Редуктор токарного станка по металлу

Обновлено: 14.05.2024

Анализируя спрос на станки в нашей компании, мы с удивлением обнаружили, что клиенты выбирают станки без редуктора в 5 раза чаще, чем с редуктором, теряя от 20% возможной производительности металлообрабатывающего оборудования, и закрывая при этом не все возможности силовой обработки.

Мы задумались, может быть наши клиенты не знают, что станок с редуктором способен повысить эффективность процесса обработки за счет увеличения объема снимаемого металла, снизить затраты на изготовление детали, увеличить количество выпускаемой продукции и в целом повысить эффективность производственного процесса предприятия?

Специалисты технической службы «Промойл» провели ряд исследований и сравнили работу двух станков: Solex NL634ZF с редуктором ZF и Solex NL634SC без редуктора, чтобы показать реальную разницу их производственного КПД. Полученный результат впечатлил даже нас!

Зачем производители ставят редуктор на станок?

Редуктор – специальный механизм, который повышает эффективность и скорость обработки на станке за счет увеличения крутящего момента, удаления большого припуска при черновой обработке и повышения режимов резания.

Станки с редуктором применяются для обработки сложных и труднообрабатываемых материалов, высоколегированной стали, жаропрочной стали и резьб нефтяного сортамента с большим шагом (ОТТМ, ОТТГ, Баттресс, конические замковые и др.) При обработке труднообрабатываемых материалов возникают высокие усилия резания, что также требует большого запаса жесткости оборудования. Станки с редуктором находят широкое применение в различных отраслях промышленности особенно, где требуется высокопроизводительная обработка: нефтяной, авиационной, энергетической и тяжелом машиностроении.

Фото 1,2 - переводники З-147.
Фото 3 - Барабан. Материал заготовки: труба 351х16 ГОСТ 3262-75.
Фото 4,5 - Рабочее колесо. Назначение: центробежный погружной насос. d=442 мм.
Фото 6 - Крышка. Материал заготовки: 09Г2С Гост 19281-89 d=553 мм.
Эти детали невозможно обработать на станке без редуктора из-за конструктивных особенностей и габаритов деталей, так как данные признаки вносят повышенные требования к крутящему моменту.

Станок Solex с редуктором дает возможность обрабатывать крупногабаритные заготовки за счет работы на двух ступенях: 1:1 и 4:1. Повышенный уровень передаточных чисел – способствует увеличению возможностей для снижения частоты вращения и увеличения крутящего момента. Двухступенчатый редуктор ZF на станке Solex NL634ZF и NL635ZF благодаря планетарному исполнению, компактен и имеет небольшую массу в размере 62 кг, переключение скоростей редуктора происходит автоматически от М-команд, плавность хода и низкий уровень шума обеспечивается благодаря косозубому зацеплению редуктора.

Станок с редуктором занимает на предприятии столько же места, что и станок без редуктора, в то время как его производительность выше минимум на 20%.

Редуктор способен увеличить объем снимаемого металла минимум на 20% и сократить время обработки деталей минимум на 23%*. Это позволяет компании получать большее количество деталей за единицу времени и снизить себестоимость продукции. Снижение себестоимости, в свою очередь, ведет к повышению рентабельности производства.

Сравнение производительности станков на примере обработки муфт

Чтобы показать, как изменяется машинное время обработки при использовании станков Solex NL634ZF с редуктором, мы провели экспериментальную обработку трех муфт разных моделей:

Почему токарный станок с редуктором выгоднее двух обычных станков?

Редукторы для токарных станков

Тела вращения составляют основу машин. Ввиду того, что отливка стали не может быть с высокой точностью, единственным способом их получения становится обработка на токарном станке. Этот технологический этап требует значительной механической энергии и составляет большую часть стоимости готовых изделий. Стальные подшипники, шестерни, валы имеют больший процент стоимости, как раз за счет токарной обработки, а не цены самого материала. В связи с этим особо актуален вопрос снижения затрат. Предложено множество приемов.

  1. Только электрический привод для токарных станков.
  2. Только стандартизованные детали, (редукторы и электромоторы) выпускаемых миллионными сериями.
  3. Стандартное станочное оборудование с оптимизированными потерями кинетической энергии.
  4. Соблюдение технологических режимов эксплуатации токарных резцов. Исключение работы станка с затупившимися резцами.
  5. Использование заготовок с минимальными технологическими припусками.

Передавать большую кинетическую мощность с минимальными потерями могут только цилиндрические и планетарные редукторы. Именно они используются для промышленных токарных станков. Металлорежущее оборудование, вообще, является основным потребителем планетарных редукторов средней мощности. Такой редуктор с орбитальной шестерней имеет плоскую цилиндрическую форму и ставится на электродвигатель с торцевым фланцевым креплением. Получается очень удобная сборка — мотор-редуктор.


Рисунок №1. Цилиндрический редуктор

Планетарные мотор-редукторы для токарных станков

На современных станках ЧПУ устанавливаются именно планетарные мотор-редукторы в качестве основного привода. Унифицированный общепромышленный электродвигатель на трехфазный ток может питаться через частотный преобразователь с незначительным снижением КПД, однако, применение частотного преобразователя для основного привода обычно не требуется, ввиду постоянной нагрузки. Если станок предназначен для изготовления типовых деталей, то привод рассчитывается под них.

На универсальных токарных станках, особенно в моделях выпуска до 2000 года, используется комбинированный редуктор. Первая высокоскоростная ступень — ременная передача, а последующие ступени — шестерни в кинематической схеме цилиндрического многоступенчатого редуктора. Такой способ привода удешевляет станок, а главное — снижает уровень шума, что снижает профессиональную вредность работы на нем.

Планетарные мотор-редукторы применяются не только на токарных, но и на других металлорежущих станках: фрезерных, зуборезных, хонинговальных.

Редукторы для вспомогательных систем

Система подачи резцов, движения кареток токарного станка приводится в движения от шаговых двигателей с червячными, планетарными и цилиндрическими кинематическими схемами. Больших нагрузок на системы подачи нет, поэтому можно применять дешевые червячные редукторы, соленоидный безредукторный привод и различные другие варианты.

Как выбрать редуктор для станка

Как выбрать редуктор для ЧПУ станка: основные правила

Введение

Выбрать редуктор для ЧПУ станка может оказаться довольно сложной задачей. Клиенты постоянно сталкиваются с разнообразием редукторов, предназначенных для различных задач. Неправильно сделанный выбор может привести к покупке более дорогого редуктора. В индустрии передачи механической энергии необходимы редукторы, которые поддерживают большие внешние радиальные нагрузки, в тоже время для точного управления перемещениями или в сервомеханизмах необходимы редукторы, способные выдерживать динамические нагрузки.

Одной из первых проблем, с которой столкнется клиент – это как подобрать параметры редуктора и нагрузки, они должны соответствовать параметрам двигателя и в тоже время должны соответствовать предполагаемой нагрузке. Подбор параметров редуктора может быть упрощен, и в результате, вы все равно получите работоспособную конструкцию, только за большие деньги и редуктор будет иметь характеристики большие, чем это необходимо для вашей задачи. В тоже время правильный подбор параметров гарантирует, что ваш редуктор справится с нагрузкой, будет рентабельным и будет занимать небольшую площадь.

Как подобрать параметры редуктора

Общие аспекты оценки задачи для редуктора

Есть несколько аспектов для оценки параметров редуктора, которые необходимо рассматривать во всех случаях. В данном разделе статьи они будут подробно разобраны.

1. Коэффициент перегрузки

Перед определением параметров задачи по подбору оптимального редуктора, клиент должен определится со значением коэффициента перегрузки. Коэффициент перегрузки обычно определяется как превышение заданного значения какого-либо параметра над номинальным значением параметра конкретного устройства. Коэффициент перегрузки должен учитывать такие факторы как неравномерная нагрузка, простой для обслуживания и повышенную температуру эксплуатации.

2. Температура эксплуатации и окружающей среды

Более высокие температуры окружающей среды увеличивают внутреннее давление, что также может потребовать увеличения коэффициента перегрузки. Эксплуатация при высоких или низких температурах может потребовать использования других уплотняющих материалов и специальных смазок.

Условия окружающей среды, в которой работает редуктор, также является важным параметром при выборе параметров редуктора. Тяжелые условия эксплуатации могут увеличивать износ устройства. Условия эксплуатации в запыленных или грязных условиях часто требуют использования специальных материалов для предотвращения коррозии или роста бактерий. Производства производящие пищевые продукты или напитки требуют специальных покрытий и смазочных материалов, совместимых с требованиями FDA. Вакуумные среды также требуют применения особых смазочных материалов и решений для рассеивания тепла, так как в условиях вакуума затрудняется теплоперенос. Несоблюдение этих требований может привести к тому, что редуктор не сможет выдерживать нагрузку. Все эти аспекты должны учитываться при подборе параметров редуктора.

3. Ударные нагрузки или типы нагрузки

Высокие ударные или динамические нагрузки могут приводить к повышенному износу шестеренок и подшипников вала, такой износ может привести к преждевременному выходу из строя, если он не учитывается при выборе параметров. Кроме того такие нагрузки потребуют повышенный коэффициент перегрузки. Равномерные нагрузки – это такие нагрузки, которые остаются неизменными в течение всего времени их приложения, в тоже время неоднородные нагрузки – это такие нагрузки, которые изменяются в течение времени их приложения. Присутствие неравномерных нагрузок, даже небольшие, как правило, потребуют более высокого коэффициента перегрузки. Примером задачи с равномерной нагрузкой может служить конвейер с постоянным количеством транспортируемого продукта. Примером неравномерной нагрузки может быть любая задача, связанная с резкой. Резка сопровождается периодическим увеличением крутящего момента на редукторе, что собственно и является неравномерной нагрузкой.

4. Тип выхода или выходной механизм

Выходной механизм включает в себя звездочку, шкив или зубчатую шестерню. Различные конфигурации выходного механизма, такие как двойной выходной вал или втулка, установленная на валу, уменьшает количество нагрузки, на которое рассчитан блок. Различные выходные механизмы меняют возможную нагрузку на вал, значение которой также необходимо учитывать. Большинство механизмов создают высокую радиальную нагрузку, в тоже время такие вещи как геликоидальная передача может создавать высокую осевую нагрузку. Такие различные условия могут потребовать различных подшипников для того чтобы справляться с высокой радиальной или осевой нагрузки.

5. Размер выходного вала или полости выходного шпинделя

При подборе параметров приложения выходной вал и размер отверстия полости шпинделя должны соответствовать требованиям заказчика. Выходные валы могут быть выполнены из нержавеющей стали, быть шпоночными или бесшпоночными, быть полым с установкой шпонки или без шпонки или быть фланцевым и комбинированным с любым из предыдущих вариантов. Знание правильного размера отверстия на блоке может подтолкнуть клиента к покупке большего редуктора, для установки его на имеющийся вал. В некоторых случаях клиент имеет возможность модифицировать свой вал, так чтобы иметь возможность использовать наиболее экономичное устройство и получить наиболее оптимальное решение.

6. Тип корпуса

Также важно предусмотреть способ монтажа перед тем, как выбрать редуктор. Блок редуктора может быть оснащен монтажными ножками, выходным фланцем или же резьбовыми отверстиями с одной или с нескольких сторон. Такие различные виды корпуса могут накладывать определенные ограничения пи установке устройства, поэтому присутствие на рынке различных вариантов корпусов предотвращает использование дополнительных крепежных элементов, таких как рамки или кронштейны. Например, наличие резьбовых отверстий на нижней поверхности корпуса снимает необходимость установки дополнительного L-образного кронштейна вокруг выхода редуктора.

Передача мощности редуктора

Некоторые элементы, которые могут повлиять на процесс выбора параметров оборудования, являются специфичными и зависят от индустрии, в котором данное оборудование должно работать. Так для задач передачи мощности важными параметрами являются значение скорости вращения вала (об/мин), мощность двигателя и габариты корпуса при установке, а также рабочая нагрузка с которой системе придется работать.

    Скорость вращения входного вала

    Клиент должен определить рабочее отношение редуктора или предоставить отношение входной/выходной скорости и рабочую частоту (Гц) для расчетов. Стандартом является скорость вращения 1750 об/мин при частоте тока питания 60 Гц. Любые изменения должны быть обязательно указаны при выборе параметров задачи, так как это отразится на расчете отношения. Несоблюдение этого условия может привести к тому, что редуктор не будет соответствовать требованиям заказчика.

Контроль движения редуктора

Для индустрии сервомеханизмов, при определении параметров устройства необходимо учитывать такие параметры как: скорость ведущего вала, инерция, значение динамического крутящего момента, удельная нагрузка на вал и непосредственно диаметр вала.

    Скорость ведущего вала

Скорость ведущего вала не должна превышать номинальную скорость редуктора, в обратном случае из-за повышенного давления может возникнуть преждевременный износ уплотнения. Скорость ведущего вала может увеличиваться случайным образом, особенно если на выходе есть механизм, коэффициент редукции которого не был учтен при подборе параметров системы, поэтому так важно определять параметры устройств на выходе.

Для точного управления механизмом требуется рассогласование инерции менее 10:1. Это крайне важно для получения высокой точности, необходимой в ряде приложений. Размер и передаточное отношение редуктора являются основными факторами, влияющими на инерцию редуктора. Инженеры по системам управления могут затребовать и меньшего несоответствия или даже запросить конкретное значение такого несоответствия. Очень часто двигатель выбирается на основе динамических возможностей, а, не исходя из крутящего момента. Как правило, используется двигатель с гораздо большим крутящим моментом, чем этого требует техническое задание из-за большой инерции ротора. Некоторые производители даже делают двигатели, специально предназначенные для высоких и низких значений инерции. Таким образом, можно улучшить настройку двигателя для задачи благодаря меньшему инерционному рассогласованию. Также важно ограничить выходной крутящий момент двигателя для предотвращения поломки редуктора.

Циклическое движение может потребовать использование более высокого значения коэффициента перегрузки, чем в случае равномерного движения. Это связано с тем, что постоянные пуски и остановки приводят к дополнительному износу зубьев, шестеренок и уплотнений. Циклическое реверсное движение требует еще более высокого коэффициента перегрузки, чем просто циклический или непрерывный режим движения.

Радиальные, осевые и мгновенные нагрузки на вал должны быть учтены и проверены на соответствие значениям номинальных нагрузок конкретного блока. Несоблюдение этого правила может привести к повреждению вала, подшипников или зубьев шестеренок. Как правило, для того чтобы сделать выбор правильного редуктора, указанных выше параметров применяется один коэффициент перегрузки. Дополнительные типы подшипников могут увеличить эти оценки, если условия применения требуют этого.

Выводы:


Для получения оптимального решения, клиенты должны знать размер нагрузки, тем самым обеспечивается получение рентабельного решения подходящего для приложения. Коэффициент перегрузки, окружающая среда, температура окружающей среды, ударная нагрузка, тип выходного соединения и время обслуживания являются важными параметрами при выборе редуктора. Чем больше информации предоставляет клиент, тем более точным является процесс подбора редуктора, что, в конечном счете, поможет подобрать оптимальный редуктор для решения задачи клиента. Существует множество программ определения параметров, которые могут помочь с выбором конкретной модели редуктора.

Выбор редуктора для сервопривода

Как правильно выбрать и использовать прецизионные редукторы для сервосистем

Сервосистема, дополненная редуктором, может обеспечить прецизионное управление движением, но при разработке такого комплекса необходимо проявлять определенную осторожность при проектировании, выборе комплектующих, и последующем внедрении системы.

На рынке доступно большое количество редукторов, потому важно подобрать редуктор и двигатель подходящие для выполнения задачи. Если для выполнения задачи машине необходима сервосистема (привод и двигатель), то для получения точных и повторяемых движений критически важен правильный выбор редуктора. Наиболее соответствуют требованиям и задачам сервосистем планетарные редукторы.

Существует много видов промышленных редукторов, поэтому так важно подобрать наиболее подходящий тип редуктора для двигателя и нагрузки. В случае если решение задачи требует использования сервосистемы (драйвера и двигателя), тип используемого редуктора имеет решающее значение, особенно для поддержания точного и повторяемого движения. И планетарные редукторы подходят для решения таких задач.

Прецизионные геликоидные планетарные редукторы – это отличный выбор для задач требующих высокой точности перемещений и надежности. Планетарные редукторы имеют очень низкие показатели люфта (обычно около 1/9 угловой минуты) и при правильном подборе срок службы таких редукторов составляет более 20000 часов, практически без обслуживания. Геликоидный планетарный редуктор, в сравнении с конкурирующими продуктами, также обладает такими преимуществами как тихая работа с большей производительностью.

Детали прецизионных редукторов тщательно обрабатываются с самыми высокими допусками. Именно поэтому редукторы обеспечивают максимальную плотность мощности в корпусе относительно небольшого размера, с эффективностью около 90% и выше.

s1.jpg

Данный серводвигатель и прецизионный планетарный редуктор управляют поворотным рычагом в раздаточной машине, для обеспечения точного позиционирования, требуемого данной задачей.

Зачем использовать редуктор?

Серводвигатели часто непосредственно передают движение на нагрузку без использования редукторов, в тоже время использование редуктора во многих случаях выгодно.

Одной из основных причин использования редуктора является увеличение крутящего момента. Таким образом, разработчики могут закладывать в конструкцию меньшие по размеру сервосистемы, которые потребляют меньше энергии, вместо того чтобы покупать большие по размеру и более мощные сервоприводы и двигатели, тем самым получая заметную экономию пространства и средств.

Выходной крутящий момент увеличивается пропорционально передаточному числу редуктора, в тоже время скорость вращения выходного вала уменьшается. Если согласно техническому заданию допускается снижение скорости, то относительно небольшая сервосистема сможет обеспечить высокий крутящий момент.
Редукторы также могут компенсировать рассогласование инерции. В случае высокопроизводительных систем – например, с высокими динамическими характеристиками или низким перерегулированием – отношение между инерцией нагрузки и инерцией двигателя должно минимальным, идеальным значением является 1/10. Прецизионный редуктор уменьшает инерцию в квадратичном отношении к редукционному коэффициенту. Так, использование редуктора с коэффициентом редукции 25:1, инерция уменьшается в 625 раз.

В некоторых случаях редукторы просто решают проблемы связанные механической подгонкой. Например, в случае, когда непосредственное крепление двигателя мешает другим механическим деталям, использование редуктора с выводом под углом 90° может решить проблему.

В сравнении с большинством редукторов других конструкций, прецизионный редуктор позволяет обеспечить лучшую точность и повторяемость движений. Более того, высокая эффективность редуктора позволяет обеспечить максимальную мощность, доступную от привода сервосистемы – свойство часто востребованное в сервосистемах.

Сравнение редукторов разных типов

Редукторы используют различные способы передачи мощности, включая, но, не ограничиваясь, планетарными передачи, червячные передачи, цилиндрическими зубчатыми колесами, винтовыми передачами. Наиболее часто используемые в сервоприводах редукторы - устройства на основе планетарных редукторов.

Червячные пары используют червячные или винтовую передачу для поворота большего колеса, установленного в направлении поперечного направлению ведущего вала. Эти пары могут обеспечить высокий коэффициент передачи в небольшом объеме, но с небольшой эффективностью (около 70%). Червячные передачи также не могут работать в реверсивном направлении, и, следовательно, не могут приводиться в движение в обратном направлении, поэтому их нельзя использовать для увеличения скорости.

Прямозубые шестерни используют для передачи мощности прямые зубья, установленные на параллельных валах. Такие передачи доступны для широкого соотношения коэффициентов передачи и они, в тоже время, являются экономически эффективными, в тоже время они достаточно шумные и подвержены износу.

s2.jpg


На рисунке показан геликоидальный планетарный редуктор в разобранном виде. Слева направо – зубчатое планетарное колесо (слева), зубчатый кольцевой венец (середина) и выходной вал с водилом планетарной передачи (справа).

Геликоидальный соосный редуктор также использует шестерни на параллельных валах, однако зубья нарезаются в виде спирали, что позволяет увеличить контакт между сопрягаемыми зубьями.
Геликоидные соосные редукторы и цилиндрические прямозубые передачи, как правило, обладают большим люфтом, чем планетарные редукторы. Кроме того геликоидальные соосные редукторы и цилиндрические прямозубые передачи обладают нежелательной дополнительной силой действующей вдоль оси шестерни. В тоже время геликоидальные зубья шестеренок тише работают и могут использоваться в других типах редукторов.

Блоки с шестернями, смонтированными на валах, широко используются в конструкциях зубчатых передачах переборного типа и зубчатых цилиндрических косозубых передачах. Такие передачи легко собираются и монтируются, хорошо подходят для конвейеров и других приложений для работы с перемещением материалов. В тоже время они страдают от тех же недостатков, что и их составные части.

Планетарные редукторы имеют такое название из-за своего сходства с солнечной системой, они состоят из зубчатого кольцевого венца, планетарного механизма, зубчатого солнечного колеса. Зубчатый кольцевой венец обычно является фиксированным, часто он является частью внешнего кожуха редуктора, а ведущий вал управляется зубчатым солнечным колесом.

s3.jpg


На рисунке показано внутреннее устройство двухступенчатого планетарного редуктора, на котором показана зажимная муфта на валу (внизу справа) и выходной вал редуктора (сверху слева), в середине показаны открытые секции планетарных передач двух ступеней редукции.

Вращение зубчатой солнечной шестерни приводит в движение планетарные шестерни, которые вращаются вокруг своих осей и в свою очередь вращаются вокруг солнечной шестеренки. Держатель, присоединенный к валам планетарной шестерни, обеспечивает выход мощности из редуктора, эта конструкция формирует сбалансированную и компактную систему, которая концентрична относительно выходного вала. Если требуется несколько ступеней редуцирования, то к такой конструкции относительно просто подключить выход к одной ступени, к другой ступени через подключение через солнечное зубчатое колесо второй ступени.
Высокая эффективность, низкий люфт и высокая удельная мощность делают планетарные редукторы лучшей альтернативой для высокоточных сервосистем.

Выбор редуктора и сервосистем

Сервосистема совмещенная с планетарным редуктором позволяет достичь высокой точности передачи движения, но для этого необходимо тщательное согласование всех компонентов системы. Не смотря на то, что сейчас возможно приобрести сервопривод, редуктор и двигатель у разных производителей, такой подход не рекомендуется специалистами, так как для приобретения совместимых комплектующих нужно будет потратить много времени. Приобретение же компонентов от одного поставщика, особенно от того, который уже проверил их совместимость, имеет гораздо больше преимуществ. В таком случае, поставщик, как правило, уже провел все исследования подтверждающие совместимость компонентов. Кроме того, такой поставщик, как правило, предоставляет гарантию на свое решение. Плюс, у такого поставщика есть крепежное оборудование, подходящее для монтажа системы.

Некоторые поставщики предоставляют онлайн инструменты для выбора сервосистем и совместимых с ними редукторов, тем самым облегчая работу по спецификации. Такие инструменты помогают при разработке и могут предоставить специализированные подсказки про хорошо совместимые комбинации компонентов, которые можно приобрести как единую систему. В таких случаях инженеры могут быть уверенны, что компоненты систем, которые они создают, совместимы во всех критических областях и что компоненты будут поставлены со всеми необходимыми установочными элементами (втулками и ключами).

Некоторые инструменты для выбора комплектующих, дают возможность разработчику просто ввести требования к крутящему моменту и скорости вращения, а затем автоматически фильтровать список подходящих мотор-редукторов. Инженеры могут вводить значения крутящего момента в метрических или имперских величинах, также есть возможность выбора системы конкретного размера. Разработчик вводит данные о скорости в форме дискретных значений, после чего выбирает передаточное число, далее он выбирает пространственную ориентацию – соосный, с поворотом на 90° или оба варианта.

Результирующий список доступных систем, как правило, включает в себя информацию о ценах, фактор, который часто имеет решающее значение при выборе. После выбора мотор-редуктора проектировщик переходит на страницу с полной спецификации выбранной комбинации, также отдельных ее компонентов.
Одно предостережение: Даже если селектор и делает процесс выбора проще инженеры и проектировщики должны всегда проверять параметры компонентов – подходят ли они под параметры технического задания.
Лучшие практики и распространенные ошибки.

Не смотря на то, что редукторы помогают уменьшить несоответствие между инерциями двигателя и нагрузки, инерция самого редуктора должна быть включена в формуле расчета:

s4.jpg


В случае если требуются высокие динамические характеристики, инженеры должны озаботиться, о полной настройке системы сервопривода, предпочтительно вместе с предполагаемой нагрузкой, такой подход обеспечит максимально быстрый отклик системы. Такая настройка может, обеспечит быстрое перемещение, и минимизировать пружинистое перемещение, снизить перерегулирование и колебания после остановок.
Таким образом, разработчики должны обратить внимание на радиальную нагрузку и ударную осевую нагрузку. Ударная осевая нагрузка, действующая вдоль оси выходного вала; радиальная нагрузка действует перпендикулярно по отношении к выходному валу.

Сила тяжести, действующая на нагрузку, является самым распространенной причиной радиальной нагрузки, но в тоже время, в зависимости от механизма, прикрепленного к выходному валу могут быть и другие причины для таких нагрузок. В случае некоторых нагрузок может потребоваться установка дополнительных внешних подшипников, которые минимизируют избыточную радиальную нагрузку и тем самым продлевают срок службы внутренних подшипников редуктора.

Общим методом минимизации обратного хода это работа всех устройств в одном, общем, направлении. В случае если необходимо обеспечить реверсивное движение, некоторые проектировщики позволяют нагрузке пройти заданное положение и вернутся к нему после полного поворота.

Применение редукторов

Классическим применением использования прецизионного редуктора является делительно-поворотный стол с несколькими станциями обработки и сборки. Прецизионные редукторы и следящие системы хорошо подходят, когда стол достаточно тяжел и должен быть точно позиционирован и нет необходимости в высокой скорости перемещений.

Другим примером применения редуктора может быть высокоскоростное устройство захвата и перемещения, такое как устройство удаления деталей из термопласт-автомата. Время цикла для таких машин часто имеет решающее значение для их применимости в производственных условиях, так как конструктор термопласт-автомата обычно старается добиться минимального времени удаления детали после открытия формы.

Подвижные руки устройства захвата и перемещения разрабатываются таким образом, чтобы быть максимально легкими для того чтобы уменьшить собственную инерцию деталей. Редуктор может также уменьшить рассогласование инерций, тем самым делая механизм подборщика максимально отзывчивым.

В данном примере ПЛК имеет возможность более активно участвовать управлением движением, передавая сигналы импульсов движения и направления (STEP/DIR). В некоторых случаях ПЛК может передавать подстроечные значения в сервомеханизм для компенсации изменения инерции или профиля движения при захвате детали.

Прецизионные редукторы и сервосистемы могут быть использованы для решения широко спектра задач автоматизации. Однако проектировщики должны приобретать компоненты для таких систем у проверенного поставщика, который хорошо знает свою продукцию. Использование онлайн инструментов для выбора может упростить задачу подбора правильного редуктора, однако система все равно потребует дополнительной настройки после установки. Правильно разработанная, установленная и настроенная система обеспечит точный и воспроизводимый результат в течение долгих лет.

Читайте также: