Редкоземельные металлы из отходов

Обновлено: 17.05.2024

Мировой рынок редкоземельных металлов оценивается в 4 миллиарда долларов в год, но 70% производства сосредоточено в Китае. Исследователи из Университета Пердью в США разработали новую технологию, которая обещает радикально изменить ситуацию.

Опубликованная в журнале Green Chemistry статья, описывает новый запатентованный процесс экстракции и очистки редкоземельных металлов (РЗМ) с помощью хроматографии с использованием лигандов. Это комплексные химические соединения, состоящие из атомов, ионов или молекул, связанных с другим атомом донорно-акцепторным взаимодействием. Оригинальная технология позволяет удалять и очищать РЗМ из угольной золы, переработанных магнитов и необработанной руды безопасно, эффективно и практически без вредного воздействия на окружающую среду.

Последний фактор имеет ключевое значение, поскольку в настоящее время многие компании по всему миру даже не осмеливаются рассмотреть возможность извлечения редкоземельных элементов из-за ущерба, который нанесится окружающей среде в результате кислотного их выделения из отходов и последующей очистки. Ведущий сотрудник разработавшей революционную технологию лаборатории в Университете Пердью Ньен-Хва Линда Вон (Nien-Hwa Linda Wang) в заявлении для СМИ прокомментировала публикацию следующим образом:

Около 60% редкоземельных металлов используются в магнитах, которые необходимы почти каждому человеку в повседневной жизни. Эти металлы используются в электронике, самолетах, гибридных автомобилях и даже ветряных генераторах. В настоящее время у нас есть один доминирующий иностранный источник этих металлов, и если поставки по какой-либо причине будут ограничены, это будет иметь разрушительные последствия для жизни людей. Дело не в том, что этот ресурс недоступен в США, а в том, что нам нужен лучший, более чистый способ его получения.

По словам Линды, в традиционных способах получения редкоземельных элементов высокой очистки используются двухфазные механизмы извлечения жидкостей, для которых требуются тысячи смесителей-отстойников последовательно или параллельно и образуются большие количества токсичных отходов. Однако в ее методе используется двухзонная система вытеснительной хроматографии с лигандами и новой техникой разделения зон, которая позволяет получать металлы высокой чистоты и с высоким выходом продукта (свыше 99% по обоим показателям).

Судя по всему, технология еще не готова к выходу на рынок, так как ученым предстоит много работы по адаптации системы с использованием лигандов для промышленного использования. Потенциально, переработке по новой технологии может подвергаться самый широкий спектр исходного материала магниты и батареи, уголь зола или руда — словом, огромное количество вторичного и первичного сырья, доступного в любой стране, даже без месторождений РЗМ. Тем не менее, экологичный способ добычи столь необходимых современной промышленности элементов будет готов для внедрения довольно скоро — фонд университета уже предоставил права на коммерциализацию интеллектуальной собственности технологии и выделил участок на собственном опытном производстве.

Способ извлечения редкоземельных металлов и иттрия из углей и золошлаковых отходов от их сжигания

Изобретение относится к области гидрометаллургии, в частности к технологии извлечения редких и редкоземельных металлов из природного органического сырья - углей и продуктов его сжигания - золошлаковых отходов. Техническим результатом изобретения является снижение расхода реагентов (кислот) на выщелачивание редкоземельных элементов из углей или золошлаковых отходов и упрощение процесса извлечения и очистки этих металлов при переработке растворов выщелачивания. Он достигается за счет использования для выщелачивания азотной кислоты, селективного выделения нитратов редкоземельных металлов экстракцией органическими растворами трибутилфосфата и использования части тепла от сжигания углей для регенерации азотной кислоты путем термического разложения рафинатов и содержащихся в них нитратов кальция, алюминия, железа и других металлов.

Изобретение относится к области гидрометаллургии, в частности к химической технологии извлечения редких и редкоземельных элементов из природного органического сырья (углей) и продуктов его сжигания - золошлаковых отходов.

Известны различные способы извлечения ценных элементов (включая редкоземельные) из минеральной части углей, которые заключаются в химической обработке золошлаковых отходов после сжигания углей различными химическими реагентами. Основным методом переработки золошлаковых отходов является вскрытие их кислотными реагентами, в качестве которых могут использоваться как минеральные кислоты, так и органические катионообменники в Н + -форме.

Известен способ извлечения скандия и иттрия из золошлаковых отходов соляной кислотой /А.А.Концевой А.Д.Михнев, Г.Л.Пашков, Л.П.Калмыкова. Извлечение скандия и иттрия из золошлаковых отходов //. ЖПХ. - 1995. - Т.68, вып.7. - С 1075-1078/. Извлечение проводят из золошлаковых отходов от сжигания бурых углей, состава: SiO2 - 40,1%, Al2O3 - 10,6%, Fe2O3 - 8,5%, CaO - 7,4%, MgO - 8,3%. Предложено выщелачивать скандий и иттрий в 2-3 стадии путем повторного использования фильтратов для выщелачивания. Выщелачивание проводят 10% раствором HCl при нагревании. При этом достигается степень извлечения в раствор: скандия - 84% и иттрия - 92%. Установлено, что такое перекрестное выщелачивание приводит к значительному насыщению раствора солями кальция, магния, железа и алюминия. Высокая концентрация солей затрудняет процессы разделения твердой от жидкой фаз.

Наиболее близким к предлагаемому способу извлечения редкоземельных металлов из золошлаковых отходов является процесс /Г.Л.Пашков, Р.Б.Николаева и др. Сорбционное выщелачивание скандия из золошлаковых отходов от сжигания бурых углей бородинского разреза/ Тез. докладов Международной конференции «Редкоземельные металлы: переработка сырья, производство соединений и материалов на их основе». Красноярск. 1995. С.104-106/, совмещающий выщелачивание и сорбцию (сорбционное выщелачивание). По этому способу подкисленную пульпу золошлаковых отходов перемешивают с сульфокатионитом КУ-2 при температуре 40-60°С. Это обеспечивает переход в ионит скандия и редкоземельных металлов. Одновременно выщелачивался также кальций, его остаточная концентрация в золе не превышает 0,2% при содержании в исходной золе около 20%. Значительная часть железа в этих условиях не выщелачивается.

Для удаления основной массы кальция сорбент затем обрабатывают 1М раствором сульфата натрия, подкисленного до 0,1М серной кислотой. При этом ионит переводят в Н-форму, а кальций отделяют в виде гипса.

Недостатками известных процессов извлечения редкоземельных металлов из золошлаковых отходов являются: большой расход кислот на нейтрализацию оксидов макроэлементов (кальций, магний, стронций, алюминий, железо) золошлаковых отходов и проблемы выделения редкоземельных металлов из сложных по составу растворов.

Так, известные наиболее богатые по редкоземельным металлам золы содержат 100-1000 г/кг (0,01-0,1%) редкоземельных элементов при содержании только одного оксида кальция 10-20% и более, нейтрализующая способность которого значительно выше нейтрализующей способности оксидов редкоземельных металлов. Для таких золошлаковых отходов перерасход кислот за счет их реакции только с соединениями кальция составит соответственно 200-5000 раз и более. Использование сорбционного выщелачивания не устраняет этот недостаток, так как практическое использование сорбционного выщелачивания предполагает полную регенерацию катионита, что достигается на стадии десорбции катионов обработкой ионита теми же минеральными кислотами.

Другой существенный недостаток известных процессов заключается в проблемах выделения редкоземельных металлов из сернокислых и солянокислых растворов с учетом сложности солевого состава.

Известные сернокислотные схемы переработки редкоземельных концентратов, как правило, многостадийны и включают операции осаждения малорастворимых двойных сульфатов редкоземельных металлов с натрием, последующий гидролиз осадков гидроокисью натрия, растворение образующихся гидроокисей редкоземельных металлов азотной кислотой и очистку их экстракцией.

Наиболее близким аналогом по совокупности существенных признаков является RU 93051055 А (МПК С 22 В 59/00, опубл. 27.09.1996), в котором раскрыт способ извлечения редкоземельных металлов и иттрия из углей и золошлаковых отходов от их сжигания, включающий кислотное выщелачивание и экстракцию редкоземельных металлов и иттрия из растворов алкилфосфатом. Техническим результатом является снижение расхода реагентов (кислоты) на выщелачивание и упрощение процесса извлечения и очистки при переработке растворов выщелачивания.

Технический результат достигается тем, что редкоземельные металлы и иттрий из углей и золошлаковых отходов от их сжигания также извлекают кислотным выщелачиванием и их экстракцией из растворов трибутилфосфатом, но в отличие от близкого аналога редкоземельные металлы и иттрий выщелачивают азотной кислотой, которую регенерируют за счет утилизации попутного тепла от сжигания углей путем термического разложения нитратов рафината, полученного после экстракции и абсорбции водой отходящих газов.

Использование азотной кислоты для выщелачивания обеспечивает, в первую очередь, возможность использования универсального, высокоселективного к редкоземельным металлам и наиболее широко используемого на практике процесса извлечения трибутилфосфатом. Этот процесс хорошо изучен и может быть использован для селективного отделения редкоземельных металлов от большинства элементов. Более того, такие основные макропримеси от выщелачивания золошлаковых отходов азотной кислотой, как нитраты кальция, алюминия и железа, являются высаливателями при извлечении редкоземельных металлов трибутилфосфатом, способствуя их извлечению в органическую фазу. Реэкстракция солей металлов и регенерация экстрагента не представляет большой сложности и осуществляется водой.

С другой стороны, использование азотной кислоты на стадии выщелачивания редкоземельных металлов позволяет использовать часть избыточного тепла от сжигания угля для регенерации кислоты за счет термического разложения нитратов. Этот процесс для нитрата кальция начинает протекать при температуре 500-600°С и интенсивно при 600-700°С. Нитраты алюминия и железа разлагаются при более низкой температуре. Разложение этих солей приводит к образованию оксидов соответствующих металлов, двуокиси азота и кислорода, как, например, для нитрата кальция (1):

Поглощение образовавшихся газов водой обеспечивает регенерацию исходной азотной кислоты по реакции (2):

Теоретический расход тепла на регенерацию кислоты, требуемой для выщелачивания 1 т оксида кальция, рассчитанный из энтальпии реакции (1), составляет около 1,6·10 6 ккал/т. При средней калорийности угля 4000 ккал/кг удельный расход угля составит 400 (кг угля)/(т СаО). При зольности угля 10% и содержании растворимой в кислотах минеральной части не более 50% (из расчета на окись кальция) расход угля на регенерацию кислоты составит около 2% от его общей сжигаемой массы.

Пример 1. Золу от сжигания угля бассейна р.Чайдах-Юрях (Республика Саха-Якутия), содержащую: 0.11% иттрия, 0.25% - лантана, 0.52% - церия, 0.022% - диспрозия, 0.008% - иттербия и др. редкоземельных элементов нагревают при перемешивании с 3М (˜17%) раствором азотной кислоты при Т:Ж=1:8, температуре 90°С в течение 1 часа. Выход кека составляет 61%. В раствор извлекается: 91% иттрия, 75% - лантана, 72% - церия, 90% - диспрозия и 93% - иттербия. Раствор упаривают в 1,5-2 раза и эмульгируют с 80% трибутилфосфатом в керосине при О:В=1:1. Коэффициенты распределения в органическую фазу составляют соответственно: 40 для иттрия, свыше 5 для лантана и церия, более 30 для диспрозия и иттербия. При контакте экстракта с водой в соотношении О:В=5:1 достигается полная реэкстракция редкоземельных металлов.

Рафинат далее упаривают, а осадок прокаливают при температуре 700°С в течение 1 часа. Степень разложения солей составляет более 98%.

Пример 2. Золу от сжигания бурого угля Бородинского бассейна (Красноярский край), содержащую 0.008% иттрия, нагревают при перемешивании с 4М (˜17%) раствором азотной кислоты при Т:Ж=1:5, температуре 90°С в течение 1 часа. Выход кека составляет 49%. В раствор извлекается 89% иттрия. Раствор и промывные воды упаривают до исходного объема и смешивают с 80% трибутилфосфатом в керосине при О:В=1:1. Коэффициенты распределения иттрия в органическую фазу составляют более 20. При контакте экстракта с водой в соотношении О:В=5:1 достигается полная реэкстракция солей редкоземельных металлов.

Рафинат упаривают, осадок прокаливают при температуре 700°С в течение 1 часа. Степень разложения солей составляет более 98%.

Пример 3. Золу от сжигания угля бассейна р.Чайдах-Юрях (Республика Саха-Якутия), содержащую: 0.15% иттрия, 0.27% - лантана, 0.085% - церия, 0.025% - диспрозия, 0.0079% - иттербия и др. редкоземельных элементов, нагревают при перемешивании с 4,5М (˜25%) с раствором азотной кислоты при Т:Ж=1:3, температуре 90°С в течение 1 часа. Выход кека составляет 67%. В раствор извлекается: 90.8% иттрия, 72% - лантана, 70% - церия, 97.5% - диспрозия и 91.3% - иттербия. В экстракторах типа «смеситель-отстойник» проводят противоточную экстракцию РЗМ 80% трибутилфосфатом в керосине при О:В=1:1 (3 ступени), промывку экстракта 1M раствором азотной кислоты при О:В=30:1 (2 ступень с рециркуляцией водного раствора) и реэкстракцию водой О:В=10:1 (2 ступени). Извлечение редкоземельных металлов из раствора после выщелачивания в реэкстракт составляет более 95%. Получают редкоземельный продукт с содержанием в нем примесей менее 10% (масс) к оксидам РЗМ.

Рафинат упаривают, а осадок прокаливают при температуре 700°С во вращающейся печи в течение 2 часов. Пары азотной кислоты улавливают в абсорбционной колонне водой. В результате получают 25% раствор азотной кислоты с выходом 92% от ее исходного количества, взятого на выщелачивание золы.

Пример 4. Уголь бассейна р.Чайдах-Юрях (Республика Саха-Якутия), содержащий: 149 г/т - иттрия, 160 г/т - лантана, 380 г/т - церия, 28 г/т - диспрозия, 16 г/т - иттербия и др. редкоземельных элементов, нагревают при перемешивании с 1M раствором азотной кислоты при Т:Ж=1:5 при 90°С в течение 1 часа. Извлечение в раствор, соответственно, составляет: 74,3% для иттрия, 80.1% для лантана, 85% для церия, 80% для диспрозия, 69% для иттербия. После упаривания раствора нитраты редкоземельных металлов экстрагируют трибутилфосфатом и реэкстрагируют водой. Извлечение РЗМ за 1 ступень экстракции составляет более 75%.

Таким образом, предлагаемый способ позволяет извлечь редкоземельные металлы из углей или золошлаковых отходов с выделением их в концентрат с высокими показателями извлечения (свыше 80%) и очистки. Качество редкоземельного продукта по содержанию в нем примесей при использовании экстракции редкоземельных металлов из нитратных растворов трибутилфсфатом может быть доведено практически до любого уровня в зависимости от количества ступеней промывки и реэкстракции. При этом использование доступного тепла от сжигания угля и термической неустойчивости нитратов позволяет регенерировать основной химический реагент - азотную кислоту и многократно снизить реагентные затраты.

Способ извлечения редкоземельных металлов и иттрия из углей и золошлаковых отходов от их сжигания, включающий кислотное выщелачивание и экстракцию редкоземельных металлов и иттрия из растворов трибутилфосфатом, отличающийся тем, что редкоземельные металлы и иттрий выщелачивают азотной кислотой, которую регенерируют за счет утилизации попутного тепла от сжигания углей путем термического разложения нитратов рафината, полученного после экстракции, и абсорбции водой отходящих газов.

Способ извлечения редкоземельных и радиоактивных металлов из окисленного технологически упорного сырья

Изобретение относится к области переработки окисленного технологически упорного сырья, в частности к переработке золошлаковых отходов от сжигания углей, с целью извлечения редкоземельных и радиоактивных металлов. Из золошлаковых отходов и раствора серной кислоты приготавливают пульпу, затем подвергают ее обработке в катодной зоне электролизера в условиях, поддерживающих выделение на катоде водорода. При осуществлении способа приготавливают пульпу с соотношением Т : Ж = 1 (5 - 10) и используют раствор серной кислоты концентрации 50 - 30 г/л, электровыщелачивание проводят в течение 0,25 - 1,5 ч при катодной плотности тока 0,5 - 5,- mA/см 2 и температуре 18 - 80 o C. Изобретение позволяет повысить экономичность процесса, упростить аппаратурное оформление и сократить время извлечения. 3 з.п.ф-лы, 5 табл., 3 ил.

Изобретение относится к области переработки окисленного технологически упорного сырья, в частности, к переработке золошлаковых отходов от сжигания углей с целью извлечения редкоземельных и радиоактивных металлов.

Одной из отличительных особенностей таких отходов является малое содержание редкоземельных и радиоактивных металлов (сотые доли процента) на фоне большого содержания соединений кремния, алюминия, железа и кальция, образованных при воздействии высоких температур (1200- 1700 o C), и, следовательно, химически пассивных. Вышеперечисленные особенности приводят к тому, что для извлечения редкоземельных и радиоактивных металлов с достаточно высоким выходом необходимо использовать специальные технологические приемы: большое время обработки, повышенные температуры, повышенные концентрации реагентов для обработки или специальное оборудование.

Известен способ [1] гидрометаллургического извлечения редких металлов из технологически упорного сырья. По данному способу матрицу упорного сырья измельчают, помещают в герметичный сосуд, содержащий раствор галогенных кислот, азотистую кислоту и комплексообразователи для редких металлов. В сосуд извне подают кислород. Процесс ведут при определенной величине pH реакционной смеси, давлении и потенциале полуволны восстановления окислителей достаточное время, которое выбирают из условия вскрытия матрицы сырья для максимального окисления и извлечения редких металлов из матрицы и образования маточного раствора, включающего растворенные комплексы и окислы редких металлов. Извлечение редких металлов из маточного раствора производят известными способами.

Как видно из описанного способа, для эффективного извлечения металлов из матрицы необходимо контролировать такие параметры процесса, как показатель кислотности среды, потенциал восстановления окислителей и давление. Для такого контроля требуется сложная и дорогостоящая аппаратура, что значительно снижает экономический эффект при внедрении данного способа, тем более для переработки такого бедного сырья редких металлов, в частности, редкоземельных и радиоактивных, как золошлаковые отходы от сжигания энергетических углей.

Известны способ и устройство для добычи драгоценных металлов [2] из бедного и упорного сырья и отходов добывающих предприятий, в которых есть недоизвлеченные металлы. В этом способе с целью увеличения полноты извлечения ценных компонентов и эффективного отделения их от вмещающих пород измельченный материал совместно с электролитом в виде суспензии проходит обработку в электродном блоке под воздействием электрического постоянного тока и ультразвукового поля, в результате чего происходит выщелачивание вмещающих пород и освобождение частиц полезного компонента, при этом до поступления в электродный блок суспензия проходит дополнительную обработку в ультразвуковом поле, где твердый материал подвергается механическому и кавитационному разрушению с одновременной активацией электролита.

В целях усиления воздействия кавитации, вызванной ультразвуком, и улучшения энергетических характеристик электрохимических реакций в электродном блоке, обработка суспензии проводится при избыточном давлении 5-10 кг/см 2 .

Описанные выше технические приемы, включающие ультразвуковую обработку и/или работу под избыточном давлении нет необходимости применять при извлечения редкоземельных и радиоактивных металлов из окисленного технологически упорного сырья, в частности, золошлаковых отходов, поскольку соединения этих металлов химически более активны, чем цветных. Кроме того, ультразвуковая обработка приводит к дополнительному износу оборудования, что значительно снижает экономический эффект при внедрении данного способа.

Наиболее близким к заявляемому является способ выделения скандия из зол каменного угля (Б. Г. Коршунов и др. Скандий. М.: Металлургия, 1987. С. 150-151), основанный на кислотном выщелачивании. После щелочного вскрытия золы каменного угля и обработки полученного плава раствором 18% соляной кислотой проводят последующие операции ионообменного концентрирования и осаждения в виде гидроксидов. Способ, в частности, осуществляется следующим образом.

Золу бурого угля, содержащую, %: Sc2O3 0,012; SiO2 65,8; Al2O3 18,8; Fe2O3 12,1; MgO 1,0; TiO2 0,88; Ca0 0,7, вскрывают, сплавляя со щелочью при 600 o C в течение 2 ч. В процессе водного выщелачивания плава при 70 o C и т:ж = 1: 5 отделяют основную массу алюминия и частично кремний. В остатке содержится, %: Sc2O3 0,011 (90% исходного); Na2O 4,2; Al2O3 2,55; MgO 1,40; TiO2 1,22; CaO 0,95; основа - SiO2 и Fe2O3. Следующая операция - обработка суспензии остатка CO2. В карбонатный раствор вместе со скандием переходят основные количества кальция и магния, а также Ti, Al, Ga, Fe, Si, Си, Y и РЗЭ. Раствор подкисляют серной кислотой до pH = 1 и осуществляют ионообменное концентрирование скандия на фосфорилированной целлюлозе. Десорбируют скандий 10%-ным раствором карбоната аммония. После подкисления полученного раствора соляной кислотой и его кипячения осаждают гидроксиды водным раствором аммиака. В прокаленном оксиде скандия содержится 94,4% основного вещества, 3% TiO2, десятые доли процента Y2O3 и SiO2. Выход скандия составляет 64%.

Основным недостатком данного способа является операция предварительного спекания золы с щелочью для отделения алюминия от золы. Это приводит к необходимости применения дополнительного оборудования - печей для сплавления, а также и к дополнительному расходу достаточно дорогого реагента - щелочи. Кроме того, степень извлечения скандия данным способом достаточно низка - выход скандия составляет 64%.

Таким образом, представленные способы хотя и позволяют извлекать металлы из различных бедных материалов, но требуют различных измерительных приборов для контроля параметров процесса, специального устройства выщелачивателей, работающих под избыточным давлением и/или в ультразвуковом поле, а в ряде случаев и предварительных операций по вскрытию золы, в частности, сплавлением со щелочью.

Задачей настоящего изобретения является создание более экономного и простого в аппаратурном исполнении, но эффективного способа для выщелачивания редкоземельных и радиоактивных металлов из окисленного технологически упорного сырья, в частности, золошлаковых отходов, образующихся при сжигании энергетических углей, позволяющего извлекать вышеназванные металлы без операций предварительного вскрытия золы за короткое время обработки.

Указанный технический результат достигается тем, что в способе извлечения радиоактивных и редкоземельных металлов из окисленного технологически упорного сырья, включающем кислотное выщелачивание, последнее (выщелачивание) осуществляют путем приготовления пульпы из золошлаковых отходов, взятых в качестве исходного сырья, и раствора серной кислоты и обработки ее на катоде с низким перенапряжением выделения водорода при постоянном перемешивании.

Обязательное условие обработки - выделение на катоде водорода, поскольку экспериментально было установлено, что именно при этом начинается наиболее эффективное выделение редкоземельных и радиоактивных металлов из матрицы, что позволяет обойтись достаточно простым оборудованием без потери эффективности выщелачивания. Такой эффект, как предполагают авторы, связан с восстановлением оксидов редкоземельных металлов, содержащихся в сырье, выделяющимся и/или адсорбированным на катоде водородом по одному из механизмов [3]: механизм 1 - электронный механизм - прямой разряд твердой частицы: для окислов (где М n+ - редкоземельный или радиоактивный металл) [М n+ + (n/2)O 2- ] + ne + (n/2)H 2+ = М + (n/2)ОН - Перенос электронов происходит между электролитом и труднорастворимым веществом.

механизм 11 - участие в переносе электронов промежуточного вещества (X), образующегося на электроде в ходе процесса: для окислов (где М n+ - редкоземельный или радиоактивный металл, X - выделяющийся и/или адсорбированный на катоде водород) [М n+ +(n/2)O 2- ]+nX +nH + = М+nX - +(n/2) H2O Наилучшие результаты по выщелачиванию достигаются на металлах с низким перенапряжением выделения водорода, например из платины, меди, никеля, титана и др.; наихудшие - на металлах с высоким перенапряжением, в частности, на свинце. Очевидно, на восстановление окислов металлов влияет механизм выделения водорода, зависящий, как известно, от материала электрода.

С целью концентрирования редкоземельных и радиоактивных металлов и улучшения доступа к ним сернокислотного раствора, зола может быт предварительно подготовлена путем обработки щелочным раствором при следующих условиях: Сщел = 150- 250 г/л, Т = 80-90 o C, = 2 -3 ч, Т:Ж = 1:5. Такая обработка приводит к разрушению структуры частиц золы и концентрированию редкоземельных и радиоактивных элементов и, следовательно, к снижению объема золы для электрохимического выщелачивания и повышению экономических показателей процесса.

При необходимости максимального концентрирования редкоземельных и радиоактивных металлов предварительно из золы можно извлечь практически весь кремний и алюминий, спекая золу с карбонатом натрия и разлагая полученный спек щелочными растворами, а затем выщелачивая редкоземельные металлы способом, предложенным авторами настоящей заявки.

Устройство для извлечения редкоземельных и радиоактивных металлов из окисленного технологически упорного сырья, содержащее размещенный в корпусе электродный блок, снабжено мешалкой для поддержания частиц сырья в суспензированном виде и имеет окруженный диафрагмой анод или анод без диафрагмы и катод, предпочтительно выполненный из титана, меди, платины, никеля, кобальта, хрома или их сплавов. Катод может быть выполнен цилиндрическим или в виде нескольких рядов спиралей, окружающих анод. Анод может быть выполнен полым для размещения оси механической мешалки. Мешалка может быть выполнена также с магнитным приводом.

Способ извлечения редкоземельных и радиоактивных металлов из окисленного технологически упорного сырья поясняется чертежами, где: на фиг. 1 приведена схема электровыщелачивателя лабораторного исполнения (с магнитной мешалкой) (вид сверху и сбоку), на фиг. 2 приведена схема электровыщелачивателя с механической мешалкой и полым анодом (вид сверху и сбоку); на фиг. 3 приведена схема электровыщелачивателя со спиральным катодом и полым анодом (вид сверху и сбоку).

Устройство для извлечения редкоземельных металлов из окисленного технологически упорного сырья и устройство для его осуществления содержит электродный блок, включающий анод 1, выполненный целым (фиг. 1) или полым (фиг. 2, 3), окружающую его диафрагму 2, предотвращающую смешивание компонентов катодной и анодной реакций или анод без диафрагмы, и катод 3, выполненный из меди, титана, платины, никеля, кобальта, хрома или их сплавов и имеющий форму цилиндра (фиг. 1,2) или несколько рядов спиралей, окружающих анод (фиг. 3). Устройство снабжено мешалкой 4, имеющей блок 5 магнитного привода мешалки (фиг. 1) или приводимой в движение механическим путем с помощью оси, проходящей через полый анод 1 (фиг. 2, 3). Электродный блок помещен в корпус 6, поддерживающий необходимую температуру (фиг. 1,2,3).

Устройство работает следующим образом: в электродное пространство заливают пульпу необходимой температуры, приготовленную в соотношении Т:Ж = 1: (5-10), подключают электроды к источнику постоянного тока и включают привод мешалки. Процесс проводят при параметрах (температуре, плотности тока, концентрации кислоты и времени), указанных в примерах до достижения необходимой степени выщелачивания. После обработки пульпу разделяют фильтрованием на раствор и остаток. Выделение редкоземельных и радиоактивных металлов из полученного раствора можно проводить известными способами.

Авторами были изучены зависимости извлечения редкоземельных металлов (на примере церия) из золошлаковых отходов от сжигания энергетических углей от параметров: концентрация серной кислоты, плотность тока, температура обработки, время обработки и материал электрода.

Сущность изобретения поясняется конкретными примерами обработки из окисленного технологически упорного сырья, в частности, на примере золы-уноса экибастузского угля.

Во всех опытах брали необходимую массу золы, помещали в предварительно термостатированный раствор серной кислоты и включали постоянный ток. Необходимую плотность тока выставляли по миллиамперметру, температуру раствора - с помощью термостата. В качестве катода в представленных примерах использовалась медная фольга, в качестве анода - свинец. После обработки суспензию фильтровали под вакуумом для увеличения скорости фильтрации. Исходное содержание церия в золе составило 0,019%. Содержание церия в растворе определяли спектрофотометрическим методом.

Поскольку химические свойства актиноидов аналогичны свойствам лантаноидов, в условиях максимального извлечения РЗЭ были проведено определение содержания урана и тория, которые присутствуют в золе в количестве 3 и 10 г/т соответственно.

С целью изучения влияния концентрации серной кислоты на выщелачивание церия обработка проводилась при условиях, приведенных в табл. 1.

Таким образом, увеличение концентрации кислоты более 300 г/л приводит к ухудшению выщелачиваемости церия, по-видимому, из-за увеличения вязкости среды. Уменьшение концентрации ниже 50 г/л также снижает степень выщелачивания. Содержание радиоактивных металлов в растворе при концентрации серной кислоты 100 г/л составляет 910 -5 г/л для урана и 2,210 -4 г/л для тория, что соответствует степени извлечения 30 и 32% соответственно.

С целью изучения влияния плотности тока на выщелачивание церия из золы обработка проводилась при параметрах, приведенных в табл. 2.

Таким образом, снижение плотности тока более 0,25 mA/см 2 снижает степень выщелачивания вплоть до 0,2% без тока. Увеличение плотности тока более 5,0 mA/см 2 не приводит к увеличению степени выщелачивания, но повышает расход электроэнергии. Содержание радиоактивных металлов в растворе при катодной плотности тока 5,0 mA/см 2 составляет 9,610 -5 г/л для урана и 2,310 -4 г/л для тория, что соответствует степени извлечения 32 и 33% соответственно.

С целью изучения влияния температуры на выщелачивание церия обработка проводилась при условиях, приведенных в табл. 3.

Таким образом, повышение температуры более 80 o C приведет к усложнению аппаратуры из-за значительного упаривания растворов, в то же время снижение температуры менее 20 o C значительно снижает степень выщелачивания церия. Содержание радиоактивных металлов в растворе при температуре 80 o C составляет 2,010 -4 г/л для урана и 5,110 -4 г/л для тория, что соответствует степени извлечения 68 и 73% соответственно.

Пример 4. С целью изучения влияния времени на выщелачивание церия обработка проводилась при условиях, приведенных в табл. 4.

Таким образом, повышение времени обработки более 1,5 ч незначительно увеличит степень выщелачивания церия, а снижение времени обработки - к недостаточно высокой степени выщелачивания, т.е. потере значительного количества церия с отработанной золой. Содержание радиоактивных металлов в растворе при времени обработки 1,5 ч составляет 2,810 -4 г/л для урана и 6,710 -4 г/л для тория, что соответствует степени извлечения 93 и 94% соответственно.

С целью концентрирования редкоземельных металлов в золе, а также улучшения доступа реагентов к окислам редкоземельных металлов зола была предварительно обработана растворами едкого натра при оптимальных условиях, установленных экспериментально: Сщел = 250 г/л, Т = 855 o C, = 3 ч, Т:Ж = 1: 5. После обработки полученная суспензия отфильтровывалась под вакуумом, зола просушивалась в сушильном шкафу при температуре 80 -90 o C. Проба золы усреднялась и подвергалась обработке, описанной выше.

Содержание церия в обескремненной золе составило 0,036%.

Обработка проводилась при условиях, приведенных в табл. 5.

Таким образом, предварительное обескремнивание золы снижает время электрохимической обработки золы, в то же время, не ухудшая степени выщелачивания. Можно ожидать, что дополнительное извлечение других компонентов, таких как алюминий, также приведет к концентрированию РЗЭ и не ухудшит степени извлечения. Повышение времени обработки более 1,0 ч незначительно увеличит степень выщелачивания церия, но приведет к расходам на нагревание суспензии. Содержание радиоактивных металлов в растворе при времени обработки 1,0 ч составляет 3,010 -4 г/л для урана и 6,910 -4 г/л для тория, что соответствует степени извлечения 99 и 99% соответственно.

Список используемой литературы
1. Патент РФ N 2114196. МПК: С 22 В 3/04. Способ гидрометаллургического извлечения редких металлов из технологически упорного сырья.

2. Заявка 97115398/02 RU, МПК 6 C 22 B 11/00, C 25 C 1/12, 7/00, БИ N 20, 20.07.99.

3. Даушева М.Р. Сонгна О.А. Поведение суспензий труднораствормых соединений на электроде. // Успехи химии. 1973. Т. 42, вып. 2. С. 323-342.

1. Способ извлечения редкоземельных и радиоактивных металлов из окисленного технологически упорного сырья, включающий кислотное выщелачивание, отличающийся тем, что выщелачивание осуществляют путем приготовления пульпы из золошлаковых отходов, взятых в качестве исходного сырья, и раствора серной кислоты и обработки ее на катоде с низким перенапряжением выделения водорода при постоянном перемешивании.

3. Способ по п. 1, отличающийся тем, что золошлаковый отход предварительно обрабатывают щелочным раствором при следующих условиях: концентрации - 150-250 г/л, температуре 80-90 o C, времени 2,0-3,0 ч и Т : Ж = 1 : 5.

4. Способ по любому из пп.1-3, отличающийся тем, что катод выполнен из титана, меди, платины, никеля, кобальта, хрома или их сплавов.

Как происходит переработка редкоземельных элементов

Рудник по добыче полимерных руд

Ветрогенераторы, смартфоны или электромобили немыслимы без высоких технологий. Однако цены на один из важнейших видов сырья бурно развивающейся высокотехнологичной индустрии – так называемые редкоземельные элементы - выросли в пять раз. Причиной роста цен явилось то, что Китай, ведущий экспортер редкоземельных элементов, снизил поставки. В результате с трудностями столкнулись высокотехнологичные предприятия по всему миру, потому что растущие цены на их рынках являются катастрофой.

Ветрогенераторы, смартфоны или электромобили немыслимы без высоких технологий. Новые технологии помогают получать желанный металл из отходов производства и снизить тем самым зависимость от Китая.

Катастрофы, как правило, приносят страдания и разочарования. Но иногда они активируют творческие силы и запускают процессы изменения, как это произошло в Японии, когда в 2011 году гигантская волна опустошила побережье.

Цунами затронуло и японские заводы компании Honda. На протяжении многих дней производство простаивало. Но это была не единственная проблема для автопроизводителя. Волна разрушила во всем регионе целые автозаводы. Сотни новых гибридов Honda оказались погребенными под илом. Предприятиям был нанесен миллионный ущерб. Однако это заставило инженеров задуматься.

В это же время в пять раз возросли цены на один из важнейших видов сырья бурно развивающейся высокотехнологичной индустрии – так называемые редкоземельные элементы. Это такие вещества, как неодим, европий, тербий, которые используются для изготовления многих важных продуктов – не только автомобильных аккумуляторов, но и смартфонов, ветрогенераторов, динамиков и систем Hi Fi.

Несмотря на свое необычное название, редкоземельные элементы представляют собой металл с особыми свойствами. Они заставляют лампы светиться, очищают выхлопные газы и придают деталям двигателя магнитные свойства.

Причиной роста цен явилось то, что Китай, ведущий экспортер редкоземельных элементов, снизил поставки. В результате с трудностями столкнулись высокотехнологичные предприятия по всему миру, потому что растущие цены на их рынках являются катастрофой.

Это значит, что предприятия должны научиться обращаться с материалом эффективнее.

Инженеры компании Honda решили научиться возвращать редкоземельные элементы. До них на это никто не решался в подобном объеме. Но эксперты нашли путь для решения вопроса. И вдруг их автомобили, находящиеся буквально на помойке, благодаря редкоземельным элементам в своих аккумуляторах, приобрели стоимость, равную в пересчете практически одному миллиону евро.

Для развития этого метода автопроизводитель начал сотрудничество с химическим концерном Japan Metals&Chemicals в Токио. Вначале инженеры разобрали аккумуляторы, отделили пластиковые и металлические детали и растворили находящееся внутри вещество в кислоте. При помощи электрического метода из этой жидкости можно было выделить 80% редкоземельных элементов. Ранее это не удавалось ни одному автопроизводителю.

Инновационный порыв, который реализовала компания Honda, охватил всю высокотехнологичную индустрию. На свет появилось множество новых идей. Такие технологические концерны, как и Siemens, химический концерн BASF, производитель ламп Osram и автопроизводитель Daimler работают над методами выделения редкоземельных элементов в крупном масштабе.

Редкоземельные элементы развиваются в направлении замкнутой экономики

Высокотехнологическая отрасль редкоземельных элементов развивается в направлении замкнутой экономики, в которой сырье каждый раз перерабатывается и используется вновь.

Около 15 тысяч тонн редкоземельных веществ используются в Европе после переработки этих продуктов. К такому выводу пришел Ален Ролла (Alain Rollat), менеджер по технологиям компании Solvay-Rhodia, единственного европейского производителя желанных металлов со штаб-квартирой в Брюсселе. Предприятие производит благородные вещества, выделяя их из тысяч тонн руды.

Honda с апреля 2012 года возвращает все вышедшие из употребления гибридные автомобили и электромобили и перерабатывает их с целью получения ценных веществ. С этого момента японцам требуется все меньше импорта в этой сфере из Китая.

Цены на 17 различных видов редкоземельных элементов частично снизились с 2012 года на 50%. Но эксперты говорят о новых возможных трудностях. Потребность в некоторых элементах не покроется до 2030 года, говорится в федеральном ведомстве по геологическим наукам и сырью в Ганновере. В 2008 году предприятия по всему миру использовали 124 тысяч тон редкоземельных элементов. В конце десятилетия эта цифра должна увеличиться вдвое. Компания Rhodia говорит о возможном дефиците тербия и диспрозия для магнитов и иттрия для микроволновых приборов и ламп уже в 2014 году.

Потенциал для добычи этих элементов огромен. Ранее предприятия перерабатывали лишь один процент редкоземельных элементов, оценивают эксперты Левенского университета в Бельгии.

По оценкам исследователей, при помощи переработки мировая потребность промышленности может быть покрыта на 20%. Тем самым снизится и зависимость от Китая.

Но это не все. Промышленность рассматривает дорогие виды сырья в своих продуктах как собственность, которую отдают очень неохотно, говорит Гюнтер Маассен (Gunther Maassen) из немецкой компании по продаже металлов Haines&Maassen в Бонне. Но для этого продукты необходимо создавать по-другому – так, чтобы дорогие элементы действительно можно было сохранить. Этому как раз учится Daimler. В одних только двигателях электромобилей и гибридов находится один килограмм редкоземельных элементов в форме магнитов.

Daimler пока не использовал метод переработки, потому что эти элементы довольно труднодоступны. «Это не выгодно с экономической точки зрения», – говорит Тобиас Элверт (Tobias Elwert), эксперт по переработке Технического университета Билефельда.

В этой связи Daimler стремится в будущем строить автомобили с простыми двигателями, стремясь к тому, чтобы их можно было разобрать автоматически. Как это можно достичь – этот вопрос концерн как раз решает в проекте MORE MOtotREcycling. Каждый месяц Daimler направляет вышедшие из строя электродвигатели в университет Эрлангена. Там происходит их разборка.

Сильный удар булавой, жесткие магнитные диски отделяются – их в двигателе от 20 до 400. Потом приближается стальная колодка. Сила притяжения между магнитом и колодкой сильнее, чем между магнитом и двигателем. Таким образом, ценные пластины могут быть отделены в течение нескольких секунд.

В качестве следующего шага исследователи разрабатывают целую фабрику, единственной функцией которой является разборка старых двигателей. Федеральное правительство поддерживает разработку этого метода и направляет на эти цели 5,1 миллиона евро. Этот метод будет реализован и готов для промышленного использования максимум через десять лет.

С разобранными магнитами до недавнего времени существовала одна проблема. Их было два типа – на основе неодима и на основе самария. Оба типа внешне не отличаются друг от друга. Но если их смешать, из итогового материала уже вряд ли получится магнит, потому что сила притяжения у него слишком мала.

Но и здесь, кажется, назревает решение. Это физико-механический способ отделения, который несколько месяцев назад представил химик Маркус Тегель (Markus Tegel) из Института техники и прикладного исследования материалов имени Фраунгофера в Дрездене.

Поскольку Тегель еще не запатентовал свое изобретение, он не раскрывает детали. Но он уверяет, что ежечасно тонны различных магнитов таким образом отделяются друг от друга. В настоящее время он ведет переговоры с различными промышленными партнерами, которые хотят вывести технику на рынок.

В этом случае «чистые» магниты можно будет использовать напрямую в двигателях. Для этого исследователи размалывают магнит до состояния порошка. Под высоким давлением он в результате укладывается в желаемую форму и «выпекается» при температуре 1000 градусов Цельсия. Таким образом, возникает новый магнит – практически в любой желаемой форме.

Это тема широко обсуждается не только такими промышленными гигантами как Siemens или Daimler. Около трети редкоземельных элементов оказываются в магнитах, их используют в разных сферах – от компьютеров, динамиков и электромобилей до электрогенераторов. Всем им для движения необходимы крупные магниты. Неудивительно, что Тегель пришел к выводу, что «практически все предприятия, имеющие дело с электромоторами, занимаются переработкой».

Креативные французы

Что касается переработки редкоземельных элементов, творческий подход в этом вопросе проявили французы. В течение последних нескольких лет европейским потребителям запрещено выбрасывать энергосберегающие лампочки вместе с бытовыми отходами, потому что они содержат ядовитую ртуть. Но не было обращено внимание на то, что белое напыление на стекле тоже содержит несколько граммов редкоземельных элементов.

Solvay-Rhodia превратил отслужившие свой срок лампы в источник сырья и активно инвестирует в новую технику. С 2009 года предприятие вложило в новые методы 15 миллионов евро. Это может стоить того: каждый год предприятия и потребители по всему миру собирают около 80 тысяч тонн использованных ламп, тем самым получая несколько тонн редких веществ.

При использовании старых методов использованные лампы оказывались в своего рода комбайне, где их измельчали и превращали в порошок и белую кашицу. После прохождения различных фильтров отсеивалось стекло и частички металла. В итоге получалось два миллиграмма ртути на лампочку.

Альтернатива использованию редкоземельных элементов

Ранее промышленность не знала, как же использовать оставшееся сырье в белом расвторе. Жидкость заливалась цементом и отправлялась в специальные мусорные свалки, где хоронил тысячи тонн редкоземельных элементов. «Безвозвратно, поскольку из цемента никогда не удастся что-то вновь добыть», – говорит Фредерик Каренкотт (Frederic Carencotte), бизнес-директор Rhodia. «Мы уже пробовали», – отмечает он.

С мая 2012 года французский эксперт Rhodia выделил тысячи тонн белого порошка из люминесцентных и энергосберегающих ламп. Даже из США кораблями завозятся пользующиеся спросом отходы. Французам удается получить из него шесть видов редкоземельных элементов, среди которых дорогие европий и тербий. В прошлом году удалось получить около 500 тонн.

Для Rhodia отходы становятся важным ресурсом. С 2012 года предприятие получает сотни тонн производственных отходов от производителей магнитов и остатки от переработки аккумуляторов, богатые редкоземельными элементами. В первую очередь, привлекательным французский объект по производству редкоземельных элементов делают огромные горы мусора промышленных стран. Между тем, менеджеры размышляют о создании нового завода. «Точно не в Китае, возможно, в Европе», – говорит Ролла. Другие производители редкоземельных элементов, например, американский конкурент Molycorp, хотят достичь уровня французской модели.

Ресурсы Земли ограничены. В компьютерной отрасли и отрасли по производству сотовых телефонов в среднесрочной перспективе ожидаются трудности в снабжении редкоземельными металлами. При этом большие запасы находятся буквально перед нашей дверью. Urban Mining хочет сделать эти резервы пригодными для использования.

Но переработка – это не единственный путь решения сырьевой проблемы. Toyota объявила о планах производства электромобилей без использования этих веществ. Японский производитель электроники Hitachi разработал мотор, не содержащий редкоземельных элементов. Daimler также работает над новой двигательной установки, в которой не будут использованы редкие металлы.

Но, несмотря на все усилия, избежать в производстве 17 элементов в будущем не удастся, отмечает Дорис Шюлер (Doris Schüler), эксперт по редкоземельным элементам из Института по вопросам экологии. Их свойства во многих аспектах уникальны. Новый тренд, который наблюдает компания Maassen, подтверждает эту оценку. Предприятия хотят забронировать редкоземельные элементы, как и золото, в качестве «подушки безопасности», потому что в какой-то момент полезные ископаемые станут той ценностью, которую лучше не выпускать из рук. И тогда все поймут, что переработка ценных веществ в будущем станет неизбежной, как сегодня это происходит со старым золотом.

Способ извлечения редкоземельных металлов и скандия из золошлаковых отходов

Способ извлечения редкоземельных металлов и скандия из золошлаковых отходов

Изобретение относится к переработке золошлаковых отходов ТЭЦ с целью извлечения из них редкоземельных металлов и последующего использования их в производстве строительных материалов.

Золошлаковые материалы - это техногенное сырье.

Разработка энерго- и ресурсосберегающих комплексных технологий для извлечения ценных компонентов с утилизацией отходов является актуальной задачей.

Известен «Способ переработки полиметаллических руд», включающий способ грануляции материала с серной кислотой, который позволяет организовать кучное выщелачивание урана с использованием слабокислых растворов серной кислоты или воды (патент №2571676 МПК С22В 3/04, С22В 60/02).

Известен способ извлечения скандия из зол каменного угля (Б.Г. Коршунов и др. «Скандий». М.: Металлургия, 1987. С. 150-151), основанный на кислотном выщелачивании 18%-ной соляной кислотой плава щелочного вскрытия золы каменного угля. Ионообменное концентрирование скандия на фосфорилированной целлюлозе. Основным недостатком способа является операция предварительного спекания золы со щелочью, использование соляной кислоты высокой концентрации.

Известен «Способ извлечения редкоземельных металлов и иттрия из углей и золошлаковых отходов от их сжигания» (RU 2293134 С1, МПК С22В 59/00, С22В 3/06, С22В 3/26), включающий агитационное выщелачивание 1М раствором азотной кислоты при Ж:Т=5:1 и температуре 90°C и экстракцию редкоземельных металлов трибутилфосфатом. К недостаткам способа следует отнести высокую температуру процесса выщелачивания, необходимость фильтрования для получения осветленных продуктивных растворов.

Известен способ извлечения редкоземельных металлов из золошлаковых отходов (Г.Л. Пашков, Р.Б. Николаева и др. «Сорбционное выщелачивание скандия из золошлаковых отходов от сжигания бурых углей бородинского разреза». Тез. Докладов Международной конференции «Редкоземельные металлы: переработка сырья, производство соединений и материалов на их основе». Красноярск. 1995. С. 104-106), совмещающий выщелачивание и сорбцию (сорбционное выщелачивание). По этому способу солянокислую пульпу золошлаковых отходов перемешивают с сульфокатионитом КУ-2 при температуре 40-60°C. Одновременно выщелачивается кальций и сорбируется. К недостаткам способа относится сложность разделения трехфазной смеси сорбент - золошлак - раствор, необходимость утилизации фильтрата сорбции, удаление сорбированного кальция, выделение гипса.

Известен «Способ выщелачивания ценных компонентов и редкоземельных элементов из зольно-шлакового материала» (патент RU 2560627 С2, МПК С22В 59/00, С22В 7/00, С22В 3/18), который относится к области биогидрометаллургии. Из золошлакового материала готовят пульпу в биореакторе с соотношением фаз Ж:Т=5:1, элементарной серы 10-20:1. рН пульпы 2,0-3,0 доводят концентрированной серной кислотой, вносят 10% культуральной жидкости, проводят аэрацию воздухом при температуре 44-46°C. Недостатком способа является длительность процесса выщелачивания, необходимость температуры и аэрации, больших объемов 10%-ной пульпы, необходимость наличия бактерий и обеспечение условий их жизнедеятельности (продуктивности) - выработка серной кислоты. Такой способ в промышленных масштабах трудно осуществим.

Техническим результатом изобретения является создание рациональной, экономной, технологичной, экологически безопасной комплексной, поточной технологии утилизации золошлаковых отходов ТЭЦ с целью переработки больших объемов убогого упорного материала в непрерывном (бесфильтрационном) цикле.

Золошлаки после извлечения ценных компонентов могут быть применены в дорожном строительстве в качестве самостоятельного медленно твердеющего вяжущего материала или гидравлической добавки к цементу.

Способ основан на совмещении нескольких технологических приемов при обработке золошлаковых отходов растворами наиболее дешевой серной кислоты для выщелачивания полезных компонентов, сорбционного извлечения их из продуктивных растворов и состоит из нескольких технологических стадий (операций):

- дробление и грануляция золошлаков с концентрированной серной кислотой;

- сорбция суммы РЗЭ сульфокатионитом из продуктивного раствора;

- последующая сорбция скандия аминофосфорсодержащим амфолитом из фильтрата РЗЭ;

- возврат фильтрата сорбции скандия на выщелачивание;

- количество циклов оборота продуктивного раствора выщелачивания определяется экономической целесообразностью полноты извлечения ценных компонентов.

Организация поточного перколяционно-сорбционно-циркуляционного способа извлечения ценных компонентов (суммы РЗЭ, скандия, тория) из гранулированных золошлаков ТЭЦ слабокислыми растворами серной кислоты (5-15 г/л) представлена бесфильтрационной технологической блок-схемой (рис. 1).

Сущность изобретения поясняется конкретными примерами.

Определение содержания элементов в растворах проводилось методом АЭС ИСП (атомно-эмиссионная спектроскопия с индуктивно связанной плазмой) в АО «ВНИИХТ». Определение содержания элементов в твердых продуктах проводилось методом контроля (электронная микроскопия на электронном растровом сканирующем микроскопе).

Пример №1. Агитационное выщелачивание измельченных (0,05 мм) золошлаков





Пример №5. Распределение и извлечение ценных компонентов (РЗЭ и скандия) по стадиям рециркуляции продуктивного раствора при перколяционном выщелачивании гранулированного золошлака Дорогобужской ТЭЦ.


Изобретение относится к извлечению редкоземельных металлов из сырьевых материалов, содержащих эти элементы. Селективное извлечение осуществляют из насыщенных маточных растворов в виде оксалатов РЗЭ.

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной кислотой.

Изобретение относится к способам переработки эвдиалитового концентрата и может быть использовано для получения соединений циркония, редкоземельных элементов (РЗЭ) и диоксида кремния.

Изобретение относится к способу восстановления скандия и ионов, содержащих скандий, из сырьевого потока, который может представлять собой, без какого-либо ограничения, щелок или пульпу от выщелачивания.

Изобретение относится к способу переработки красного шлама при получении скандийсодержащего концентрата и оксида скандия, в котором ведут карбонизационное выщелачивание, сорбцию скандия на фосфорсодержащем ионите, десорбцию скандия и осаждение скандиевого концентрата.

Изобретение относится к технологии получения оксида скандия (Sc2O3) из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов.

Изобретение относится к выделению РЗМ из производственных растворов, полученных при переработке апатитового концентрата серной кислотой. Может быть использовано на предприятиях горно-перерабатывающей промышленности.

Изобретение относится к гидрометаллургии и предназначено для извлечения редкоземельных элементов из отвального фосфогипса и получения гипсового вяжущего. Проводят сернокислотное выщелачивание РЗЭ из пульпы ФГ в режиме циркуляции с электрохимической и кавитационной активацией.

Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано для переработки кека, содержащего редкоземельные и радиоактивные элементы, получаемого при вскрытии монацитового концентрата щелочным методом.

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов (РЗЭ) при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов РЗЭ.

Изобретение относится к пористым частицам привитого сополимера, предназначенным для получения адсорбирующего материала, которые адсорбируют металлы и другие вещества, способу их производства и адсорбенту, в котором они применяются.

Изобретение относится к извлечению урана из подземных вод. Способ включает синтез сорбционной композиции из механоактивированного шунгита, прокаленного фосфогипса и модифицирующего раствора в соотношении 1:1:1.

Cпособ относится к области гидрометаллургии редких и рассеянных элементов, в частности к сорбционному извлечению ванадия из руд. Способ заключается в том, что полученные при кислотном выщелачивании рудного сырья сернокислые растворы сорбируют на анионообменную смолу, после чего маточные растворы сорбционного извлечения ванадия обрабатывают подготовленным раствором - ферригелем в количестве 12,5-25,0 г на 1 г ванадия, который после фильтрации подают на операцию сернокислого выщелачивания исходной руды, для повышения извлечения целевого компонента.

Изобретение относится к извлечению благородных металлов из цианистых растворов и/или пульп по угольно-сорбционной технологии. При автоклавной десорбции получают горячие растворы элюатов, при этом дополнительно концентрируют металл на угле.

Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано для разделения платины, меди и цинка в солянокислых растворах сорбционным методом.

Способ извлечения рения из водных растворов относится к области аналитической химии, химической технологии, в частности к способам применения полимерных материалов для извлечения из водных растворов перренат-ионов, в том числе для их последующего определения.

Изобретение относится к переработке сульфидных золотосодержащих флотоконцентратов биовыщелачиванием золотосодержащих флотоконцентратов. Процесс биовыщелачивания золотосодержащих флотоконцентратов проводят одновременно с процессом сорбции сурьмы из биопульпы, сорбцию сурьмы проводят анионообменной смолой Lewatit MonoPlus марки МР-64, заряженной в сульфатную форму 5% раствором серной кислоты, при расходе смолы не более 5% от объема биопульпы в реакторе и продолжительности процесса сорбции не менее 24 часов, подачу смолы осуществляют по принципу противотока.

Изобретение относится к технологии извлечения индия из сульфатных цинковых растворов с повышенным содержанием кремнезема. Способ селективного извлечения индия из сульфатных цинковых растворов включает стадию сорбции индия на минеральном алюмосиликатном ионите - монтмориллоните, модифицированном ди(2-этил-гексил)фосфорной кислотой (Д2ЭГФК), и последующую стадию десорбции индия раствором соляной кислоты.

Изобретение относится к способу переработки нефелинового сырья и подовой золы с получением низкоконцентрированного композиционного коагулянта-флокулянта. Способ получения предусматривает смешение в массовых процентах нефелинового сырья 1-99 мас.% и зольных продуктов 1-99 мас.%, последующее растворение сухой дисперсии в 5-10% серной кислоте при массовом соотношении сухой дисперсии к растворителю (2-5):(95-98) в течение 2-8 часов.

Читайте также: