаров и создать условия для равномерной закалки шаров по сечению шара. Снижение скорости вращения барабана менее 6,0 об/мин приведет к уменьшению скорости охлаждения шаров и, как следствие, росту аустенитного зерна и получению грубой игольчатой (зерно мартенсита 11 балла и более) исходной структуры шаров перед закалкой. Увеличение скорости вращения подстуживающего барабана выше 22,0 об/мин приведет к увеличению температуры шаров перед закалкой и, как следствие, к неполной закалке шаров и необеспечению установленного норматива по твердости шаров.

Подстуживание шаров в подстуживающем барабане в течение менее 2 мин позволяет ограничить рост зерна с температуры конца прокатки, что положительно сказывается на дисперсности мартенситной структуры шаров после закалки и обеспечивает высокую износостойкость шаров. Увеличение времени нахождения шаров в подстуживающем барабане более 2 мин приведет к получению неудовлетворительной исходной структуры шаров перед закалкой с зерном мартенсита 11 балла и более.

Дополнительная подача воздуха в подстуживающий барабан для подстуживания шаров до температуры закалки позволяет обеспечивать необходимую температуру закалки для исходной круглой заготовки с заявленным диапазоном химического состава.

Экспериментально установлено, что закалка шаров в закалочном барабане должна осуществляться со скоростью его вращения в диапазоне 0,4-2,5 об/мин проточной водой температурой 25-42°C до температуры шаров после закалки 125-160°C - это в свою очередь позволяет сформировать равномерную структуру мартенсита отпуска, обеспечить твердость шаров в требуемом диапазоне.

Уменьшение скорости закалочного барабана менее 0,4 об/мин приведет к увеличению времени нахождения шаров в охлаждающей среде, снижению температуры шара на выходе из закалочного барабана и, как следствие, к нарушению режима самоотпуска шаров, что отрицательно скажется на эксплуатационных характеристиках шаров. Увеличение скорости закалочного барабана более 2,5 об/мин приведет к получению недопустимо высокой температуры шаров после закалки, что снизит твердость шаров менее установленного норматива.

Снижение температуры воды во время закалки менее 25°C приведет к появлению закалочных трещин, повышение температуры воды выше 42°C уменьшит скорость закалки и не позволит получить необходимую мартенситную структуру шаров.

Использование для закалки шаров проточной воды оборотного цикла позволяет минимизировать затраты на подготовку охлаждающей среды.

Повышение температуры закалки выше установленной 160°C приведет к образованию в шарах бейнитной структуры с пониженной твердостью, неоднородности твердости по сечению шара и, как следствие, несоответствию твердости шаров требуемому нормативу. Снижение температуры закалки ниже 125°C приведет к образованию в шарах закалочных трещин.

Опробование предлагаемого способа поясняется примером.

Непрерывнолитую заготовку (НЛЗ) сечением 106×106 мм стали марки Ш3 с химическим составом: С=0,82%, Si=0,20%, Mn=0,51%, Cr=0,08%, Cu=0,17%; Fe и неизбежные примеси - остальное, углеродный эквивалент 0,93%, прокатывали на сортовом стане горячей прокатки в круглые заготовки диаметром 40 мм. После этого круглые заготовки нагревали в индукционной установке до температуры на выходе 1100°C, прокатывали на шаропрокатном стане (ШПС) поперечно-винтовой прокатки 20-60 при температуре 980°C на шар диаметром 40 мм. Далее производили подстуживание шаров в подстуживающем барабане до температуры закалки 870°C со скоростью вращения барабана 6,6 об/мин с самопроизвольным перемещением шаров по внутренней направляющей барабана и их вращением в течение 70 с. Затем по наклонному желобу шары поступали в закалочный барабан, установленный в камере с проточной водой (использовалась осветленная вода из оборотного цикла температурой 30°C) и вращающийся со скоростью 0,9 об/мин. Температура шаров после закалки составила 140°C. Из верхнего положения закалочного барабана шары сбрасывались на широкий наклонный желоб и по нему скатывались в устройство вертикального транспортера, по которому попадали в специальные контейнеры для самоотпуска. Самоотпуск шаров происходил в течение 16 часов. Твердость шаров составила: с поверхности 60 ед. HRC, на расстоянии ½ радиуса - 58 ед. HRC. Выход годного составил 100% (без учета технически обоснованных технологических отходов).

Химический состав сталей приведен в таблице 1.

Варианты реализации предложенного способа и показатели их эффективности приведены в таблицах 2 и 3 соответственно.

Определение твердости шаров на поверхности и на глубине ½ радиуса шара проводили в соответствии с требованиями ГОСТ 9013.

Результаты испытаний показали, что предлагаемый способ производства стальных мелющих шаров выбранного химического состава (варианты №1-5) обеспечивает получение готовых шаров с твердостью, соответствующей группе 4 по ГОСТ 7524, при этом закалочные трещины на поверхности шаров отсутствуют. При отклонениях параметров от предложенных режимов (режимы №6, 7) не удается достигнуть требуемого уровня твердости шаров, на шарах выявляются закалочные трещины.

Применение предлагаемого способа изготовления мелющих шаров обеспечивает получение шаров с высокой износостойкостью, однородной структурой отпущенного мартенсита, с минимальным разбросом твердости шаров по сечению, высокой ударной стойкостью, без закалочных трещин, при этом способ является простым в управлении, компактным и высокопроизводительным и позволяет производить самоотпуск шаров в контейнерах без использования агрегатов для отпуска шаров.




1. Способ производства стальных мелющих шаров диаметром 25-60 мм, характеризующийся тем, что изготавливают квадратную непрерывнолитую заготовку, осуществляют ее нагрев и прокатку на сортовом стане горячей прокатки в круглую заготовку соответствующего размера, производят последующий нагрев круглой заготовки в индукционном устройстве, прокатку из нее шаров на стане поперечно-винтовой прокатки при температуре 950-1050°C, подстуживают шары перед закалкой, осуществляют их закалку и самоотпуск в контейнерах, при этом квадратную непрерывнолитую заготовку изготавливают сечением (100-150)×(100-150) мм из стали со следующим соотношением элементов, мас. %:

углерод 0,6-1,05
кремний 0,15-2,0
марганец 0,2-1,2
хром 0,03-1,5
медь 0,03-0,40
железо и неизбежные примеси остальное


причем углеродный эквивалент составляет 0,7-1,4%, при этом нагрев круглых заготовок в индукционном устройстве производят до температуры на выходе из индукторов 1070-1140°C, подстуживание шаров осуществляют до температуры закалки 840-900°C в подстуживающем барабане со скоростью его вращения в диапазоне 6,0-22,0 об/мин с выравниванием температуры шаров по сечению за счет вращения шаров в барабане в течение менее 2 мин, а закалку шаров производят в закалочном барабане со скоростью его вращения в диапазоне 0,4-2,5 об/мин проточной водой температурой 25-42°C до температуры шаров после закалки 125-160°C.

2. Способ по п. 1, отличающийся тем, что в подстуживающий барабан дополнительно подают воздух для подстуживания шаров до температуры закалки.

3. Способ по любому из пп. 1 или 2, отличающийся тем, что для закалки шаров используют воду из оборотного цикла.

Шары стальные мелющие: назначение, группы твердости, производители

Мелющие шары предназначены для эксплуатации в цилиндрических мельницах при измельчении горной породы, при приготовлении компонентов строительных смесей. Различаются по диаметру и характеристикам твердости, определяющим срок службы и эффективность эксплуатации при работе с различными материалами.

Шары мелющие

Стальные мелющие шары

Технология изготовления

Для изготовления помольных шаров применяется полнотелый круглый прокат легированных сталей инструментального типа. На начальном этапе прокат разогревается до необходимой температуры, обеспечивающей эластичность стали. Далее кругляк делится на фрагменты необходимой длины. Нагретые фрагменты попадают под пресс, где им и придается необходимая шарообразная форма. После готовности изделия проходят дополнительную термическую обработку для закаливания и повышения жесткости.

При получении готовой продукции уделяется значительное внимание следующим характеристикам:

  • Форма – геометрия строго соответствует сферической форме;
  • Качество поверхности – не должно быть сколов, трещин, других изъянов, снижающих эффективность эксплуатации;
  • Прочность – не должно быть трещин, параметры жесткости должны соответствовать группе изделий.

При поставке шары стальные мелющие упаковываются в ящики по марке и прочим параметрам, определяющим конкретную группу продукции. При производстве учитываются требования и параметры ГОСТ 7524-89.

Стальные мелющие шары

Область применения

Стальные шары применяются для барабанных цилиндрических или конических мельниц. Для работы подобных устройств половина объема рабочей камеры заполняется твердыми мелющими телами, оставшаяся часть заполняется перерабатываемым сырьем. При вращении барабана вокруг своей оси помольные тела собственной массой измельчают обрабатываемый материал до нужной фракции. Далее при помощи воздушных сепараторов проводится разделение сырья по фракциям, что позволяет использовать установку в бесперебойном режиме.

Барабанные мельницы применяются в сфере горнодобывающей, перерабатывающей промышленности, при изготовлении строительных и прочих сыпучих веществ.

Различия по размерам

Продукция может различаться по размерам, что позволяет использовать ее при работе с разным сырьем и оборудованием. Используется изделия диаметром от 15 до 120 мм, шаг увеличения размеров составляет 5-10 мм. Стандартом допускается расхождение с номинальным размером не более 0,5%.

Показатели твердости материала

Важнейшим параметром является твердость выпускаемых изделий. От данного показателя зависит эффективность использования при дроблении различных материалов, а также срок службы самих компонентов. Предусмотрены следующие классы:

  1. Нормальный – применяется углеродистая или низколегированная сталь различных марок, обеспечивающая прочность в пределах 302-401 НВ в зависимости от диаметра, подходит для начального измельчения материалов;
  2. Повышенный – используется легированная инструментальная сталь с вхождением цинка, марганца и других металлов, показатели составляют 331-461 НВ;
  3. Высокий – также используется инструментальная высококачественная легированная сталь, характеристики жесткости составляют 477-534 НВ;
  4. Особо высокий - применяется инструментальная сильно легированная сталь марки Х, ХГС либо аналогов, обладающих схожими характеристиками. Жесткость составляет 415-534 НВ, оптимальны для обработки породы в металлургии.

Шары мелющие из стали

При проведении испытаний показатели регистрируются на разных участках диаметра. Например, шары стальные мелющие 50 мм проверяются на поверхности, на 75%, 50%, 25% диаметра. В зависимости от назначения, цифра должна быть равной на каждом участке, либо допускается ее снижение на внутренней части по мере приближения к центру. Данный показатель регулируется подбором марки стали и технологии закаливания прокатных компонентов. В зависимости от характеристик и режимов эксплуатации, сроки износа достигают 15-20 лет.

При подборе продукции необходимо обращать внимание на размер, массу и твердость изделий, сопоставляя их с перечнем решаемых задач и типом используемого барабанного оборудования для помола и измельчения.

Читайте также: