Расчет нагрузки металлической лестницы

Обновлено: 14.05.2024

Видео-курсы от Ирины Михалевской

Косоуром в лестнице называют наклонную металлическую балку, на которую опираются ступени.

Данный расчет касается металлических косоуров из прокатных швеллеров.


Внимание! В статье периодически слетает шрифт, после чего вместо знака угла наклона лестницы "альфа" отображается знак "?" Приношу извинения за неудобства.

Ширина лестничного марша 1,05 м (лестничные ступени сборные ЛС11, масса 1 ступени 105 кг). Количество косоуров – 2. Н = 1,65 м – половина высоты этажа; l1 = 3,7 м – длина косоура. Угол наклона косоура α = 27°, cosα = 0.892.

Нормативная нагрузка, кг/м 2

Расчетная нагрузка, кг/м 2

Нагрузка от веса ступеней:

Временная нагрузка (от веса людей, переносимых грузов и т.п.)

В итоге, действующая нормативная нагрузка на наклонный косоур равна q1 н = 449 кг/м 2 , а расчетная q1 р = 584 кг/м 2 .

Расчет (подбор сечения косоура).


Первое, что нужно сделать в данном расчете, это привести нагрузку на 1 кв. м площади марша к горизонтальной и найти горизонтальную проекцию косоура. Т.е. по сути при реальной длине косоура l1 и нагрузке на 1 кв.м марша q1, мы переводим эти значения в горизонтальную плоскость через cosα так, чтобы зависимость между q и l осталась в силе.

Для этого у нас есть две формулы:

1) нагрузка на 1 м 2 горизонтальной проекции марша равна:

2) горизонтальная проекция марша равна:

Обратите внимание, что чем круче угол наклона косоура, тем меньше длина проекции марша, но тем больше нагрузка на 1 м 2 этой горизонтальной проекции. Это как раз и сохраняет зависимость между q и l, к которой мы стремимся.

В доказательство рассмотрим два косоура одинаковой длины 3м с одинаковой нагрузкой 600 кг/м 2 , но первый расположен под углом 60 градусов, а второй – 30. Из рисунка видно, что для этих косоуров проекции нагрузки и длины косоура очень сильно отличаются друг от друга, но изгибающий момент получается для обоих случаев одинаковым.


Определим нормативное и расчетное значение q, а также l для нашего примера:

q н = q н 1/cos 2 α = 449/0.892 2 = 564 кг/м 2 = 0,0564 кг/см 2 ;

q р = q р 1/cos 2 α = 584/0.892 2 = 734 кг/м 2 = 0,0734 кг/см 2 ;

Для того, чтобы подобрать сечение косоура, необходимо определить его момент сопротивления W и момент инерции I.

Момент сопротивления находим по формуле W = q р al 2 /(2*8mR), где

q р = 0,0734 кг/см 2 ;

a = 1,05 м = 105 см – ширина марша;

l = 3.3 м = 330 см – длина горизонтальной проекции косоура;

m = 0.9 – коэффициент условий работы косоура;

R = 2100 кг/см 2 – расчетное сопротивление стали марки Ст3;

2 – количество косоуров в марше;

8 – часть небезызвестной формулы определения изгибающего момента (М = ql 2 /8).

Итак, W = 0,0734*105*330 2 /(2*8*0.9*2100) = 27,8 см 3 .

Момент инерции находим по формуле I = 150*5*aq н l 3 /(384*2Еcos?) , где

Е = 2100000 кг/см 2 – модуль упругости стали;

150 – из условия максимального прогиба f = l/150;

5/348 – безразмерный коэффициент.

Для тех, кто хочет разобраться подробнее в определении момента инерции, обратимся к Линовичу и выведем приведенную выше формулу (она несколько отличается от первоисточника, но результат вычислений будет одинаков).


Момент инерции можно определить из формулы допустимого относительного прогиба элемента. Прогиб косоура вычисляется по формуле: f = 5ql 4 /348EI, откуда I = 5ql 4 /348Ef.

q = аq н 1/2 = аq н cos 2 ?/2 – распределенная нагрузка на косоур от половины марша (в комментариях часто спрашивают, почему косоур считается на всю нагрузку от марша, а не на половину – так вот, двойка в этой формуле как раз и дает половину нагрузки);

f = l1/150 = l/150cos? – относительный прогиб (согласно ДСТУ «Прогибы и перемещения» для пролета 3 м).

Если подставить все в формулу, получим:

I = 150*cos?*5aq н cos 2 ? l 4 /(348*2Еlcos 4 ?) = 150*5*aq н l 3 /(348*2Еcos?).

У Линовича, по сути, то же самое, только все цифры в формуле приведены к «коэффициенту с, зависящему от прогиба». Но так как в современных нормах требования к прогибам жестче (нам нужно ограничиваться величиной 1/150 вместо 1/200), то для простоты понимания в формуле оставлены все цифры, без всяких сокращений.

Итак, I = 150*5*105*0,0564*330 3 /(384*2*2100000*0,892) = 110,9 см 4 .

Подбираем прокатный элемент из таблицы, приведенной ниже. Нам подходит швеллер №10.

Швеллер ГОСТ 8240

Момент сопротивления W, см 3

Момент инерции I, см 4

Данный расчет выполнен по рекомендациям книги Линович Л.Е. «Расчет и конструирование частей гражданских зданий» и предусматривает только подбор сечения металлического элемента. Для тех, кто хочет детальней разобраться с расчетом металлического косоура, а также с конструированием элементов лестницы, необходимо обратиться к следующим нормативным документам:

ДБН В.2.6-163:2010 «Стальные конструкции».

Помимо расчета косоура по приведенным выше формулам нужно еще делать расчет на зыбкость. Что это такое? Косоур может быть прочным и надежным, но при ходьбе по лестнице создается впечатление, что она вздрагивает при каждом шаге. Ощущение не из приятных, поэтому нормы предусматривают выполнение следующего условия: если нагрузить косоур сосредоточенной нагрузкой в 100 кг в середине пролета, он должен прогнуться не более, чем на 0,7 мм (см. ДСТУ Б.В.1.2-3:2006, таблица 1, п. 4).

В таблице ниже приведены результаты расчета на зыбкость для лестницы со ступенями 300х150(h), это самый удобный для человека размер ступеней, при разной высоте этажа, а значит и разной длине косоура. В итоге, даже если приведенный выше расчет даст меньшее сечение элемента, окончательно подобрать косоур нужно, сверившись с данными таблицы.

3D Расчет металлической лестницы с тетивой зигзаг


В зависимости от взаиморазмещения конструкции и пола верхнего этажа:

  1. Верхняя плоскость верхней ступеньки на одном уровне с плоскостью пола верхнего этажа;
  2. Верхняя плоскость верхней ступеньки ниже плоскостью пола верхнего этажа на высоту ступени.

Выбор того, или иного взаиморазмещения может зависеть от: толщины межэтажных перекрытий, желаемого взаимоотношения количества ступеней и их высоты, длины заготовок для косоуров и длины проёма, желаемого угла наклона лестницы, используемого количества металла или просто вкусов и предпочтений хозяина дома. Обратите внимание, на рисунке, на котором верхняя ступень ниже пола 2 этажа, толщина межэтажного перекрытия больше, чем на рисунке, на котором, верхняя ступень на уровне пола 2 этажа. При толщине перекрытия, меньше высоты ступеньки, косоур просто не упрётся в перекрытие (поэтому при демонстрации второго варианта, эту толщину пришлось увеличить).

Функция “Черно-белый чертеж:”


Рис.3 Черно-белый чертеж лестницы

Использовать данную функцию целесообразно в двух случаях:

  1. Если Вы привыкли работать со стандартными ГОСТировыными чертежами, и, соответственно, лучше воспринимаете графику без цветового наполнения.
  2. 2. Если Вы собираетесь распечатать результаты работы калькулятора. Тогда и меньше краски/тонера потратите и визуальное восприятие рисунков на бумаге будет лучше. И, конечно же, данная функция используется при печати на чёрно-белом принтере.

Функция “Изменить направление подъема: LR”


Рис. 4 Вид лестниц с разными направлениями подъема

К конкретной лестнице, которая размещена определённым образом в доме можно подойти сбоку с двух сторон или только с одной – когда лестница соприкасается со стеной. В последнем случае существует два варианта размещения конструкции относительно наблюдателя:

  1. Подъём слева направо;
  2. Подъём справа налево.

Данная функция позволяет визуализировать оба этих варианта.

Расчет лестницы из металла тетива зигзаг

Главный результат работы данного калькулятора:

  1. Информация, необходимая для изготовления тетив
  2. Информация, необходимая для изготовления ступеней

Согласно этой информации, выполняется расчет металлической лестницы с тетивой зигзаг и изготавливаются детали, из которых собирается конструкция.

Все остальные чертежи показывают конечный вид конструкции: после состыковки тетив и ступеней друг с другом.

Особенностью данного калькулятора является реализация двух функций:

  1. Оценка удобства лестницы;
  2. Корректировка конструкции лестницы.

Оценка удобства лестницы осуществляется по трём критериям:

  1. Соответствие конструкции средней длине шага. В соответствии с этим критерием, сумма глубины ступени и двух высот должна равняться средней длине шага. Средняя длина шага человека – 63 см.
  2. Глубина ступени. Комфортная глубина ступеней – от 28 см. При заданной длине проёма, регулировать глубину ступени можно изменением выступа.
  3. Угол наклона лестницы. Оптимальный угол наклон лестницы – от 30° до 40°. При углах наклона от 20° до 30° и от 40° до 45° уровень комфорта перемещения между этажами существенно снижается. Углы наклона, выходящие за указанные выше пределы, могут существенно повлиять на скорость перемещения между этажами и уровень безопасности лестницы.

По результатам оценки конкретной конструкции выдаётся показатель уровня удобства по каждому из критериев, а лестнице присваивается общий уровень удобства. Калькулятор металлической лестницы с тетивой зигзаг оценивает, соответствует ли она общеизвестным критериям удобства, но всегда надо помнить, что Ваша лестница в Вашем доме должна максимально эффективно служить Вашим целям. И если, в соответствии с этими целями, Вам необходимо построить самую нестандартную лестницу в мире – дерзайте.

Если есть необходимость улучшить конструкцию лестницы, калькулятор выдает совет, как это сделать:

  1. Уменьшить/увеличить количество ступеней;
  2. Увеличить выступ ступеней (если глубина ступеней недостаточная для комфортной ходьбы);
  3. Уменьшить/увеличить длину проёма.

После проведения корректировки конструкции, нормируемые параметры станут ближе к идеалу, но, возможно, подобную корректировку придётся проводить ещё несколько раз.

Инструкция к калькулятору металлической лестницы с тетивой зигзаг

Для того, чтобы осуществить расчёт металлической лестницы с тетивой зигзаг, используя калькулятор, необходимо знать высоту этажа, размер пространства, которое Вы можете выделить под лестницу, материалы, с которых Вы собираетесь её строить, и, конечно же, цели её использования. Перед тем как приступить к работе, необходимо тщательно продумать все нюансы: примыкает ли лестница к стене, или соприкасается с элементами интерьера дома, и как это должно отразится на самой конструкции и процессе её постройки. Возможно, для выбора правильного варианта по размерам и по конструкции, Вам придётся, используя калькулятор, рассчитать и сравнить несколько. Перед началом обработки материала удостоверьтесь, что чертежи деталей соответствуют лестнице, которая подходит именно для Вас и Ваших целей. При постройке прикрепляйте детали друг к другу, а саму лестницу к дому так, чтобы можно было гарантировать надёжность и прочность конструкции на протяжении десятилетий.

Лестницы на металлических тетивах, представленные на нашем сайте можно разделить на категории по четырём зависящим друг от друга критериям:

1. Габарит по длине

а. Максимальная длина – все ступени размещены на одном марше;

б. Средняя длина – ступени размещены на двух маршах;

2. Габарит по ширине

а. Максимальная ширина – ступени размещены на двух маршах, габарит по ширине регулируется изменением количества ступеней на соответствующей паре тетив;

б. Средняя ширина – ступени размещены на двух параллельных маршах, габарит по ширине равен двум ширинам лестницы;

в. Минимальная ширина – все ступени размещены на одном марше, габарит по ширине равен ширине лестницы;

3. Сложность изготовления

а. Простая в изготовлении – изготавливается из тетив и прямоугольных ступеней;

б. Средняя ложность изготовления – изготавливается из тетив, прямоугольных ступеней и площадок.

4. По виду тетив и креплению ступеней к ним, лестницы делятся на две категории:

а. На опорах – тетива представляет собой цельную балку, к которой прикреплены опоры для ступеней;

б. С тетивой зигзаг – тетива состоит из множества взаимоперпендикулярных частей, расположенных горизонтально и вертикально.

В каждой конкретной ситуации высота этажа уже задана. Исходя из собственных предпочтений, Вы можете выбрать уровень удобства: или выдержаны критерии удобства, или лестница более пологая, или более крутая и т. д.. Имея эту информацию, можно говорить о количестве подъёмов (ступеней и площадок) в той или иной конкретной ситуации.

Представим, что у нас, например, 13 подъёмов – ступеней и площадок. Конструкция лестницы – это форма этих подъёмов (ступени, площадки) и то, как эти 13 подъёмов размещены друг относительно друга.

Представим, что у нас, например, 13 подъёмов — ступеней и площадок. Конструкция лестницы — это форма этих подъёмов (ступени, площадки) и то, как эти 13 подъёмов размещены друг относительно друга. Расчет лестницы из металла в нашем калькуляторе осуществляется нижеприведёнными способами.

Можно все эти 13 подъёмов разместить в один ряд по длине проёма — «Металлическая лестница», «Металлическая лестница с тетивой зигзаг«. В этом случае Ваша лестницы будет иметь максимальный габарит по длине, минимальный габарит по ширине и будет не сложна в изготовлении. Рассчитать металлическую лестницу на второй этаж можно с помощью удобной и интуитивно понятной программы.

Можно эти 13 подъёмов разместить в 2 ряда, повёрнутых друг относительно друга на 90° (при виде сверху) — «Металлическая лестница с поворотом на 90°«, «Металлическая лестница с поворотом на 90° и тетивой зигзаг» (например, 4 ступени на нижнем марше, площадка и 8 ступеней на верхнем марше). В этих случаях Ваша лестница будет иметь средний габарит по длине и регулируемый габарит по ширине. Расчет ступеней металлической лестницы поможет правильно рассчитать объёмы материала, который понадобится на выполнение данной работы.

Можно эти 13 подъёмов разместить в 2 параллельных (при виде сверху) размещённых рядом ряда — «Металлическая лестница с поворотом на 180°», «Металлическая лестница с поворотом на 180° и тетивой зигзаг» (например, 4 ступени на нижнем марше, площадка и 8 ступеней на верхнем марше). В этих случаях Ваша лестница будет иметь средний габарит по длине и средний габарит по ширине.

Калькуляторы расчёта металлических лестниц, которые представлены на нашем сайте:

    – 1.а.-2.в.-3.а.-4.а.
  • Металлическая лестница с тетивой зигзаг – 1.а.-2.в.-3.а.-4.б. – 1.б.-2.а.-3.б.-4.а. – 1.б.-2.а.-3.б.-4.б. – 1.б.-2.б.-3.б.-4.а. – 1.б.-2.б.-3.б.-4.б.

Данная конструкция актуальная в ситуации, когда Вы хотите простую в изготовлении железную лестницу, с длиной, зависящей от высоты перемещения (при выдержке критериев удобства) и которая бы не занимала много места по ширине.

3D Расчет металлической лестницы с поворотом 90 градусов

Высота проема: Y Длина проема: X Ширина лестницы: W Толщина ступеней: Z Выступ края ступеней: F Толщина тетивы: A Ширина тетивы: G Толщина опоры: B Высота ступени над тетивой: H Размер: D Угол: U Количество ступеней на верхней тетиве: C1 Количество ступеней на нижней тетиве: C2 Тетива: T

Параметры металлической лестницы с поворотом на 90 градусов


Рис. 1 Общий чертеж лестницы

  • Y — высота проёма – как правило определяется высотой этажей Вашего дома
  • X — длина проема – зависит от того, сколько места Вы можете выделить в своём доме для лестницы
  • W — ширина лестницы – зависит от того, сколько места Вы можете выделить в своём доме для лестницы
  • Z — толщина ступеней – геометрический параметр материала (например, досок), из которых Вы планируете строить лестницу
  • F — выступ ступеней – расстояние на которое верхняя ступень будет нависать над нижней
  • A — толщина тетевы – геометрический параметр материала (например, труб), из которых Вы планируете делать тетиву лестницы
  • G — ширена тетевы – геометрический параметр материала (например, труб), из которого Вы планируете делать тетиву лестницы
  • B — толщина опоры – геометрический параметр материала (например, труб), из которого Вы планируете делать опоры лестницы
  • H — высота ступени над тетивой – расстояние между ступенью и тетивой по вертикали
  • D — размер – расстояние, на которое ступень будет свисать за опору по направлению подъёма
  • U — угол наклона опоры к вертикали
  • C1 — количество ступеней на верхней тетиве – зависит от Ваших предпочтений и геометрических характеристик дома
  • C2 — количество ступеней на нижней тетиве – зависит от Ваших предпочтений и геометрических характеристик дома
  • T — тетива – количество тетив – зависит от Ваших предпочтений и потенциальной нагрузки, которую будет воспринимать лестница


Рис. 2 Обозначение ступеней


Рис. 3 Вид лестниц с разным количеством тетив

Функция “Верхняя ступень ниже пола 2 этажа: SP”


Рис. 4 Исполнение лестницы с верхней ступенью ниже пола 2 этажа

Выбор того, или иного взаиморазмещения может зависеть от: толщины межэтажных перекрытий, желаемого взаимоотношения количества ступеней и их высоты, длины заготовок для косоуров и длины проёма, желаемого угла наклона лестницы, используемого количества металла, или просто вкусов и предпочтений хозяина дома. Обратите внимание, на рисунке, на котором верхняя ступень ниже пола 2 этажа, толщина межэтажного перекрытия больше, чем на рисунке, на котором, верхняя ступень на уровне пола 2 этажа. При толщине перекрытия, меньше высоты ступеньки, косоур просто не упрётся в перекрытие (поэтому при демонстрации второго варианта, эту толщину пришлось увеличить).


Рис. 5 Черно-белый чертеж лестницы

  1. Если Вы привыкли работать со стандартными ГОСТировыными чертежами, и, соответственно, лучше воспринимаете графику без цветового наполнения.
  2. Если Вы собираетесь распечатать результаты работы калькулятора. Тогда и меньше краски/тонера потратите и визуальное восприятие рисунков на бумаге будет лучше. И, конечно же, данная функция используется при печати на чёрно-белом принтере.


Рис. 6 Вид лестниц с разными направлениями подъема

Расчет лестницы из металла 90°

  1. Информация, необходимая для изготовления тетив, рамы площадки и их соединения
  2. Информация, необходимая для изготовления ступеней и площадки

Согласно этой информации, выполняется расчет металлической лестницы 90 градусов и изготавливаются детали, из которых собирается конструкция.

  1. Соответствие конструкции средней длине шага. В соответствии с этим критерием, сумма глубины ступени и двух высот должна равняться средней длине шага. Средняя длина шага человека – 63 см.
  2. Глубина ступени. Комфортная глубина ступеней – от 28 см. При заданной длине проёма, регулировать глубину ступени можно изменением выступа.
  3. Угол наклона лестницы. Оптимальный угол наклон лестницы – от 30° до 40°. При углах наклона от 20° до 30° и от 40° до 45° уровень комфорта перемещения между этажами существенно снижается. Углы наклона, выходящие за указанные выше пределы могут существенно повлиять на скорость перемещения между этажами и уровень безопасности лестницы.

По результатам оценки конкретной конструкции выдаётся показатель уровня удобства по каждому из критериев, а лестнице присваивается общий уровень удобства. Калькулятор металлической лестницы с поворотом 90° оценивает, соответствует ли лестница общеизвестным критериям удобства, но всегда надо помнить, что железная лестница в Вашем доме должна максимально эффективно служить Вашим целям. И если, в соответствии с этими целями, Вам необходимо построить самую нестандартную лестницу в мире — дерзайте.

Инструкция к калькулятору металлической лестницы с поворотом 90 градусов

Для того, чтобы осуществить расчет лестницы из металла с поворотом на 90 градусов, используя данный калькулятор, необходимо знать высоту этажа, размер пространства, которое Вы можете выделить под лестницу, материалы, с которых Вы собираетесь её строить, и, конечно же, цели её использования. Перед тем как приступить к работе, необходимо тщательно продумать все нюансы: примыкает ли лестница к стене, или соприкасается с элементами интерьера дома, и как это должно отразится на самой конструкции и процессе её постройки. Возможно, для выбора правильного варианта по размерам и по конструкции, Вам придётся, используя калькулятор, рассчитать и сравнить несколько. Перед началом обработки материала удостоверьтесь, что чертежи деталей соответствуют лестнице, которая подходит именно для Вас и Ваших целей. При постройке прикрепляйте детали друг к другу, а саму лестницу к дому так, чтобы можно было гарантировать надёжность и прочность конструкции на протяжении десятилетий.

б. Средняя сложность изготовления – изготавливается из тетив, прямоугольных ступеней и площадок.

Можно все эти 13 подъёмов разместить в один ряд по длине проёма — «Металлическая лестница», «Металлическая лестница с тетивой зигзаг ». В этом случае Ваша лестницы будет иметь максимальный габарит по длине, минимальный габарит по ширине и будет не сложна в изготовлении. Рассчитать металлическую лестницу на второй этаж можно с помощью удобной и интуитивно понятной программы.

    – 1.а.-2.в.-3.а.-4.а. – 1.а.-2.в.-3.а.-4.б.
  • Металлическая лестница с поворотом на 90° – 1.б.-2.а.-3.б.-4.а. – 1.б.-2.а.-3.б.-4.б. – 1.б.-2.б.-3.б.-4.а. – 1.б.-2.б.-3.б.-4.б.

Данная конструкция актуальна в ситуации, когда Вы хотите лестницу в два пролёта, а количество пространства в том месте, где её необходимо разместить, ограничено.

Расчет лобовой балки в сборной лестнице по металлическим косоурам

Балку, на которую опирается лестничная площадка и косоуры называют лобовой. В этой статье мы рассмотрим особенности расчета такой балки.

Итак, у нас имеется кирпичная лестничная клетка. В уровне каждой площадки стены опираются металлические балки из швеллеров, а к этим балкам привариваются наклонные металлические косоуры. На балки опираются монолитные железобетонные лестничные площадки, на косоуры опираются сборные железобетонные ступени.

Схема лестницы

Рассчитаем лобовую балку, на которую опираются косоуры на отметке +3,000.

Собираем нагрузку на балку

Рассмотрим схему нагрузок на лобовую балку.

Во-первых, на нее приходится равномерно распределенная нагрузка от веса половины лестничной площадки, от временной нагрузки на этой площадке и нагрузка от собственного веса швеллера.

Во-вторых, на балку действует четыре сосредоточенные нагрузки от косоуров.

Нагрузка на лобовую балку

Определим нагрузку от собственного веса половины площадки (вторая половина приходится на другую балку). Ширина площадки 1350 мм, толщина 150 мм, объемный вес бетона 2,5 т/м³:

0,5∙1,35∙0,15∙2,5= 0,25 т/м – нормативная нагрузка;

1,1∙0,25 = 0,28 т/м – расчетная нагрузка.

Определим нагрузку от собственного веса швеллера, принимая его для начала №16 (вес 1 погонного метра швеллера равен 14,2 кг):

0,014 т/м – нормативная нагрузка;

1,05∙0,014 = 0,015 т/м – расчетная нагрузка.

Суммарная постоянная равномерно распределенная нагрузка на балку равна:

0,25 + 0,014 = 0,26 т/м – нормативная постоянная нагрузка;

0,28 + 0,015 = 0,3 т/м – расчетная постоянная нагрузка.

Определим временную равномерно распределенную нагрузку на балку. Площадь сбора нагрузки у нас с половины площадки, величина временной нагрузки 300 кг/м². В итоге:

0,5∙1,35∙0,3 = 0,2 т/м – нормативная временная нагрузка;

0,2∙1,2 = 0,24 т/м – расчетная временная нагрузка.

Полная равномерно распределенная нагрузка на балку равна:

qн = 0,26 + 0,2 = 0,46 т/м – нормативная полная нагрузка;

qр = 0,3 + 0,24 = 0,54 т/м – расчетная полная нагрузка.

Определим сосредоточенную нагрузку на балку от каждого косоура. Для этого нам нужно выяснить, какие нагрузки приходятся на косоур:

1) собственный вес половины косоура. Допустим, у нас косоур из швеллера №16, длина косоура 3,7 м, тогда вес половины косоура будет равен:

0,5∙0,0142∙3,7 = 0,026 т – нормативная нагрузка;

0,026∙1,05 = 0,028 т – расчетная нагрузка.

2) Вес ступеней. Так как каждая ступень опирается на два косоура, то нам нужно брать половину от веса каждой ступени. Косоур у нас опирается на две балки – вверху и внизу, т.е. на нашу балку приходится нагрузка с половины косоура, т.е. и от половины ступеней. Всего на косоур опирается 12 ступеней, и мы возьмем вес половины, т.е. 6 ступеней (5 основных массой 111 кг и 1 доборная массой 87 кг). Таким образом, сосредоточенная нагрузка на площадку от ступеней равна:

0,5∙(5∙0,111 + 1∙0,087) = 0,321 т – нормативная нагрузка;

1,1∙0,321 = 0,353 т – расчетная нагрузка.

3) Временная нагрузка от веса людей (300 кг/м²). Площадь сбора этой нагрузки определяется по тому же принципу, как и сбор нагрузок от собственного веса ступеней: берется половина площади шести ступеней. Нам известно, что площадь одной ступени равна 1,05х0,3 = 0,32 м², тогда временная сосредоточенная нагрузка от косоура равна:

0,5∙0,32∙6∙0,3 = 0,29 т – нормативная;

0,29∙1,2 = 0,35 т – расчетная.

Полная сосредоточенная нагрузка на лобовую балку от одного косоура равна:

Рн = 0,026 + 0,321 + 0,29 = 0,64 т – нормативная;

Рр = 0,028 + 0,353 + 0,35 = 0,73 т – расчетная.

Определим расчетный пролет балки.

Пролет балки в свету между стенами равен 2,2 м. Глубина опирания балки на стену равна 0,25 м с каждой стороны. Чтобы получить размер расчетного пролета, нужно к пролету в свету добавить по 1/3 глубины опирания балки с каждой стороны:

L₀ = 2.2 + 2∙0,25/3 = 2,4 м.

Вычислим максимальный нормативный изгибающий момент, действующий на балку

Расчетная схема балки показана на рисунке ниже. На балке выделено 6 точек, которые разбивают ее на 5 участков.

Расчетная схема

Для начала заменим распределенную нагрузку на каждом участке на сосредоточенную воспользовавшись формулой: N = qн∙L . Результаты сведем в таблицу.

Перевод распределенной нагрузки в сосредоточенную

В итоге, у нас получится следующая расчетная схема:

Расчетная схема балки

R1 и R6 – опорные реакции балки.

Найдем сумму моментов относительно точки 1, умножая каждую из сил на расстояние до опоры:

Сумма моментов относительно точки 1

Зная, что момент на шарнирной опоре равен нулю, составим уравнение и найдем реакцию R6:

ΣМ1 = -4.397 + 2,4R6 = 0, отсюда R6 = 4.397/2,4 = 1,832 т.

Так как расчетная схема симметрична, сумма моментов относительно точки 6 и реакция R1 будут равны:

ΣМ6 = -4.397 + 2,4R1 = 0, отсюда R1 = 4.397/2,4 = 1,832 т.

Выполним проверку, зная, что сумма всех вертикальных сил должна быть равна нулю:

Проверочный расчет

Проверка выполняется, реакции R6 и R1 определены верно.

Определим моменты в точках 1-6, зная, что на шарнирных опорах момент равен нулю, а в пролете момент равен сумме сил, расположенных по одну сторону от точки, каждая из которых умножена на расстояние от точки приложения силы до точки, в которой определяется момент.

М2 = 0,15∙R1+ 0,075∙N1-2 = 0,15∙1,832 + 0,075∙(-0,07) = 0,27 т∙м.

М3 = 1,1∙R1+ 1,025∙N1-2 + 0,95∙Р2 + 0,475∙ N2-3 = 1,1∙1,832 + 1,025∙(-0,07) + 0,95∙(-0,64) + 0,475∙(-0,44) = 1,13 т∙м.

М4 = 1,3∙R1+ 1,225∙N1-2 + 1,15∙Р2 + 0,675∙ N2-3 + 0,2∙Р3 + 0,1∙ N3-4 = 1,3∙1,832 + 1,225∙(-0,07) + 1,15∙(-0,64) + 0,675∙(-0,44) + 0,2∙(-0,64) + 0,1∙(-0,09) = 1,13 т∙м.

М5 = 2,25∙R1+ 2,175∙N1-2 + 2,1∙Р2 + 1,625∙ N2-3 + 1,15∙Р3 + 1,05∙ N3-4 + 0,95∙Р4 + 0,475∙ N4-5 = 2,25∙1,832 + 2,175∙(-0,07) + 2,1∙(-0,64) + 1,625∙(-0,44) + 1,15∙(-0,64) + 1,05∙(-0,09) + 0,95∙(-0,64) + 0,475∙(-0,44) = 0,27 т∙м.

Определим момент М0 в точке 0 в середине пролета. Для этого распределенную нагрузку на участке 3-0 заменим сосредоточенной по формуле N = qн∙L = 0,57∙0,1 = 0,06 т.

М0 = 1,2∙R1+ 1,125∙N1-2 + 1,05∙Р2 + 0,575∙ N2-3 + 0,1∙Р3 + 0,05∙ N3-4 = 1,2∙1,832 + 1,125∙(-0,07) + 1,05∙(-0,64) + 0,575∙(-0,44) + 0,1∙(-0,64) + 0,05∙(-0,09) = 1,13 т∙м.

Построим эпюру нормативных моментов согласно найденным значениям.

Вычислим максимальный расчетный изгибающий момент, действующий на балку

Расчетный изгибающий момент вычисляется аналогично нормативному, только в ходе расчета вместо нормативных значений нагрузок подставляются расчетные.

В итоге расчета у нас получатся следующие значения расчетных моментов:

Эпюра расчетных моментов будет следующая:

Расчет лобовой балки - эпюра расчетных моментов

Определим сечение лобовой балки

По имеющимся данным мы можем подобрать сечение швеллера (см. книгу Я.М. Лихтарников «Расчет стальных конструкций» стр. 60-61 или книгу Васильев А.А. «Металлические конструкции» §24).

Максимальные моменты в сечении балки:

расчетный момент Мр = 1,3 т∙м = 1300 кг∙м;

нормативный момент Мн = 1,13 т∙м = 1130 кг∙м.

Найдем требуемый момент сопротивления для балки:

Wтр = М р /1,12R = 1300/(1,12∙21) = 55,3 см 3 . Из сортамента выбираем швеллер №14 (Wх = 70,2 см³; Iх = 491 см 4 ).

Читайте также: