Расчет металлической обоймы усиления

Обновлено: 17.05.2024

Колонны — стержневые элементы, работающие на сжатие и продольный изгиб и имеющие большой запас прочности. Но со временем от действий множества факторов они разрушаются и требуют ремонта. К примеру, усиление металлических колонн, изначально рассчитанных на большие нагрузки, потребуется после появления коррозии на опорных частях, горизонтальных элементах решётки, узлах башмаков и др. элементах.

Чаще всего используются следующие методы повышения прочности конструкции:

  • железобетонные или металлические обоймы;
  • одностороннее и двустороннее наращивание сечения;
  • предварительно напряжённые металлические подпорки;
  • рубашки — усиление железобетонных колонн крайних рядов, где четырёхстороннее наращивание невозможно.

Завод «СТК-Конструкция» производит металлоконструкции для устройства металлических обойм и подпорок. Выполняем заказы по вашим чертежам в любом объёме. Имеем возможность наладить мелко- и крупносерийное производство изделий.

Таблица 1. Выбор способа усиления
Способ усиления Возможность применения способа
Для эксплуатации в пожароопасных условиях без обетонирования металло­конструкций усиления Для проведения усиления без остановки производства и Для значительного увеличения несущей способности
для снятия нагрузки с учетом обеспечения хорошей совместной работы для снятия нагрузки, если недопустима запыленность для снятия нагрузки во взрыво­опасных помещениях
Ж/б обоймы + - - 0 +
Ж/б рубашки + - - - 0
Односторон­нее наращивание сечения + - - - 0
Двустороннее наращивание сечение + - - - +
Металличес­кие обоймы со сколом углов и установкой на растворе - + - - +
Металличес­кие обоймы без скола углов и установкой без раствора - + + - +
Ж/б обоймы с жёсткой наружной уголковой арматурой - - - - +
Предвари­тельно напряжённые распорки - + + - +
  • + — данный способ усиления можно применять;
  • – — способ усиления применять не рекомендуется;
  • 0 — применение способа усиления зависит от конкретного конструктивного решения и местных условий.

Технология установки обойм

Самым надёжным способом увеличения несущей способности колонны является применение железобетонной обоймы, состоящей из бетонного слоя, продольной арматуры и замкнутых хомутов.

Перед усилением поверхность ж/б колонн следует подготовить:

  • удалить штукатурный слой;
  • сделать насечки в бетоне глубиной 3-6 мм;
  • очистить выступающую арматуру и защитить её от коррозии;
  • за час до бетонирования промыть поверхность старого бетона водой.

Усиление железобетонных колонн стальными обоймами применяется, когда нельзя уменьшать пространство помещений или требуется провести работу за короткий срок. Обойма состоит из металлических уголков (продольные элементы) и поперечных планок.


Продольные элементы устанавливаются на цементно-песчаном растворе и прижимаются к колонне посредством струбцин. После этого к уголкам по всей длине усиливаемой конструкции привариваются поперечные планки с шагом 400-600 мм. Колонну можно нагружать сразу после проведения работ. Следует соблюдать следующие условия: плотное прилегание металлических стоек к граням элемента усиления и их вертикальность. Поэтому в месте примыкания стоек бетон следует выровнять, скалывая выпуклые места и замазывая цементным раствором углубления.

Обоймы осуществляют двойную функцию: повышают прочность усиливаемого элемента на сжатие (сдерживают его поперечные деформации) и разгружают его, воспринимая часть вертикальной нагрузки. Поперечные деформации сдерживают планки стальных и поперечные хомуты железобетонных обойм. Восприятие вертикальной нагрузки обеспечивают соответственно стальные уголки и бетон с продольной арматурой.

Способы повышения эффективности усиления

Для повышения объёмного напряжения в планках и степени включения в работу уголков стальных обойм создают предварительное напряжение с помощью:

  • натяжных гаек;
  • попарного стягивания;
  • электронагрева.

Самый простой способ создания преднапряжения — установка предварительно перегнутых уголков с последующим их выпрямлением горизонтальным стягиванием. Так после выпрямления уголки становятся распорками, разгружающими колонну. Если такие работы проводятся в многоэтажных зданиях, следует помнить, что распорки на промежуточных этажах передают дополнительные нагрузки на нижние перекрытия, следовательно, усиление нужно начинать с колонн в основании здания.

Следует помнить, что возможности передать нагрузку на вертикальные элементы обоймы ограничены. Если уголки неравномерно или неплотно прижаты к поверхности, то усиливаемый элемент беспрепятственно деформируется в поперечном направлении, пока зазор не исчезнет. В этом случае толку от проведённой работы практически не будет. Поэтому при усилении колонн металлической обоймой требуется применять методы, при которых планки немедленно включаются в работу.

Например, до приварки планок плотно прижать уголки инвентарными струбцинами или создать предварительное напряжение планок электронагревом. Предварительное напряжение натяжными гайками применяется, когда в качестве планок используются круглые стержни с резьбой. Между поверхностями уголков и усиливаемой конструкции необходимо проложить выравнивающий слой цементного раствора.

Технология усиления круглых и многогранных колонн

Усиление круглых и многогранных колонн, когда нет возможности произвести распор каркаса усиления, проводится так: на конструкцию вертикально, с применением временных скруток, устанавливаются профильные элементы и обжимаются нагретыми хомутами. В этом случае также требуется устранять зазоры.

Хомуты-накладки нагревают около места проведения работ до 200-300 °С, затем струбцинами или кондуктором прижимают к колонне. Окончательную сварку производят до того, как хомуты остынут ниже 100 °С. Температурного сокращения металла достаточно, чтобы надёжно обжать конструкцию.

Технология устройства железобетонной рубашки

Когда колонны примыкают к наружным или внутренним стенам, для их усиления применяют устройство железобетонной рубашки. Для этого производят следующие работы:

  • очистка поверхности;
  • устройство на бетоне насечки для лучшего сцепления с новым раствором;
  • установка арматурного каркаса;
  • монтаж опалубочных щитов;
  • обильное увлажнение поверхности колонны;
  • нагнетание бетонной смеси в полость.

устройство ж/б рубашки

ЭЛЕМЕНТЫ, УСИЛЕННЫЕ ОБОЙМОЙ

5.34. Несущая способность существующих каменных конструкций (столбов, простенков, стен и др.) может оказаться недостаточной при реконструкции зданий, надстройках, а также при наличии дефектов в кладке. Одним из наиболее эффективных методов повышения несущей способности существующей каменной кладки является включение ее в обойму. В этом случае кладка работает в условиях всестороннего сжатия, что значительно увеличивает ее сопротивляемость воздействию продольной силы.

Применяются три основных вида обойм: стальные, железобетонные и армированные растворные.

Основными факторами, влияющими на эффективность обойм, являются: процент поперечного армирования обоймы (хомутами), марка бетона или штукатурного раствора и состояние кладки, а также схема передачи усилия на конструкцию.

С увеличением процента армирования хомутами прирост прочности кладки растет непропорционально, а по затухающей кривой.

Опытами установлено, что кирпичные столбы и простенки, имеющие трещины, а затем усиленные обоймами, полностью восстанавливают свою несущую способность.

5.35. Стальная обойма состоит из вертикальных уголков, устанавливаемых на растворе по углам усиливаемого элемента, и хомутов из полосовой стали или круглых стержней, приваренных к уголкам. Расстояние между хомутами должно быть не более меньшего размера сечения и не свыше 50 см (черт. 15, а). Стальная обойма должна быть защищена от коррозии слоем цементного раствора толщиной 25-30 мм. Для надежного сцепления раствора стальные уголки закрываются металлической сеткой.

5.36. Железобетонная обойма выполняется из бетона марок 150-200 с армированием вертикальными стержнями и сварными хомутами. Расстояние между хомутами должно быть не свыше 15 см. Толщина обоймы назначается по расчету и принимается от 6 до 10 см (черт. 15,б).

5.37. Обойма из раствора армируется аналогично железобетонной, но вместо бетона арматура покрывается слоем цементного раствора марки 50-100 (черт. 15, в).


Черт. 15. Схема усиления кирпичных столбов обоймами.

а - металлической; б - железобетонной; в - армированной штукатуркой; 1 – планка f1 сечением 35´5 - 60´12 мм; 2 - сварка; 3 - стержни диаметром 5-12 мм; 4 - хомуты диаметром 4-10мм; 5 - бетон класса В7,5 -В15; 6 - штукатурка (раствор марки 50-100)

5.38. Расчет конструкций из кирпичной кладки, усиленной обоймами, при центральном и внецентренном сжатии при эксцентриситетах, не выходящих за пределы ядра сечения, производится по формулам:

при стальной обойме

при железобетонной обойме

при армированной растворной обойме

Коэффициенты y и h принимаются при центральном сжтии y = 1 и h = 1; при внецентренном сжатии (по аналогии с внецентренно сжатыми элементами с сетчатым армированием):

В формулах (71) - (75):

N - продольная сила;

А - площадь сечения усиливаемой кладки;

s - площадь сечения продольных уголков стальной обоймы или продольной арматуры железобетонной обоймы;

Аb - площадь сечения бетона обоймы, заключенная между хомутами и кладкой (без учета защитного слоя);

Rsw - расчетное сопротивление поперечной арматуры обоймы;

Rsc - расчетное сопротивление уголков или продольной сжатой арматуры;

j - коэффициент продольного изгиба (при определении j значение a принимается как для неусиленной кладки);

mg - коэффициент, учитывающий влияние длительного воздействия нагрузки, пп.[4.1, 4.7];

mk - коэффициент условий работы кладки, принимаемый равным 1 для кладки без повреждений и 0,7 - для кладки с трещинами;

mb - коэффициент условий работы бетона, принимаемый равным 1 - при передаче нагрузки на обойму и наличии опоры снизу обоймы, 0,7 - при передаче нагрузки на обойму и отсутствии опоры снизу обоймы и 0,35 - без непосредственной передачи нагрузки на обойму;

m - процент армирования хомутами и поперечными планками, определяемый по формуле

где h и b - размеры сторон усиливаемого элемента;

s - расстояние между осями поперечных связей при стальных обоймах (h ³ s £ b, но не более 50 см) или между хомутами при железобетонных и штукатурных обоймах (s£15 см).

5.39. Расчетные сопротивления арматуры, применяемой при устройстве обойм, принимаются по табл.10.

Армирование Расчетные сопротивления арматуры, МПа (кгс/см 3 )
сталь класса A-I сталь класса A-II
Поперечная арматура 150 (1500) 190 (1900)
Продольная арматура без непосредственной передачи нагрузки на обойму 43 (430) 55 (550)
То же, при передаче нагрузки на обойму с одной стороны 130 (1300) 160 (1600)
То же, при передаче нагрузки с двух сторон 190 (1900) 240 (2400)

5.40. С увеличением размеров сечения (ширины) элементов при соотношении их сторон от 1:1 до 1:2,5 эффективность обойм несколько уменьшается, однако это уменьшение незначительно и практически его можно не учитывать.

Когда одна из сторон элемента, например, стена (черт. 16), имеет значительную протяженность, то необходима установка дополнительных поперечных связей, пропускаемых через кладку и располагаемых по длине стены на расстояниях не более 2d и не более 100 см, где d - толщина стены. По высоте стены расстояние между связями должно быть не более 75 см. Связи должны быть надежно закреплены. Расчет дополнительных поперечных связей производится по формуле (72), при этом коэффициент условий работы связей принимается равным 0,5.


Черт. 16. Схема усиления стены железобетонной обоймой

1 - металлическая сетка; 2 - дополнительные стержни, расположенные сверх сетки; 3 - хомуты (связи); 4 - бетон обоймы; 5 - кладка стены

Пример 8. Определение несущей способности кирпичного столба с сетчатым армированием.

Определить расчетную несущую способность и необходимое сетчатое армирование кирпичного столба размером в плане 0,51´0,64 м с расчетной высотой 3 м. Расчетная продольная сила N = 800 кН (80 тc) и приложена с эксцентриситетом е0=5 см в направлении стороны сечения столба, имеющей размер 0,64 м. Столб выполнен из глиняного кирпича пластического прессования марки 100 на растворе марки 75.

Площадь сечения столба А =0,51×0,64 = 0,3264 м 2 . Упругая характеристика кладки по п. [3.21, табл. 15] a=1000; коэффициент продольного изгиба по п. [4.2, табл. 18] j=0,98. Расчетное сопротивление кладки по п. [3.1, табл. 2] R=1,7 МПа (при А>0,3 м 2 ). Расчетную несущую способность Ncc для столба из неармированной кладки определяем по формуле [13]

j1, Ас и w определены по формулам [14] и [15], табл. [19] п. [4.7]; mg=1, так как толщина столба более 30 см.

Расчетная несущая способность столба Ncc оказалась в 1,7 раза меньше расчетной продольной силы N, следовательно, необходимо усиление кладки сетчатым армированием.

Определяем необходимое Rskb=1,7×1,7 = 2,9 МПа.

Принимаем арматуру Вр-1 диаметром 4 мм. Расчетное сопротивление Rs =219 МПа по п. 5.6.

Процент сетчатого армирования определяем по п. [4.31]

По формуле [6] п. [3.20] определяем

Rsn=243 МПа принимается по п. 5.6.

По формуле [4] п. [3.20] определяем

При lhc=4,7 по формуле [15] и табл. [18] пп. [4.2] и [4.7] определяем по интерполяции j=0,97; jс=05 и j1=0,96.

По формуле [31] п. [4.31] определяем

Проверяем расчетную несущую способность столба по формуле [30] п. [4.31]

кН (83 тс > 80 тс).

Дополнительно проверяем расчетную несущую способность столба при центральном сжатии в плоскости, перпендикулярной к действию изгибающего момента по формуле [27] п. [4.30]

Принимаем Rsk = 3,4 МПа.

По табл. [18] п. [4.2] j = 0,96. По формуле [26] п. [4.30]

кН >N = 800 кН (106 тc > 80 тc).

Следовательно, расчетная несущая способность столба, армированного сетчатой арматурой, при m=0,40% достаточна.

Принимаем диаметр проволоки для сеток 4 мм с расположением через два ряда кладки и исходя из 0,40% армирования по табл. 9 определяем размер ячейки в плане 3,2´3,2 см. Крайние стержни располагаются от наружных граней столба (защитный слой) на 1,5 см.

Пример 9. Расчет усиления кирпичного простенка стальной обоймой.

Требуется запроектировать усиление простенка в существующем жилом доме. Кладка простенков выполнена из глиняного кирпича пластического формования марки 75 на растворе марки 25. Размер сечения простенка 54´103 см, высота 180 см; расчетная высота стены - 2,8 м. Кладка простенка выполнена с утолщенными швами низкого качества, в кладке имеются небольшие начальные трещины в отдельных кирпичах и вертикальных швах. Это свидетельствует о том, что напряжение в кладке достигло примерно 0,7Ru (временного сопротивления). На простенок действует вертикальное усилие, равное 600 кН (60 тc), приложенное с эксцентриситетом 5 см по отношению к толщине стены.

По архитектурным соображениям усиление кладки принимается посредством включения простенка в стальную обойму из уголков, согласно указаниям п. 5.35, 5.38.

Необходимое увеличение несущей способности простенка за счет поперечной арматуры обоймы определяем из формулы (71):

По п. [4.2, табл. 18] при l=5,2 и a=1000 j1»j=0,98; mg=1 принимаем согласно п. [4.7]; по п. [3.1, табл. 2] R=1,1 МПа; mk=0,7.

Принимаем для обоймы сталь класса A-I. Вертикальная арматура обоймы (уголки) принимается по конструктивным соображениям 41_50´50 мм

По табл. 10 Rsc=43,0 МПа и Rsw=150 МПа.

Согласно формуле (71)

Принимаем расстояние между осями поперечных хомутов обоймы 35 см и определяем их сечение из условия %.

Принимаем полосу сечением 30´8 мм; Аs=2,4 см 2 ; Ст A-I.

Пример 10. В связи с надстройкой здания требуется запроектировать усиление внутренней несущей кирпичной стены толщиной в 1,5 кирпича (38 см). Высота стены от уровня пола до низа перекрытия сборного настила 3,0 м. Кладка стены выполнена из сплошного глиняного кирпича пластического формования марки 75 на растворе марки 25. Состояние кладки удовлетворительное. После надстройки на 1 м стены будет передаваться нагрузка N = 750 кН (75т).

По табл. [2, 15 и 18], пп. [3.1, 3.21, 4.2] R=1,1 МПа; a=1000; l= =7,9; j=0,92; по формуле [16] п. [4.7] mg=1.

Расчетная несущая способность 1 м стены

Требуется усиление стены, которое осуществляем посредством включения стены в двухстороннюю железобетонную обойму с установкой дополнительных поперечных стальных связей.

Толщину железобетонных стенок по конструктивным соображениям принимаем минимальной, равной 6 см. Бетон класса В12,5 и армирование стальной сеткой из стержней диаметром 5 мм с ячейкой 15´15 см. Кроме того, для обеспечения работы железобетонных стенок как обоймы сверх сеток ставим вертикальные стержни из круглой стали диаметром 16 мм через каждые 50 см и поперечные связи диаметром 16 мм через 50 см по высоте и длине стены.

Расчетную несущую способность 1 м стены, усиленной железобетонной обоймой, определяем по формуле (72). При этом принимаем, что усилие непосредственно на железобетонную обойму не передается; коэффициент условий работы железобетона принимаем mb=0,35. При определении поперечного армирования обоймы учитываем только поперечные связи диаметром 16 мм, расположенные через 50 см по длине и высоте стены.

Определяем процент армирования поперечными связями:

где Vs и Vk - соответственно объем стержня (связей) и объем кладки;

А = 2,01 см 2 - площадь сечения одного стержня;

hw - толщина стены.

Вертикальное армирование обоймы принято: Ст A-I, 7Æ5 мм в 2Æ16 мм на каждые 50 см длины стены. Площадь арматуры на 1 м стены

Коэффициент j принимаем в запас прочности как для кирпичной кладки, учитывая высоту сечения с учетом обоймы

По табл. 10 для связей Rs - 150 МПа.

По формуле (72) с учетом коэффициента условий работы 0,5 согласно п. 5.40 определяем расчетную несущую способность

Таким образом, принятое усиление стены достаточно.

6. РАСЧЕТ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПО
ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ
(ПО ОБРАЗОВАНИЮ И РАСКРЫТИЮ
ТРЕЩИН И ДЕФОРМАЦИЯМ)

6.1. Расчет элементов конструкций по предельным состояниям второй группы производится по указаниям и формулам, приведенным в пп. [5.1-5.5].

Расчет по раскрытию трещин при учете особых нагрузок или воздействий не требуется.

6.2. Расчет каменных и армокаменных конструкций по предельным состояниям второй группы производится:

по деформациям на воздействие нормативных нагрузок;

по раскрытию трещин на воздействие расчетных или нормативных нагрузок.

6.3. Если деформации растяжения кладки вызваны перемещениями каркаса или ветровых поясов, поддерживающих самонесущие или навесные стены, то предельные деформации растяжения кладки принимаются равными єu=0,15×10 -3 в зданиях с предполагаемым сроком службы конструкций не менее 100 лет, єu=0,2×10 -3 в зданиях с предполагаемым сроком службы конструкций не менее 50 лет.

При наличии продольного армирования в количестве m³0,03%, а также при оштукатуривании неармированных конструкций по сетке приведенные выше значения єu увеличиваются на 25%.

6.4. При расчете по трещинам конструкций из неармированной и армированной кладки, в которых раскрытие швов может вызвать появление трещин в штукатурке, но не является опасным для прочности и устойчивости конструкций, в формулах расчета на прочность по растяжению всех видов Rt, Rtb и Rtw принимаются продольные силы и изгибающие моменты по нормативным нагрузкам и коэффициенты условий работы по табл. [24].

Примечания: 1. Расчет по несущей способности конструкций, указанных в п. 6.4, следует производить с учетом расчленения конструкций после возникновения трещин или образования шарниров в сечениях с раскрытием швов.

2. При невыполнении требований расчета по трещинам, указанных в п. 6.4, в местах раскрытия швов необходимо предусматривать деформационные швы.

6.5. Расчет продольно армированных растянутых, изгибаемых и внецентренно сжатых каменных конструкций по раскрытию трещин (швов кладки) следует производить исходя из следующих предпосылок:

расчет производится для всего сечения кладки и арматуры (без учета раскрытия швов), принимая закон линейного распределения напряжений по сечению;

расчетные сопротивления арматуры Rs, МПа (кгс/см 2 ), принимаются по табл. 11.

6.6. При расчете продольно армированных внецентренно сжатых, изгибаемых и растянутых каменных конструкций по раскрытию трещин (швов кладки) сечение конструкций приводится к одному материалу (стали) в отношении модулей упругости кладки и стали

Площадь сечения, расстояние центра тяжести сечения до сжатой грани и момент инерции приведенного сечения определяются по формулам:

В формулах (77)-(80):

nred - отношение модулей упругости кладки и стали;

А, у, I - площадь сечения, расстояние от центра тяжести сечения до сжатой грани и момент инерции сечения кладки;

Ared, Vred, Ired - те же величины для приведенного сечения;

As - площадь сечения растянутой арматуры;

As1 - площадь сечения сжатой арматуры;

h0=h-а - рабочая высота сечения;

а - расстояние от центра тяжести растянутой арматуры до растянутого края сечения;

а1 - расстояние от центра тяжести сжатой арматуры до сжатого края сечения.

Конструкции Условия работы Расчетные сопротивление арматуры при предполагаемом сроке службы конструкций, лет
Продольно армированные изгибаемые и растянутые элементы в условиях агрессивной для арматуры среды Растяжение кладки в горизонтальном направлении (по перевязанному сечению) 42 (420) 60 (600) 60 (600)
Растяжение кладки в вертикальном направлении (по неперевязанному сечению) 25 (250) 35 (350) 35 (350)
Продольно армированные емкости при наличии требований непроницаемости покрытий каменных конструкций Гидроизоляционная штукатурка 17 (170) 25 (250) 35 (350)
Кислотоупорная штукатурка на жидком стекле и однослойное покрытие из плиток каменного литья на кислотоупорной замазке 12 (120) 15 (150) 15 (150)
Двух- и трехслойное покрытие из прямоугольных плиток каменного литья на кислотоупорной замазке:
растяжение вдоль длинной стороны плиток 30 (300) 35 (350) 35 (350)
растяжение вдоль короткой стороны плиток 17 (170) 25 (250) 25 (250)

6.7 Расчет по раскрытию трещин продольно армированных каменных конструкций производится по формулам:

на внецентренное сжатие

на внецентренное растяжение

В формулах (81)-(84):

Rs - расчетное сопротивление арматуры оо раскрытию треаетн;

N и М - продольная сила и момент от нормативных нагрузок (при расчете конструкции по раскрытию трещин в штукатурных и плиточных покрытиях усилия определяются по нормативным нагрузкам, которые будут приложены после нанесения покрытия);

gr - коэффициент условия работы кладки при расчете по раскрытию трещин по табл. [24] с учетом примечания к ней;

Ared, yred, Ired – параметры приведенного сечения по формулам (78)-(80);

Усиление балок и прогонов

Одним из наиболее простых способов усиления из­гибаемых стержневых конструкций является подведение под них жестких или упругих опор. Этот способ реко­мендуется, если дополнительные опоры не препятству­ют технологическому процессу.

Жесткие опоры могут располагаться на отдельны или существующих фундаментах. Последнему следует отдавать предпочтение, даже если это потребует усиле­ния фундаментов. Дело в том, что при дополнительных фундаментах трудно избежать осадок опор и, как следствие, их плохого включения в работу усиливаемой кон­струкции. В качестве контрмеры рекомендуется предва­рительное обжатие грунта под фундаментом усилием, равным расчетной нагрузке.

На рис. 3.17 и 3.18 приведены примеры усиления балок иригелей подведением жестких опор, которые могут выполняться как в металле, так и в железобето­не. Важным моментом при таком усилении является включение элементов усиления в работу усиливаемой конструкции. Это достигается путем установки клино­видных прокладок, подъемом усиливаемой конструкции с помощью горизонтально расположенных домкратов, натяжением металлической затяжки посредством на­тяжной муфты и другими способами.

Дополнительные упругие опоры под усиливаемые из­гибаемые элементы обычно выполняют в виде металлических балок или ферм, которые устанавливаются с не­которым зазором под конструкцией на общие с ней или отдельные опоры. В зазоре располагают металлические прокладки или распорные болты. Включение дополнительных опор в работу осуществляется различными способами: подтягиванием опорных концов балок (ферм) к усиливаемой конструкции, расклинкой косых прокла­док, распорными болтами и т. п.


Рис. 3.17. Усиление балки подведением жест­кой опоры:

1 - усиливаемая балка; 2 - дополнительный фунда­мент: 3 - колонна усиления; 4 болты


Рис. 3.18. Усиления ригеля жестким порта­лом:

1 - усиливаемый ригель; 2- жесткий портал; 3 - ме­таллический бандаж

В качестве упругих дополнительных опор могут быть также рекомендованы гибкие тяжи, подвешивае­мые к вышележащим конструкциям, если они не пре­пятствуют технологическому процессу. Натяжение тя­жей осуществляется с помощью гаек и натяжных муфт или электротермическим способом.

В исключительных случаях, когда конструкции нахо­дятся в критическом состоянии и возможно их разруше­ние (полное или частичное) без нагрузки, а также если существующие конструкции не позволяют обеспечить габариты помещений по требованиям новой технологии, рекомендуется произвести полную разгрузку или заме­ну конструкций. Необходимо отметить, что эта работа требует наиболее существенных материальных и трудовых затрат и должна быть соответствующим образом обоснована.

Разгружающие конструкции в виде отдельных балов, ферм, плит, а также комбинированных систем из желе­зобетона и металла применяются обычно для разгрузки небольших участков перекрытий, когда не требуется устройство дополнительных колонн и фундаментов.

При возможности разгружающие конструкции сле­дует устанавливать сверху разгружаемых (рис. 3.19, 3.20), обеспечивая между ними зазор для свободного прогиба элементов усиления. Если это невозможно по технологическим причинам, разгружающие конструкции подводят или подвешивают снизу. В этом случае пере­дача нагрузки осуществляется с помощью стоек, пропу­щенных через отверстия, в разгружаемом перекрытии (рис.3.21).

При частичном разгружении конструкции снимают с существующей только часть нагрузки. В этом случае элементы усиления могут иметь контакт с существующими конструкциями по всей длине или в отдельных точ­ках (рис. 3.22).

При применении разгружающих конструкций, не замоноличенных с усиливаемой, их расчет осуществляется как отдельных самостоятельных элементов или они рассматриваются как элементы, общей системы, усилия в которых определяются по правилам строительной ме­ханики.

При применении полного разгружения существую­щих конструкций между ними и новыми разгружающими конструкциями должен быть обеспечен зазор, который превышает максимальный прогиб для металлических конструкций усиления в 1,5 раза, для железобетон­ных - в 2 раза.


Рис. 3.19. Усиление балки и плиты перекры­тия металлическими

1 - разрушаемая балка; 2 - металлическая балка; 3 - ребра жесткости;

4 - тяжи; 5 - планка; 6 - спорные листы; 7 - опорные подушки


Рис.3.20. Разгружение монолитной железо­ бетонной плиты ребристой

1 - разгружаемая плита; 2 - конструкция усиления;

3 - элементы крепления; 4 - ригель; 5 – прокладки

В усиленной конструкции сначала определяют на­грузку, которая воспринимается существующей конст­рукцией, затем на дополнительную нагрузку подбирают сечение конструкции усиления. При этом пропорцио­нально жесткостям распределяется только та часть на­грузки, которая была приложена после усиления. Если разгружающая конструкция соприкасается с усиливае­мой не по всей длине, а в отдельных точках (например через прокладки), то распределение о жесткостям осуществляется при количестве точек опирания не менее 8 (в том числе и на опорах), арасстояние между опора­ми не превышает трех высот любой из двух конструкций. Полный момент в комплексной конструкции равен сум­ме двух моментов: M=M1+M2,где M1 и M2 - соответ­ственно моменты, воспринимаемые существующей кон­струкцией и конструкцией усиления. В частично разгру­жаемой железобетонной конструкции расчет по наклонному сечению на всю нагрузку производится только для элементов усиления.


Рис. 3.22. Частичная разгрузка металличес­кими балками снизу:

1 - усиливаемая балка; 2 - балки усиления: 3 - тя­жи; 4 - упорная пластина

До усиления конструкций жесткими дополнительны­ми опорами необходимо проверить общую деформацию от максимальных ожидаемых нагрузок в местах примы­кания к усиливаемой конструкции. Во избежание де­структивных изменений в существующей конструкции эта деформация не должна превышать максимальный прогиб усиливаемой конструкции без дополнительных опор более чем на 10%. При подведении жестких опор усиливаемую конструкцию следует максимально разгру­зить.

Расчетные усилия в изгибаемых элементах, усилен­ных жесткими опорами, определяются как сумма усилий, подсчитанных для двух стадий работы конструкций: до усиления (при этом принимается первоначальная рас­четная схема) и после усиления (расчетная схема при­нимается с учетом дополнительных жестких опор).

Расстояния между опорами следует назначать таки­ми, чтобы суммарная эпюра моментов ни в одном сече­нии не выходила за пределы эпюры материалов. В том случае, если над дополнительной опорой возникает от­рицательный момент, превышающий допустимый, и воз­можно образование нормальных трещин, балку следует рассматривать как разрезную с шарниром в месте опоры.

В связи с тем что наличие нормальных трещин мо­жет снизить несущую способность балки по наклонному сечению, необходимо предусмотреть достаточную пло­щадь ее опирания на дополнительной опоре.

При усилении изгибаемых элементов упругими до­полнительными опорами их расчет, как и при жестких опорах, осуществляется для двух стадий, а найденные из статических расчетов усилия суммируются. Расчет по второй стадии системы «балка - упругие опоры» ос­нован на равенстве прогибов усиливаемого элемента и упругой опоры и месте их соединения. В качестве рас­четной схемы принимается балка на упруго-податливых опорах, усилия в которой определяются по уравнениям пяти моментов при известных жесткостных характери­стиках опор. Эти характеристики можно найти, выпол­нив статический расчет всей конструкции, дополнитель­ной опоры и установив ее перемещение от единичной силы, приложенной в точке установки опоры. В случае установки нескольких дополнительных опор жесткостные характеристики определяются для каждой из них.

Усилия в дополнительных опорах вычисляют по вы­бранной расчетной схеме с учетом нагрузок, приклады­ваемых к конструкции, и реакций в местах установки упругих опор.

При устройстве дополнительных жестких и упругих железобетонных опор рекомендуется учитывать возмож­ное перераспределение усилий в усиливаемой конструк­ции в связи с деформациями ползучести, которые сни­жают жесткостные характеристики опор. Этот учет производится в соответствии с положениями СНиП 2.03.01-84 при учете воздействия длительных статических нагрузок.

Усиление сжатых зон изгибаемых (и внецентренно сжатых) элементов возможно осуществлять торкрет-бе­тоном толщиной до 30 мм, который наносится на очи­щенную и промытую бетонную поверхность старого бе­тона, обернутую сеткой с ячейкой 30. 60 мм из прово­локи диаметром 1. 2 мм, прикрепленной к конструкции дюбелями с помощью строительного пистолета. При тщательном соблюдении перечисленных рекомендаций обеспечивается надежное сцепление «нового» и «старого» бетона, в результате сечение конструкции и, как следствие, ее несущая способность увеличиваются. Бо­лее существенного повышения несущей способности эле­ментов возможно добиться увеличением площади сече­ния арматуры (наращивание сечения). Если по расчету требуется незначительное увеличение сечения арматуры (2. 4 стержня), осуществляют подварку новой армату­ры к существующим стержням боковых каркасов. Для этого скалывают защитный слой, оголяют арматуру и приваривают к ней прерывистым швом коротыши диа­метром 10. 40 мм, длиной 50. 200 мм с шагом 200. 1000 мм - для растянутых стержней и не более 20 диа­метров продольной арматуры, но не более 500 мм - для сжатой (рис. 23). К коротышам приваривают до­полнительную продольную арматуру, которую допуска­ется применять тех же классов. При арматуре класса Ат-V и выше из высокопрочной проволоки и канатов, а также при сильной коррозии арматуры применение сварки не допускается и усиление конструкций методом наращивания не рекомендуется.

После установки дополнительной арматуры произво­дится ее торкретирование или заделка цементной штука­туркой, при этом размер сечения элемента увеличивает­ся на 20. 80 мм. При большей толщине наращивания применяют вертикальные и наклонные соединительные элементы.

Для увеличения сцепления старого и нового бетона на поверхности усиливаемого элемента перед наращи­ванием выполняют насечку, которую тщательно очища­ют от пыли и грязи водой под давлением. Минималь­ный диаметр арматуры при наращивании - 10 мм. При необходимости более мощного усиления устраивают на­ружные уголковые полуобоймы.

Для совместной работы с железобетонной конструк­цией металлоконструкции усиления должны быть обя­зательно приварены к существующей арматуре. С этой целью угловые стержни арматурного каркаса оголяют­ся на ограниченных участках длиной 6. 12 см с шагом 60…12 см (рис. 3.23,б).

К арматуре приваривают короткие арматурные стержни, диаметр которых принимают таким, чтобы они были заподлицо с наружными гранями сечения. Затем к коротким прокладкам прива­ривают планки обойм, плотно прилегающие к телу бето­на. Обоймы из уголков приваривают непосредственно к соединительным планкам обойм.

Прокладки-коротыши могут быть заменены диаго­нальными ребрами из листовой стали (рис. 3.23, в). Зазоры между ветвями обоймы и телом бетона запол­няют цементным раствором состава 1:2 или 1:3 на расширяющемся или безусадочном цементе, затем эле­менты усиления покрывают перхлорвиниловой эмалью по грунту под цвет конструкции.

Так как свариваемые стали (арматура и профиль­ный металл) имеют разные марки, сварку производят электродами Э42А-Ф или 350А-Ф.

Усиления добавлением арматуры, а также в виде обойм и полуобойм можно рекомендовать также при об­наружении ошибок в армирования, допущенных при изготовлении конструкций, или занижении проектного класса бетона.

Распространенным способом усиления изгибаемых железобетонных элементов является устройство «руба­шек» - незамкнутых с одной стороны обетонок. Этот способ рекомендуется при усилении балок ребристых перекрытий и т.п. (рис. 3.24).




Рис. 3. 23. Усиление балок полуобоймами:

а - добавление стержневой арматуры: б - усиление наружной обоймы, приваренной к существующей арматуре; в - деталь приварки уголка с помощью диагональная ребер на листовой стали; 1- сварные швы: 2 - до­бавочная арматура усиления; 3 - усиливаемый элемент; 4 - сколотый бетон защитного слоя угловых стержней с последующим его восстановлением; 5 - защитное покрытие из ттерялорвинилового лакокрасочного материала; 6- по­перечные стержни крайних сварных каркасов; 7 - стержни - прокладки-коротиши: 8 - угловые стержни крайних сварные каркасов; 9 – соединительные планки обоймы: 10 - боковые листовые прокладки; 11 - уголки обоймы; 12- пространство, заполненное цементным раствором; 13 - листовая диагональная прокладка

Рис. 3.24. Усиление балки «рубашкой»:

1 - усиливаемая балка; 2 - рабочая арматура; 3 - хо­муты; 4 - стяжка; 5 - насечка; 6 - монтажная армату­ра «рубашки»; 7 - «рубашка»

Читайте также: