Растворимый гидроксид активного металла

Обновлено: 17.05.2024

Основания являются классом неорганических веществ, применяемым в жизни с давних времен за счет ощущения мылкости. Главное отличие этого класса неорганических веществ от остальных - наличие гидроксогруппы, которая придает особые физические и химические свойства.

Основания бывают растворимыми (щелочи) и нерастворимыми. Растворимые основания мылкие на ощупь. Все основания вступают в реакцию нейтрализации - взаимодействие с кислотой. С развитием химии и изучением физических и химических свойств основания расширили круг своего применения: бытовые моющие средства, промышленные чистящие средства, очистка нефти, строительство, краски, удобрения, батарейки. Также стало широко использоваться одно из химических свойств оснований - взаимодействие с кислотами, которое называется реакцией нейтрализацией. Однако основания таят в себе опасность: с растворами щелочей надо работать аккуратно и осторожно, чтобы не получить химических ожогов.

Определение, номенклатура и классификация оснований

Основания – сложные вещества, в состав которых входят атомы металлов, соединенные с одним или несколькими гидроксогруппами (-ОН).

Гидроксид-ион(гидроксогруппа) – сложный ион, состоящий из кислорода и водорода и имеющий суммарный заряд 1- : О -2 Н +1 . Валентность гидроксогруппы равна 1.

Общая формула оснований : М(ОН)n, где М – металл, n- число групп ОН - и в то же время численное значение заряда иона (степени окисления) металла.

Слово «гидроксид» (им.падеж) + название металла (род.падеж) + указание степени окисления, если она переменная, римскими цифрами в скобках

NaOH – гидроксид натрия
Ca(OH)2 – гидроксид кальция
Fe(OH)2 – гидроксид железа (II) (читается «гидроксид железа два»)
Fe(OH)3 – гидроксид железа (III) (читается «гидроксид железа 3»)

Наличие кислорода;Кислородсодержащие;\(KOH, Sr(OH)_<2>\) ;Бескислородные;\(NH_\) как аммиачная вода Кислотность (число групп \(ОН^\) в составе или число присоединяемых \(Н^\));Однокислотные;\(NaOH, TlOH, NH_\) ;Двухкислотные;\(Ca(OH)_<2>, Mg(OH)_<2>\) ;Трёхкислотные;\(La(OH)_, TI(OH)_\) Растворимость в воде;Растворимые (щелочи);\(NaOH, KOH, Ca(OH)_<2>^\), \(Ba(OH)_<2>\) ;Нерастворимые;\(Cr(OH)_<2>, Mn(OH)_<2>\) Степень электролитической диссоциации;Сильные (α→1);\(Щелочи^ LiOH-CsOH\), \(Ca(OH)_<2>-Ra(OH)_<2>\) , \(TlOH\) ;Слабые (α→0);Нерастворимые основания Летучесть;Летучие;\(NH_∙H_<2>O\) ;Нелетучие;Щелочи, нерастворимые основания Стабильность;Стабильные;\(NaOH, Ba(OH)_<2>\) ;Нестабильные;\(NH_∙H_<2>O→ NH_↑+H_<2>O\)

Ca(OH)2 – в таблице растворимости малорастворим (м), но его относят к растворимым основаниям. К малорастворимым веществам относятся вещества, которые растворяются ограниченно – менее 1 г в 100 г воды. Это означает следующее: если в стакан, содержащий 100 г воды, поместить 10 г кристаллического гидроксида кальция, то 1 г вещества растворится, а остальные 9 г – нет. Прозрачная жидкость над осадком будет представлять собой раствор щелочи – гидроксида кальция Ca(OH)2.

Щелочи – растворимые основания. Их образуют элементы-металлы главной подгруппы первой группы (А-группы) периодической системы, а также элементы главной подгруппы второй группы (A-группы): кальций, барий и стронций. Свойства растворимых и нерастворимых оснований существенно различаются.

Получение оснований

Основания получают разными способами. Выбор способа получения зависит от того, к какой группе данное соединение относится, является щёлочью или нерастворимым основанием.

Взаимодействием щелочных и щелочноземельных металлов с водой . Протекает реакция замещения, в ходе которой кроме щёлочи образуется водород. Активные металлы энергично взаимодействуют с водой при обычных условиях.

М + Н2О = Растворимое основание (Щелочь) + Н2
Где М – щелочные и щелочноземельные металлы.

Взаимодействием оксидов щелочных и щелочноземельных металлов с водой . При этом протекает реакция соединения. Именно так получают гидроксид кальция в промышленных условиях.

В промышленности гидроксид натрия и калия получают путём электролиза : пропускают постоянный электрический ток через раствор хлорида натрия или калия.

Действием щелочей на растворимые соли металлов.

Раствор щелочи + раствор соли = нерастворимое основание + соль

Свойства основания

Все неорганические основания – твердые вещества (кроме гидроксида аммония NH4OH), которые характеризуются разной растворимостью в воде.

Гидроксиды щелочных металлов при обычных условиях представляют собой твердые белые кристаллические вещества, гигроскопичные, мылкие на ощупь, очень хорошо растворимы в воде (их растворение идет с выделением тепла), легкоплавки.

Гидроксиды щелочноземельных металлов (Ca(OH)2, Ba(OH)2, Sr(OH)2) – белые порошкообразные вещества, гораздо менее растворимые в воде по сравнению с гидроксидами щелочных металлов.

Нерастворимые в воде основания обычно образуются в виде гелеобразных (студенистых) осадков, разлагающихся при хранении.

Нерастворимые в воде основания могут иметь различную окраску, например: гидроксид железа (III) – бурого цвета, гидроксид алюминия - белого цвета, гидроксид меди (II) – голубого цвета.

Растворимый гидроксид активного металла

Когда Волька перешел в восьмой класс, ему очень понравился новый учебный предмет - Химия. Разумеется, и старик Хоттабыч стал осваивать эту волшебную науку.

Задача 1.

  1. Наука, изучающая вещества и их превращения.
  2. Тип реакции, с помощью которой получают кислород в лаборатории.
  3. Его используют, чтобы отличить кислоту от щелочи.
  4. Устройство для нагревания пробирок.
  5. Реакцию ускоряет, а сам не расходуется.
  6. Pb - латинское название элемента
  7. Элемент, в названии которого встречаются два существа, а формула оксида - Э2О5.
  8. Растворимый гидроксид активного металла.

Украшения (вписать символ целиком):

9. Символ элемента, сначала открытого на солнце, а теперь используемого для надувания шариков.

10. Символ элемента, предсказанного Д.И. Менделеевым, на внешнем уровне - 4 электрона.

11. Символ элемента, который в виде простого вещества является основной частью атмосферы.

Задача 2.

  1. Как называется "злой дух", сидевший в бутылочке, в современных учебниках химии?
  2. Сколько грамм этого вещества было в растворе?
  3. Какой объем (в литрах, округлить до сотых) заняло облачко этого газообразного вещества, если условия на улице были нормальные?

Задача 3.

  1. Какое вещество мог исследовать Хоттабыч на кухне (формула)?
  2. Как называются положительные(2а) и отрицательные(2б) "шарики", из которых состоит кристалл вещества? Как называется тип химической связи в этом веществе? (2в)
  3. Сколько примерно лет могло уйти у Хоттабыча на пересчет всех "шариков" в маленьком кристалле массой 0,585 мг, если Хоттабыч мог отсчитывать по миллиону "шариков" в секунду? Считать, что год состоит из 365 дней.

Задача 4.

Вечером Хоттабыч вместе с Волькой пошли на занятие химического кружка. Но Хоттабычу там не доверили провести ни одного опыта, ведь он не прошел инструктаж по технике безопасности! Когда занятия окончились, огорченный старик потихоньку отстал от ребят и прямо сквозь запертые двери вернулся в кабинет химии. Полюбовавшись на стеклянные колбочки и пробирки, на банки с разноцветными веществами, Хоттабыч выбрал склянку с непонятной этикеткой "H2SO4, раствор" и смело разлил этот раствор в четыре стаканчика. Затем он взял еще четыре склянки с растворами, на которых были все также непонятные Хоттабычу этикетки: "Na2CO3", "KNO3", "BaCl2", "NaOH".

"Начнем" - в первый стаканчик Хоттабыч прилил один из четырех растворов. Жидкость в стаканчике мигом побелела. "Хорошо", - прошептал довольный старик, "теперь я без заклинаний смогу превращать воду в молоко".

Во второй стаканчик был прилит другой раствор, но там ничего не происходило. Хоттабыч осторожно потрогал стаканчик рукой, и заметил, что он заметно согрелся.

В третьем стаканчике вообще ничего не произошло - "какой-то испорченный эликсир", решил Хоттабыч. Уже смело он плеснул в четвертый стаканчик из оставшейся бутылочки, и тут раздалось громкое шипение, и вспенившийся раствор полился через край стаканчика.

  1. Растворы каких веществ приливал Хоттабыч в каждый стаканчик с серной кислотой? (названия)
  2. Охарактеризуйте реакцию в стаканчике 2, для этого из прилагаемого списка выпишите все подходящие термины. Это реакция
    1. разложения; 2. соединения; 3. обмена; 4. замещения; 5. нейтрализации; 6. экзотермическая; 7. эндотермическая; 8. окислительно-восстановительная.

Со следующего дня старик Хоттабыч основательно засел за учебник Химии -
ведь впереди его ждала химическая олимпиада!

Основания


О чем эта статья:

Основания (гидроксиды) — это сложные вещества, которые состоят из катиона металла и гидроксильной группы (OH).

Общая формула оснований: Me(OH)n, где Me — химический символ металла, n — индекс, который зависит от степени окисления металла.

Примеры оснований: NaOH, Ba(OH)2, Fe(OH)2.

Названия оснований

Названия гидроксидов строятся по систематической номенклатуре следующим образом:

Пишем слово «гидроксид».

Указываем название второго химического элемента в родительном падеже.

Если второй элемент имеет переменную валентность, то указываем валентность элемента в этом соединении в скобках римской цифрой.

Примеры названий оснований:

Ni(OH)2 — гидроксид никеля (II);

Al(OH)3 — гидроксид алюминия.

У некоторых оснований существуют и тривиальные названия. Собрали их в таблице.

Тривиальные названия некоторых оснований

Классификация оснований

По растворимости в воде

В зависимости от растворимости в воде выделяют:

щелочи. Эти основания растворимы в воде: NaOH, KOH, Ba(OH)2 и другие. Ca(OH)2, хотя малорастворим, тоже относится к щелочам из-за своей едкости;

нерастворимые основания. К таким основаниям относятся Fe(OH)2, Cu(OH)2 и другие;

амфотерные гидроксиды. К амфотерным относятся те основания, которые образованы металлами со степенью окисления +3 или +4. Эти основания отличаются тем, что проявляют как основные свойства, так и кислотные.

Также есть основания, которые относятся к амфотерным, но образованы металлом с иной степенью окисления: Zn(OH)2, Pb(OH)2, Sn(OH)2, Be(OH)2.

Напомним, что растворимость мы проверяем по таблице растворимости кислот и оснований в воде.

По числу гидроксогрупп

В зависимости от количества гидроксильных групп, способных замещаться на кислотный остаток, выделяют следующие виды оснований:

однокислотные: KOH, NaOH;

Физические свойства оснований

Основания при обычных условиях — это твердые кристаллические вещества без запаха, нелетучие, чаще всего белого цвета. В таблице приведены основания, которые имеют иную окраску.

Гидроксид лития LiOH

Гидроксид магния Mg(OH)2

Гидроксид кальция Ca(OH)2

Химические свойства оснований

Растворы щелочей изменяют окраску индикатора

Гидроксид-ионы, которые содержатся в растворе щелочи, взаимодействуют с индикатором, образуя новые соединения. Признак реакции — окраска раствора.

Взаимодействие с кислотными оксидами

Щелочи вступают в реакцию с любыми кислотными оксидами. Нерастворимые основания взаимодействуют только с кислотными оксидами, которые соответствуют сильным кислотам.

Кислотный оксид + основание = соль + вода

Взаимодействие с кислотами

Щелочи вступают в реакцию со всеми кислотами. Нерастворимые основания могут взаимодействовать только с сильными кислотами.

Основание + кислота = соль + вода

Взаимодействие основания с кислотой называют реакцией нейтрализации — это частный случай реакции обмена.

Взаимодействие с солями

Основания взаимодействуют с растворимыми солями по обменному механизму. В результате такой реакции должен выделиться осадок или газ (CO2, SO2, NH3).

Основание + соль = другое основание + другая соль

Термическое разложение

При нагревании нерастворимые основания разлагаются на соответствующий оксид (степень окисления металла остается неизменной) и воду.

Нерастворимое основание оксид металла + вода

Взаимодействие амфотерных гидроксидов со щелочами

Продукты реакции зависят от условий ее проведения.

При сплавлении двух оснований:

Амфотерный гидроксид (тв) + щелочь (тв) = средняя соль + вода

Если реакция проводится в растворе:

Амфотерный гидроксид (р-р) + щелочь (р-р) = комплексная соль

Взаимодействие металла с водой

Активные металлы (металлы групп IA и IIA, кроме Be и Mg) активно взаимодействуют с водой при обычных условиях с образованием щелочей.

Нерастворимые основания данным способом получить невозможно, за исключением Mg(OH)2.

Металл + вода = гидроксид металла + водород

Гидроксид магния можно получить данным способом, но только при нагревании:

Взаимодействие оксидов щелочных и щелочноземельных металлов с водой

Этим способом получают только растворимые в воде основания.

Оксид металла + вода = щелочь

Электролиз

Гидроксид натрия и калия в промышленности получают с помощью электролиза — через раствор хлорида калия проводят постоянный электрический ток:

Электролиз хлорида натрия протекает по аналогичной схеме.

Получение нерастворимых оснований при взаимодействии соли со щелочью

Растворимая соль + щелочь = нерастворимое основание + другая соль

Вопросы для самопроверки

Вспомните определение оснований и приведите 2 примера этих веществ.

Какие виды оснований существуют? Чем они отличаются?

К какому виду оснований относится Zn(OH)2?

Взаимодействуют ли основания с основными оксидами? Приведите примеры веществ, с которыми основания вступают в реакцию.

Можно ли получить гидроксид алюминия с помощью взаимодействия алюминия с водой?

Основания и другие темы по химии изучать интереснее, когда понимаешь, как применять знания в реальной жизни. На онлайн-курсах по химии в Skysmart преподаватели приводят яркие примеры: от процессов в природе до использования химических реакций в промышленности. Приходите учиться — вводный урок бесплатный!

Химические свойства металлов


Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

8 класс, 9 класс, ЕГЭ/ОГЭ

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Таблица «Химические свойства металлов»

Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb

Cu, Hg, Ag, Pt, Au

Восстановительная способность металлов в свободном состоянии

Возрастает справа налево

Взаимодействие металлов с кислородом

Быстро окисляются при обычной температуре

Медленно окисляются при обычной температуре или при нагревании

Взаимодействие с водой

Выделяется водород и образуется гидроксид

При нагревании выделяется водород и образуются оксиды

Водород из воды не вытесняют

Взаимодействие с кислотами

Вытесняют водород из разбавленных кислот (кроме HNO3)

Не вытесняют водород из разбавленных кислот

Реагируют с концентрированными азотной и серной кислотами

С кислотами не реагируют, растворяются в царской водке

Взаимодействие с солями

Не могут вытеснять металлы из солей

Более активные металлы (кроме щелочных и щелочноземельных) вытесняют менее активные из их солей

Взаимодействие с оксидами

Для металлов (при высокой температуре) характерно восстановление неметаллов или менее активных металлов из их оксидов

Основания (гидроксиды). Свойства, получение, применение

Гидроксид хрома

Ещё со школы нам известно, что основаниями называют соединения, где атомы металла связаны с одной или несколькими гидроксогруппами — KOH, Ca(OH)2 и т. п. Однако понятие «основания» на самом деле шире, и существует две теории оснований — протонная (теория Брёнстеда — Лоури) и электронная (теория Льюиса). Основания и кислоты Льюиса мы рассмотрим в отдельной статье, поэтому возьмём определение из теории Брёнстеда (далее в данной статье — только основания Брёнстеда): Основания (гидроксиды) — это вещества или частицы, способные принимать (отщеплять) протон от кислоты. Согласно такому определению, свойства основания зависят от свойств кислоты — например, вода или уксусная кислота ведут себя как основания в присутствии более сильных кислот:

Номенклатура оснований

Названия оснований образуются весьма просто — сначала идёт слово «гидроксид», а затем название металла, который входит в данное основание. Если металл имеет переменную валентность, это отражают в названии.

KOH — гидроксид калия
Ca(OH)2 — гидроксид кальция
Fe(OH)2 — гидроксид железа (II)
Fe(OH)3 — гидроксид железа (III)

Существует также основание NH4OH (гидроксид аммония), где гидроксогруппа связана не с металлом, а катионом аммония NH4 + .

Основания можно классифицировать по следующим признакам:

  1. По растворимости основания делят на растворимые — щёлочи (NaOH, KOH) и нерастворимые основания (Ca(OH)2, Al(OH)3).
  2. По кислотности (количеству гидроксогрупп) основания делят на однокислотные (KOH, LiOH) и многокислотные (Mg(OH2), Al(OH)3).
  3. По химическим свойствам их делят на оснóвные (Ca(OH)2, NaOH) и амфотерные, то есть проявляющие как основные свойства, так и кислотные (Al(OH)3, Zn(OH)2).
  4. По силе (по степени диссоциации) различают:
    а) сильные (α = 100 %) – все растворимые основания NaOH, LiOH, Ba(OH)2, малорастворимый Ca(OH)2.
    б) слабые (α < 100 %) – все нерастворимые основания Cu(OH)2, Fe(OH)3 и растворимое NH4OH.

Сила оснований

Для оснований можно количественно выразить их силу, то есть способность отщеплять протон от кислоты. Для этого используют константу основности Kb — константу равновесия для реакции между основанием и кислотой, причём в качестве кислоты выступает вода. Чем выше значение константы основности, тем выше сила основания и тем сильнее его способность отщеплять протон. Также вместо самой константы часто используют показатель константы основности pKb. Например, для аммиака NH3 имеем:

Читайте также: