Редкоземельные металлы для электроники

Обновлено: 02.05.2024

Осенью 2005 года я обзавелся первым мобильником и впервые всерьез задумался о прорывной новизне этих устройств. Осознал, что не припоминаю никакой фантастики, тем более – хорошей, где мобильник так лихо проникал бы во все сферы жизни. Винтажная громоздкость спасительных таксофонов из «Матрицы» и всякое отсутствие мобильников в очаровавшем меня тогда «Лабиринте отражений» поначалу не оставляли сомнений, что сотовый – это дорогая игрушка, которая вскоре выйдет из моды, разделив судьбу пейджеров. Прошла еще пара лет, и вся нелепость моих ретрофутурологических построений разбилась об iPhone. Для меня стало настоящим сатори, что в какой-то момент миниатюризация сотовых качнулась назад (айфон заметно подрос по сравнению с эриксоном), а телефон обзавелся накопителем и стал набирать вычислительную мощность.

Но не столь очевидно, что мобильные телефоны, целые поколения которых уже покоятся на свалках, также породили отдельное направление цветной металлургии – и актуализировали такую россыпь клеток в таблице Менделеева (попутно до неузнаваемости изменив социумы по обе стороны сборочной линии), что я хотел бы отдельно об этом поговорить.

Состав смартфона

Смартфон более чем наполовину состоит из редких и рассеянных металлов. Корпус в основном состоит из алюминия с примесью хрома, а многие другие металлы и полуметаллы присутствуют в смартфоне в аптекарских дозах – но в поразительном разнообразии. Вот краткая характеристика этих составляющих:

Плата Батарея Светодиоды Электроника (конденсаторы, резисторы, микрочипы и микропроцессоры) Корпус Сенсорный экран Провода и контакты Динамик и микрофон

Теперь давайте рассмотрим, как именно эти элементы расположены в таблице Менделеева:


Большинство легких металлов, химически стабильных переходных металлов и многие полуметаллы так или иначе применяются в корпусе и электронике смартфона. Но ключевые роли в функционировании устройства, в особенности – сенсорного экрана и батарей – играют редкоземельные металлы, а также компактно расположившиеся в центре таблицы металлы платиновой группы. Обратите внимание на выраженную вертикальную ориентацию групп в этой таблице (в том числе – на важнейшую триаду скандий-иттрий-лантан). Она подсказывает, как именно периодический закон позволяет подбирать элементы, у которых акцентированы полезные свойства – например, полупроводниковые – впервые найденные у какого-либо элемента в центре таблицы. Например, только в 2020 году во Фраунгоферовском институте стали исследовать экзотический сплав AlScN на подложке из кремния или оксида алюминия.


Скандий – не первый, а пока что последний элемент, который попытались добавить в динамики и микрофон гаджета. Он оптимизирует звукопередачу, уже обеспечиваемую лантановыми и неодимовыми компонентами. Но смартфон интересен именно как полигон, заставляющий методом проб и ошибок выжимать лучшее не из отдельных элементов, а из периодической системы. Более того, эволюция смартфона как прибора происходит почти молниеносно, а залежи использованных смартфонов уже логично расценивать как серьезный источник цветного металла.

Здесь подчеркну, что речь именно об использованных смартфонах. Развитие смартфонов сопровождается их миниатюризацией, а также подбором все более дешевых и эффективных сплавов. Соответственно, содержание ценных металлов в пересчете на одно устройство снижается, а не растет. Так, в 2005 году типичный мобильный телефон весил 113 г (без учета батареи), причем, на 25% устройство состояло из различных металлов. Самыми важными из них (по весу) были медь, железо, никель, серебро и цинк. В меньших количествах там содержались золото, свинец, марганец, палладий, платина, олово. Итак, в обычном телефоне было примерно 16 г меди, 350 мг серебра, 34 мг золота 15 мг палладия.


А вот содержание различных элементов в IPhone 6 по состоянию на 2017 год (с учетом батарей). Он весит 129 г против 116 г у вышеупомянутого старого мобильника. Меди стало немного больше (7,89 г против 6 г), золота стало существенно меньше (14 мг против 34 мг), а серебра, платины и палладия в нем нет вообще. Общая стоимость металлического сырья также ничтожна по сравнению со стоимостью смартфона ($199 за указанную модель). Для добычи этих 129 граммов требуется переработать около 34 килограммов различных руд. Кстати, в IPhone 6 меньше золота, чем было в iPhone 5 – вероятно, потому, что уменьшились и улучшились процессоры, и драгоценных металлов в них требуется меньше. Но уменьшение содержания металла в отдельном устройстве компенсируется увеличением количества самих мобильных устройств.

Подробнее остановимся на минералах, из которых добываются ключевые элементы, упомянутые выше.

Начнем с меди, которой в процентном отношении в смартфоне больше всего. Медь бывает самородной, но чаще добывается из халькопирита (CuFeS2)

В дисплее смартфона необходимо прокладывать прозрачные электрические цепи, которые делают из индиево-оловянного оксида. Олово также применяется в качестве припоя на платах. Основным источником олова является касситерит (SnO2), индий встречается очень редко, преимущественно – в самородном виде, а также в составе сфалерита (основная формула – ZnS, сульфид цинка). Светодиоды (подсветка) изготавливаются в основном из галлия, ключевым источником которого является галлит (CuGaS2).

Мышьяк является качественным полупроводником (как и сурьма, расположенная на клетку ниже, он занимает промежуточное положение между неметаллами и полуметаллами), применяется в усилителях радиочастот. Его основным источником является арсенопирит – соединение мышьяка с железом и серой. (FeAsS).

Другая пара элементов, расположенных в таблице Менделеева друг над другом – это ниобий и тантал. Из них, в особенности из тантала, получаются превосходные конденсаторы. Как ниобий, так и тантал, входят в состав колтана (Fe,Mn)(Nb,Ta,Ti)2O6), о котором я подробнее расскажу ниже. Вольфрамит (FeMn)WO4) – источник вольфрама, который служит теплоотводом, а также тем самым массивным компонентом, который обеспечивает вибрацию смартфона.

Наконец, источником почти всех редкоземельных элементов являются всего два минерала – монацит и бастнезит.

Строго говоря, монациты – это семейство близкородственных минералов-фосфатов, основная металлическая составляющая которых отличается:

Цериевый монацит: (Ce, La, Pr, Nd, Th, Y)PO4;

Лантановый монацит: (La, Ce, Nd, Pr)PO4; основная разновидность; содержание лантана – почти 29%;

Неодимовый монацит: (Nd, La, Ce, Pr)(P, Si)O4;

Самариевый монацит: SmPO4; содержание самария — до 13,59 %;

Празеодимовый монацит (Pr): (Pr, Nd, Ce, La)PO4.

Монациты были открыты на Урале в начале XIX века немецким изыскателем Иоганном Менге; поначалу он принял их за циркон. Кроме Урала залежи монацитов сегодня разведаны в Бразилии и Боливии. Монацитовые пески также открыты в Индии, США, Австралии, Индонезии, Шри-Ланке, Мозамбике, на Мадагаскаре и в Египте. Кроме лантаноидов более 5% состава монацитов приходится на торий и до 1% на уран (расположенных на период ниже церия и неодима соответственно).

Бастнезит – это фторкарбонат церия, также содержащий лантан и иттрий (Ce,La,Y)CO3F. Крупнейшее известное месторождение бастнезита находится в США (Маунтин-Пасс, штат Калифорния), а также бастнезит обнаружен в Руанде, к востоку от Конго.

Мы рассмотрели в основном сырье для корпуса, проводников, дисплеев и светодиодов. Но еще важнее сырье для батарей, прежде всего – для литий-ионных аккумуляторов. Госпожа @Mishustina написала на Хабре отличную статью о производительности и стоимости таких батарей в смартфонах. Основным источником лития является сподумен LiAl(Si2O6) – а сам литий идет на изготовление катодов в литий-ионных аккумуляторах. Наряду с литием ключевыми компонентами батарей являются кобальт и тантал. В частности, тантал незаменим в производстве конденсаторов. Кобальт и тантал — весьма токсичные металлы, добываемые порой в адских условиях. Одним из основных источников тантала и ниобия является колтан. В первой таблице этой статьи было также указано, что тантал и ниобий входят в состав плат смартфона, а тантал – в состав контактов. Как кобальт, так и колтан кустарным способом добывают на востоке Конго. В 1998 году там даже разразилась Вторая Конголезская Война, основным камнем преткновения в которой был именно контроль над добычей ниобия и тантала – мобильные устройства как раз переходили в масс-маркет, дешевый источник тантала и ниобия был источником колоссального обогащения. Кроме того, в тех же регионах на востоке Конго добывается вольфрам (в виде вольфрамита, о котором я упоминал выше).

Конголезский кобальт и колтан


Более 60% мировых поставок кобальта идет из «медного пояса», расположенного в юго-восточных провинциях Демократической Республики Конго (ДРК). В стране есть целое государственное агентство, контролирующее неофициальный, кустарный сектор добычи кобальта. На долю местных «рудокопов» (creuseurs) приходится примерно 20% этой добычи, остальной кобальт в регионе разрабатывается иностранными (прежде всего – китайскими) компаниями, занявшими долю обанкротившегося местного концерна Gécamines. Кроме того, китайцы держат сеть «факторий», скупающих кобальт у добытчиков-одиночек, в том числе, несовершеннолетних. Добычей кобальта занимаются даже дети в возрасте от семи лет. Согласно некоторым оценкам, рабочий день старателя длится 14-16 часов и приносит человеку доход в районе 2 долларов.

Далее китайские специалисты смешивают кобальт, добытый промышленным и кустарным образом, очищают сырье (грязь) до гидроксида кобальта, который везут в порты Дар-эс-Салама (Танзания) и Дурбана (ЮАР), а далее в Китай. Там кобальт проходит дополнительную очистку и поступает на рынок.

Совокупная выручка этих компаний составляет триллионы долларов, притом, что только в период с 2016 по 2018 год рыночная цена кобальта подскочила на 300%. Поэтому иностранные компании способствуют дальнейшей разведке кобальта в горно-лесистых районах поблизости от замбийской границы. Ежегодно фиксируются десятки новых раскопов, но условия труда там остаются нечеловеческими. В кустарной добыче кобальта в Конго занято более 250 000 человек, из них не менее 35 000 человек – дети.

Таким образом, наиболее совершенными технологиями очистки и обогащения кобальта в настоящее время обладает Китай, тогда как на всей китайской территории имеется всего около 2% мировых запасов кобальта. Чтобы занять свои производственные мощности, Китай не имеет иного выхода, кроме как продолжать осваивать конголезские запасы. На территории России кобальта несколько больше – примерно 4% от мировых запасов, но весь он содержится в сложных рудах, в частности, никелевых, и в России (в отличие от Конго) нельзя добывать кобальт «сам по себе» — по крайней мере, это пока не удалось «Норникелю». Никель, как и кобальт, может идти на производство батарей для смартфонов, но кобальтовые батареи значительно лучше, так как дольше держат заряд и не перегреваются. Амбициозный проект по разработке батарей без содержания кобальта ведется в компании Panasonic – но он далек от завершения, и рассчитаны такие батареи первоначально будут отнюдь не на смартфоны, а на электромобили Tesla, элементы питания для которых производит именно Panasonic.

Ситуация с добычей колтана в Конго даже более одиозна, чем с кобальтом. Колтан в Конго начали добывать еще в начале 1990-х, тогда он считался бросовым побочным продуктом от добычи олова. Первая конголезская война 1996-1997 года была выиграна восточными повстанцами, которых поддержали Уганда и Руанда. В результате был свергнут диктатор Мобуту Сесе Секо, страна переименована из Заира в ДРК, а наводненные оружием экваториальные джунгли фактически не контролировались из столицы. Именно в тот период был оценен коммерческий потенциал колтана, и этот минерал всего за пару лет породил настоящую «танталовую лихорадку». Добыча колтана была быстро поставлена под контроль вооруженными бандами. К 2000 году до 30% детей в Конго не посещали школу, поскольку были заняты добычей колтана. При этом, колтан – не кобальт, а значительно более дорогое сырье; средняя зарплата в ДРК к началу века составляла $10 в месяц, тогда как удачливый старатель колтана в те годы мог намыть металла на 10-50 $ в неделю. Руандийцы устраивали вооруженные рейды за колтаном. Такой грабеж в 2000-2001 году приносил руандийским властям до $1 миллиона в месяц от экспорта колтана. Для сравнения: в тот же период Руанда зарабатывала на экспорте алмазов примерно $200 000 в месяц. В довершение всего продажа колтана в Руанде и Конго облагалась налогами, а людей насильно держали в шахтах под надзором вооруженной охраны, не позволяя покидать прииск до выполнения дневной выработки.

Заключение

Безрадостная картина из этого краткого обзора заставляет по-новому взглянуть на истинную ценность вашего смартфона (кстати, здесь я не затрагивал экологических аспектов, подумав, что хватит и гуманитарных). Согласно этому источнику, срок службы большинства смартфонов и обычных сотовых телефонов составляет около 10 лет, а производство смартфонов растет на фоне падения производства обычных сотовых телефонов, но точка, после которой смартфоны станут преобладать над традиционными сотовыми, еще не достигнута, и может быть пройдена только к концу нынешнего десятилетия:


Таким образом, переработка старых сотовых телефонов приобретает принципиальную важность прямо на наших глазах. Добыча некоторых металлов из смартфонов несравнимо более эффективна, чем из руды. Несколько примеров:

Медь. В старых мобильных телефонах составляет около 14%, а в типичной медной руде – порядка 1,5%.

Кобальт (с учетом батарей) – до 19% массы мобильного телефона, что примерно в 100 раз больше, чем содержание кобальта в руде.

Серебро – в старых мобильных телефонах на него приходится примерно 2800 промилле, тогда как в богатейших серебряных или золото-серебряных рудах на серебро приходятся сотни, чаще – десятки промилле.

Золото – в среднем 270 промилле в мобильном телефоне и несколько промилле в золотых рудах.

Палладий – около 100 промилле в мобильном телефон и 2-3 промилле в платиновых рудах.

Полагаю, майнинг смартфонов ждет своих инвесторов и энтузиастов, а экологическая актуальность этой важнейшей промышленной области никак не меньше, чем гуманитарная. Кроме того, именно такой майнинг сейчас мог бы стать наиболее реальным источником для пополнения запасов редких металлов – и, соответственно, производства новых смартфонов.

Как редкоземельные металлы используются в электронике и технике

Редкоземельные металлы составляют группу из 17 элементов. Они нашли свое применение во многих технических изделиях, включая смартфоны, бытовую технику (телевизоры, компьютеры, объективы фотоаппаратов), электромобили, ветровые турбины, медицинскую и военную технику. Некоторые из этих элементов очень редкие, другие распределены в небольших количествах по разным уголкам мира. Главная проблема редкоземельных металлов в том, что их добыча является экологически опасной, а обработка весьма дорогостоящей.


Список редкоземельных металлов и их названия

К редкоземельным металлам (сокращенно — РЗМ) относят:

10) празеодим (Pr);


В iPhone содержится 8 различных редкоземельных металлов, в некоторых других смартфонах их насчитывается 16 (за исключением радиоактивного прометия). В мобильных устройствах они отвечают за яркость экрана (тербий и диспрозий), ударопрочность, отклик тачскрина и вибрацию (неодим и диспрозий). Редкоземельные металлы также присутствуют в микросхемах и динамиках. И это только небольшая сфера их использования.

Применение редкоземельных металлов в технике

Выше мы разобрали, что такое редкоземельные металлы. Теперь рассмотрим вопрос о том, как они используются в технике и электронике.

• Неодим требуется в производстве мощных магнитов для жестких дисков и динамиков. Также находит применение в электромобилях и ветровых турбинах.

• Лантан применяется в фотокамерах и телескопических объективах, студийном освещении и кинопроекции, в аккумуляторах и водородных хранилищах.

• Церий необходим в автомобильных каталитических нейтрализаторах: он дает им возможность работать при повышенных температурах. Помимо этого, играет ключевую роль в конвертерных химических реакциях, а также в переработке сырой нефти.

• Празеодим нужен для разработки усиленных металлов и стекол, авиационных двигателей и защитных масок для сварщиков и стекольников.

• Гадолиний используется в дисплеях, рентгеновских системах и МРТ-аппаратуре.

• Иттрий, тербий и европий требуются при создании дисплеев телевизоров и компьютеров, энергоэффективных лампочек и люминесцентных ламп, а также для создания стержней управления реакторами.


Помимо индустрии электроники в значительной степени от редкоземельных металлов зависят еще две отрасли — электрический автопром и ветроэнергетика. Компания Tesla создает двигатели с постоянными магнитами на основе неодима и празеодима.

Электродвигатели с содержанием редкоземельных металлов отличаются легкостью, мощностью и экономно расходуют заряд.

Согласно исследованию Argonaut, в электроавтомобилях используется на 1 кг больше редкоземельных магнитов, чем в авто с традиционным двигателем внутреннего сгорания.

В ветроэнергетике также огромным спросом пользуются неодим и празеодим. Как ожидается, спрос на эти металлы в течение следующих лет увеличится в 2,5 раза.

В 2016 году Россия импортировала до 90% редкоземельных металлов. Теперь курс изменился: к 2020 году РФ намерена отказаться от их импорта вовсе.



Каковы экологические последствия добычи редкоземельных ископаемых?

Добыча редкоземельных металлов отрицательно сказывается на экологии. Она провоцирует выброс в атмосферу как токсинов, так и углерода. Большая часть шахт, ведущих добычу редкоземельных металлов, расположена в Китае. Страна исторически ограничивает экспорт ископаемых в ущерб производству других стран. В настоящее время горнодобывающая промышленность Китая сосредоточена в руках шести правительственных организаций.

До 2012 года стоимость редкоземельных металлов росла. Затем производители техники стали использовать альтернативные материалы в том числе и потому, что затраты на добычу РЗМ очень высоки. Однако в 2016 году цены на редкоземельные металлы снова подскочили из-за спроса со стороны автопромышленности и ветроэнергетики.


Можно ли ограничить их добычу?

Да. Одним из решений является восстановление и переработка бытовой электроники. Другим вариантом считаются модульные смартфоны, которые позволяют заменять отдельные устаревшие компоненты для более новые, не меняя само устройство. Старые компоненты могут быть переработаны или утилизированы. Но в настоящее время только 10% смартфонов отправляется на переработку. Рециркуляция редкоземельных металлов осложняется еще и тем, что их трудно извлечь из техники. Отсюда следует, что спрос на них в технологической индустрии закончится не скоро. Ученые продолжают поиски альтернатив этим достаточно дорогим ресурсам. Чем быстрее найдутся подходящие аналоги, тем будет лучше для экологии.

Монополия Китая на редкоземельные металлы. Как Штаты хотят ее расшатать

Металлы, известные как редкоземельные элементы, используются в большом разнообразии электроники. Смартфоны, электромобили и ветряные турбины, военная техника. А потому в мире, который полагается на высокие технологии, растет обеспокоенность по поводу обеспечения доступа к этому ресурсу. Особенно на фоне обострения торговой войны между США и Китаем и растущего спроса. Поднебесная уверенно доминирует в мировом производстве и запасах редкоземельных элементов.

Что такое РЗЭ и где они применяются?

Редкоземельные элементы (или металлы) не такие уж и редкие. Встречаются уж куда чаще золота. Их всего 17 видов, они тут и там разбросаны в больших количествах по миру. Беда лишь в том, что разбросаны они неравномерно, концентрация в залежах их может быть чересчур рассеянной, а потому и экономически добывать их далеко не всегда выгодно.

К тому же добывать и разделять РЗЭ совсем не просто — они схожи между собой по химическим свойствам. Для этого нужны соответствующие технологии, доводка в лабораторных условиях и слегка развязное отношение к окружающей среде. Часто добыча в шахтах связана с радиоактивными элементами, а потому сточные воды из них загрязнены со всеми сопутствующими последствиями.

США долгие годы были лидером по производству редкоземельных металлов. Но под нажимом «зеленых» и из-за низкого желания инвестировать в этот рынок отрасль сейчас там находится в полуживом состоянии. Рынок слишком непрозрачен, волатилен, разработка месторождений трудоемкая и затратная.

Горнодобывающий район Баян-Обо является одним из самых промышленно загрязненных районов мира. Здесь еще сто лет назад обнаружили залежи редкоземельных металлов, тут сконцентрированы самые крупные из их известных запасов.


Рабочий выпаривает кристаллы из электрофильтра промышленного масштаба на первой стадии переработки редкоземельных элементов. Кристаллы содержат повышенную концентрацию оксидов редкоземельных элементов, которые затем подвергаются дальнейшей очистке до достижения приемлемой концентрации. Фото: Toby Smith


С каждой добытой тонной редких металлов выбрасываются около 10 000 кубометров отработанного газа, фтористоводородной и серной кислоты, диоксида серы и т. д. Так выглядит токсичное озеро. Из одной тонны редкоземельных элементов образуется 75 тонн кислых сточных вод — смесь из кислот, тяжелых металлов, канцерогенов и радиоактивных материалов. Фото: Toby Smith


Завод по переработке редкоземельных элементов с центрифугами концентрирует редкоземельную руду для промышленного применения перед ее сушкой в порошкообразную форму. Фото: Toby Smith

Но как бы мало ни было редкоземельных металлов и как бы сложно ни было их добывать, они крайне нужны высокотехнологичному миру. Вот лишь некоторые примеры их применения.

Самарий в сплавах используют для производства сверхмощных магнитов. В потребительских товарах его можно найти в электрогитарах, где магнитный адаптер преобразует колебания струн в электрический сигнал. Также самарий содержится в регулирующих стержнях ядерных реакторов, так как он хорошо улавливает тепловые нейтроны и не выгорает. Оксид самария нашел применение в хороших огнеупорных материалах

Скандий в сплаве с алюминием используется при создании спортивного инвентаря — бейсбольных бит, рам и компонентов велосипедов. Этот же сплав используется в создании второстепенных компонентов аэрокосмической промышленности. Например, применялся в российских военных самолетах МиГ-21 и МиГ-29.

Неодим широко используется для создания мощных постоянных магнитов в сплаве с бором и железом. Неодимовые магниты используются в динамиках и наушниках, смартфонах и аппаратах для магнитно-резонансной томографии. Популярная игрушка неокуб состоит из шарообразных неодимовых магнитов.

Где находятся запасы РЗЭ?

Американская геологическая служба насчитала, что всего резервы редкоземельных элементов на планете составляют не меньше 120 млн тонн. Они относительно обильны в земной коре, но минимальная концентрация залежей для экономически обоснованной добычи меньше, чем в случае с другими рудами.

Китай располагает самыми большими разведанными запасами РЗЭ (44 млн тонн) и самым большим их производством (132 000 тонн в год). Буквально доминирует на рынке, если учесть, что общемировое производство составило 210 000 тон в 2019 году, а мировые запасы — 120 млн тонн.

Ближайшие конкуренты Китая — это США (26 000 тонн в год), Мьянма (22 000 тонн), Австралия (21 000 тонн). Есть еще пул совсем небольших добытчиков, среди которых Россия и Индия, произведшие менее 3000 тон за 2019 год.


Но уровень добычи не всегда связан с уровнем запасов. На территории Бразилии и Вьетнама, например, находятся залежи по 22 млн тонн РЗЭ в каждой. Однако добыча в этих странах не превышает 1000 тонн в год. Наибольшие запасы сосредоточены в том же Китае — 44 млн тонн, еще 12 млн тонн — в России, 6,9 млн тонн — в Индии. Миллионами тонн исчисляются залежи в Гренландии, Австралии, США.

Размер рынка редкоземельных элементов в 2019 году оценивался в $13,2 млрд. Ожидалось, что с постепенным ростом на почти 11% в год этот рынок увеличится до $19,8 млрд к 2026 году.

Ценовой кризис из-за монополии

Впервые массовая аудитория обратила внимание на редкоземельные металлы в 2011 году, когда цены на них достигли невероятных высот. Килограмм неодима, который используют в производстве наушников и гибридных электромобилей, в начале десятилетия стоил $42, через год — $283. Цена выросла почти в семь раз. На килограмм самария, необходимый в том числе для ракет, цена выросла с $18,5 до $146.

Тогда РЗЭ получили огромную огласку и стали известны широкой публике. Это было время, когда Китай ввел экспортные ограничения, а мир встревожился, что рынок высоких технологий может пострадать от дефицита предложения.

Кризис был интенсивным, но недолгим. Вскоре цены так же резко упали. Но осадочек остался. Мир был потрясен тем, насколько сильно он зависит от китайского производства и экспорта. Да, взлет цен был экстремальным. Вот только потребители его вряд ли заметили, так как РЗЭ во многих товарах используются только в следовых количествах. За редкими исключениями, как, например, в случае с гибридным авто Toyota Prius, для которого производителю нужен килограмм неодима.

На фоне этого американская Molycorp повторно активировала единственный в США рудник по добыче РЗЭ в Маунтин-Пассе. Но после падения цен в 2015 году компания обанкротилась. За время этого ценового кризиса в мире открылось более 400 потенциальных проектов, началась настоящая охота за сокровищами, геологоразведочный бум. Спекулянты и неопытные инвесторы скупали акции небольших горнодобывающих компаний.


Китай решил разыграть свое монопольное положение и своими же руками едва не создал себе конкурентов, переоценив свой долгосрочный стратегический план в отношении индустрии РЗЭ. Все-таки мировое потребление этого ресурса не столь велико. И одна-две альтернативные точки добычи и переработки на планете вполне могут обесценить целую пускай небольшую, но стратегически важную индустрию.

От монополии придется уйти

Китайская экономика меняется. От экспортно-ориентированной она все больше отходит в сторону потребительско-ориентированной. И экспорт РЗЭ будет продолжаться до тех пор, пока их производят сверх внутренних способностей.

По состоянию на 2018 год 80% РЗЭ, которые поставлялись в США, поступали из Китая. На фоне торговой войны между этими странами, которую разогрела администрация Трампа, в полный рост встал вопрос о зависимости американской экономики в этом сегменте от одной точки отказа.

В Штатах есть лишь одна действующая шахта, где добывают редкоземельные металлы. Она находится в Калифорнии, в Маунтин-Пассе. Перерабатывающее предприятие там было построено еще в 1950-х годах. После банкротства Molycorp его в 2017 году приобрела компания MP Materials. Модернизация ведется, а всю руду, что там сейчас откапывают, отправляют на переработку опять же в Китай.

В 2020 году администрация Трампа выделила $209 млн на поддержку добывающей отрасли. В финансирование частных компаний, которые ведут разработку редкоземельных металлов в Техасе и Калифорнии, вложилось министерство обороны США, а Пентагон инвестировал почти $30 млн в фирму, которая перерабатывает электронный мусор и добывает из него РЗЭ. Но пока ни одна из этих компаний не начала обрабатывать металлы в значительных количествах.

Аналитики отмечают, что в рамках свободного рынка и без значительной государственной поддержки на первых этапах отстроить отрасль практически невозможно. Порог входа на рынок крайне высок, а Китай доминирует на всех этапах — от добычи до производства конечной продукции с высокой добавленной стоимостью.

Китай начал развивать эту отрасль еще 30 лет назад, накопил огромный багаж опыта и знаний, а также когорту высококвалифицированных специалистов, которых трудно найти где-либо еще.

Да, редкоземельные элементы являются ценным товаром. Но сырая руда и рудные концентраты — это наименее ценные формы их существования. Окиси и сырье бесполезны для производителей оригинального оборудования. Они не умеют превращать их в металлы, сплавы и соединения.

Чтобы повторить успех Китая, нужно создать целую цепочку жизненного цикла РЗЭ, которая заканчивается в виде ценных компонентов или готовой продукции. Если рынок руды оценивается в миллиарды, то рынок товаров из РЗЭ оценивается в триллионы долларов.

В 1970-х годах Китай занимался лишь экспортом концентратов РЗЭ. Спустя 20 лет в стране уже производили магниты, люминофоры и полировальные порошки с применением редкоземельных металлов. Столь полной производственной цепочки нет ни у кого в мире. И создать ее по щелчку пальцев невозможно.

А потому на создание собственной цепочки от добычи до конечного продукта уйдут долгие годы, много инвестиций. И не факт, что результат окажется успешным.

— Мы полагаем, что потребуется почти десять лет, чтобы довести проект по редкоземельным элементам от первой идентификации минерала до производства, — считает Дэвид Мерриман из компании по анализу товаров Roskill. Так он прокомментировал амбициозные задумки Штатов полностью закрыть потребности в РЗЭ своими силами.

Цены на редкоземельные металлы, дефицит чипов и торговые войны: стоимость гаджетов будет только расти


В начале этого года мы писали о том, что Китай планирует начать ресурсную войну в отношении США. Это должно было стать ответом КНР на санкции Соединенных штатов. Пока что открытой и активной войны нет, хотя предпосылки были, но, возможно, ресурсная война и не потребуется. Дело в том, что за последние несколько месяцев резко повысились цены на редкоземельные металлы.

Стоимость ресурсов — крайне мощный ценовой фактор для всей индустрии производства электронных компонентов и гаджетов. Их стоимость и так постепенно увеличивается, а сейчас игроки рынка ожидают уже не плавного, а скачкообразного роста цен буквально на все.

Насколько все сложно?

Ситуация весьма серьезная. За год стоимость сплава празеодима с неодимом, который используется для производства динамиков для Amazon и Lenovo, выросла вдвое. Валовая прибыль производителей аудиосистем для портативных устройств в результате снизилась сразу на 20%. Это весьма чувствительно для любой компании, но худшее, насколько можно понять, еще впереди.

Празеодим и неодим применяются для создания магнитов с формулой NdFeB. Они применяются везде и всюду, от тех же динамиков до медицинских устройств и электродвигателей.

Рост цен спровоцирован не дефицитом самих ресурсов, хотя и этого вполне можно ожидать в ближайшее время, а увеличением спроса на электронику и электротранспорт. Еще один активный потребитель редкоземельных металлов — военная отрасль. Показательный пример — сверхсовременный самолет F-35. Для его производства используются самые современные материалы. Если ограничить их поставку в США, то, скорее всего, выпускать самолеты не получится — ну, или возникнут большие задержки. Производит самолет компания Lockheed Martin, и, по ее данным, для каждого F-35 требуется 417 кг редкоземельных элементов. И не руды, конечно, а именно готовых элементов.

Китай — единственная страна, у которой есть полный цикл получения редкоземельных металлов — от их добычи до получения чистого металла. КНР принадлежит, по разным оценкам, от 60% до 85% глобального рынка редкоземельных элементов. В любой момент страна может начать жестко контролировать цепочку поставок — в этом случае даже сложно сказать, насколько высоко поднимутся цены.


Дорожает и оксид неодима, который использутся в зеленой энергетике, в частности, в производстве ветряных турбин. С начала года стоимость ресурса выросла на 21,1%.

Китайские компании, которые участвуют в цепочке добычи и получения редкоземельных металлов, вовсе не против повышения цен — это позволяет получать им сверхприбыли. Ну а поскольку Китай, фактически, монополист, то и делает что хочет. США обвиняют страну в намеренном повышении цен на ценные ресурсы, но это пока только слова — новые санкции против компаний из Поднебесной Америка, видимо, вводить пока опасается. Ответом может быть новый скачок цен, с которым вряд ли что можно будет сделать.

Увеличиваются и цены на обычные металлы, включая медь, олово, алюминий, никель и другие. Пока что производители, в цикле которых используются эти и другие металлы, сдерживают рост цен, но в ближайшем будущем ситуация может выйти из-под контроля.

Повышение цен на электронные компоненты


Еще один серьезный фактор роста цен — повышение стоимости электронных компонентов. Цены поднимают крупнейшие производители чипов, включая TSMC, Samsung Foundry, GlobalFoundries, SMIC, UMC и другие компании. Все это приводит к увеличению цен на конечную продукцию — ноутбуки, смартфоны, серверное оборудование, автомобили и т.п.

Эксперты прогнозируют, что через пару лет стоимость некоторых чипов вырастет на треть. А это означает активный рост цен электронных устройств.


У большинства производителей таких девайсов маржа и так минимальная. Дальнейшее повышение цен приведет к тому, что компании начнут пересматривать ценовую политику — понятно, что не в пользу покупателей. Краткосрочная волатильность — не особенная проблема, но цены будут увеличиваться и в долгосрочной перспективе.

Еще одна проблема — переход на новые техпроцессы. Так, TSMC и Samsung активно осваивают производство 7-нм и 5-нм чипов. Они в 2-3 раза дороже, чем чипы предыдущих поколений, просто потому, что дороже обработка пластин для производства новых чипов.


И с этим ничего не поделать — ведь спрос на ноутбуки, смартфоны и прочее электронное оборудование постепенно растет. Причина — как пандемия, так и другие факторы.


Что из всего этого следует?

Главный вывод понятен — все будет дорожать, снижения цен, которое эксперты прогнозировали еще несколько месяцев назад, не будет. Расти будут цены буквально на все, но особенно заметно будет увеличение стоимости топовых девайсов.

Спрос на них будет увеличиваться, но не особенно активно — все же у покупателей есть какой-то предел, выше которого они пойти не могут. Вместо бурного роста спроса на hi-end девайсы фокус интереса покупателей может сместиться на средний ценовой сегмент или даже на бюджетные устройства.

Более того, производители электроники, которые не смогут покупать дорогие чипы, вернутся к закупкам компонентов предыдущих поколений. Подобное уже наблюдалось во время роста цен на криптовалюты и повышения цен графических адаптеров, а также увеличения стоимости чипов памяти DDR4. Некоторые производители просто вернулись к DDR3 и DDR2, так что поставщики этих компонентов даже стали запускать новые производственные линии для вроде как морально устаревших элементов.


Но и это не все. Сейчас появился еще один негативный фактор — поддельные чипы, а также откровенно некачественная продукция, происхождение которой сложно отследить. «Если на следующей неделе вам нужно найти 5000 компонентов или вам придется закрыть линию производства, то вы в любом случае снизите требования к поставляемым компонентам. Поставщики электронных систем просто не успевают верифицировать всю цепочку поставок или проверить оригинальность чипов», — заявляют представители компании CALCE, которая занимается анализом поставок поддельных электронных компонентов.

В общем, в итоге мы можем получить дорогую электронику, которая, к тому же, будет еще и не особенно надежной. Остается надеяться на то, что представители индустрии все же смогут найти какой-то выход из сложившейся ситуации. Правда, надежда на это не слишком большая.

Редкие металлы в электронике и электроэнергетике

Редкие, и в частности редкоземельные, металлы находят весьма широкое применение в различных высокотехнологичных отраслях. Машиностроение, металлургия, химическая промышленность, солнечная энергетика, атомная и водородная энергетика, приборостроение, электроника, – всюду используются редкоземельные металлы. Перечислять все области применения редкоземельных металлов можно очень долго, однако давайте рассмотрим часть этого обширного спектра применительно непосредственно к электронике и электроэнергетике.

С каждым годом растет объем редкоземельных металлов, используемых не только в компьютерной технике, но и в экономичных источниках света. Например, в США за счет этого прогнозируют снижение энергопотребления на освещение в 2 раза. Там уже созданы лампы с люминофорами, содержащими тербий, иттрий, церий, европий, что позволило до 3 раз повысить светоотдачу при соответствующей экономичности.

поезд на магнитной подушке

Сверхпроводящие материалы на базе ниобия позволили японцам создать настолько сильные магниты, что скоростные поезда на воздушной подушке, развивающие скорость до 581км/ч уже построены и эксплуатируются.

фотоумножитель

Большое значение имеют фотоэлектрическое свойства рубидия и цезия, обуславливающие их востребованность для построения фотоумножителей, фотоэлементов, и других фотоэлектрических приборов. Свойства цезия и рубидия похожи, поэтому данные металлы во многом взаимозаменяемы.

Вообще эти металлы довольно широко используются и в радио, и в электротехнике, и в электронике, они применяются в производстве люминесцентных ламп, а соединения цезия и рубидия, как и сами металлы, удобны в качестве катализаторов и препаратов в неорганическом и органическом синтезе.


Литий главным образом применяется в ядерной энергетике и при электролизе алюминия. Карбонат лития, в качестве добавки к алюминию, снижает температуру плавления электролита, уменьшает расход анода и криолита, способствует энергосбережению и снижает себестоимость металла.

Стекло для катодно-лучевых трубок, кинескопы, стекла с электроизоляционными свойствами, - в этих областях добавки лития играют немаловажную роль. Безусловно, литий обширно применяется и в химических источниках тока.

солнечная батарея

Особенно в сфере высоких технологий распространен скандий: системы хранения данных с высокой скоростью обмена информацией; добавленный в ртутную лампу иоид скандия, в очень небольшом количестве, приближает ее свет к естественному солнечному. Из хромида скандия делают электроды для МГД-генераторов. Также скандий входит в состав материалов для солнечных батарей.

Электролитические конденсаторы

Тантал в качестве материала анодных пленок с особыми диэлектрическими свойствами находит применение в электронике. Электролитические конденсаторы на его основе качественнее алюминиевых, хоть и рассчитаны на работу при меньшем напряжении.

титан

Титан, как и его сплавы, отличается повышенной прочностью даже при высоких температурах, коррозийной стойкостью, и при этом малой плотностью. Из него изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.

вольфрам

Основа жаропрочных сплавов – вольфрам. Из вольфрама изготавливают нити накаливания и другие детали электровакуумных приборов.

использование молибдена

Сплавы молибдена, как и сам молибден, применяются для изготовления деталей электровакуумных приборов, предназначенных для длительной работы при температурах до 1800°С в вакууме.

Из молибдена изготовлено многочисленное оборудование для работы в агрессивных средах, в том числе и элементы ядерных реакторов. Высокотемпературные печи, электрические вводы лампочек, - здесь используют молибденовую ленту.

Неодимовый магнит

Особенно высоким спросом пользуются оксиды неодима и диспрозия, служащие для производства мощных магнитов.

висмут

Висмут участвует в производстве полупроводниковых материалов, в частности для термоэлектрических приборов, к таким материалам относятся теллурид и селенид висмута, а висмут-цезий-теллур дает перспективу для производства полупроводниковых холодильников суперпроцессоров.

Особо чистый висмут позволяет получать обмотки для измерения магнитных полей, поскольку сопротивление висмута почти линейно зависит от магнитного поля, измеряя сопротивление такой обмотки можно узнавать напряженность внешнего магнитного поля. Также висмут – один из компонентов бессвинцовых и легкоплавких припоев, служащих для монтажа чувствительных СВЧ-компонентов.

селен

Селен – дырочный проводник (p-типа), в качестве полупроводника, селен используется в солнечных батареях, работающих как в открытом космосе, так и на земле. Свинец, легированный селеном, - материал решеток аккумуляторов.

свинцово-кислотный аккумумлятор

Теллур применяют в качестве легирующей примеси при производстве свинцово-кислотных аккумуляторов. Сплавы теллура со свинцом обладают высокой пластичностью и при этом прочны, поэтому из них делают и кабели. Сплав теллура, цезия и висмута позволил поставить рекорд полупроводникового холодильника, достигнута температура -237°C.

Стекла на основе теллура – полупроводники, и кроме электропроводности к их достоинствам относятся легкоплавкость и прозрачность. Такие стекла нашли применение в построении химической аппаратуры специального назначения.

Читайте также: