Самый электро и теплопроводный металл

Обновлено: 19.09.2024

Металлы – это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить в текучее состояние. Одни из них имеют невысокую температуру плавления: их можно расплавить, поместив в обычную ложку и держа над пламенем свечи. Это свинец и олово. Другие возможно расплавить только в специальных печах. Высокой температурой плавления обладают медь и железо. Для ее понижения в металл вводят добавки. Полученные сплавы (сталь, бронза, чугун, латунь) имеют температуру плавления ниже, чем исходный металл.

От чего же зависит температура плавления металлов? Все они имеют определенные характеристики – теплоемкость и теплопроводность металлов. Теплоемкостью называют способность при нагревании поглощать теплоту. Ее численный показатель – удельная теплоемкость. Под ней подразумевается количество энергии, которое способна поглотить единица массы металла, нагреваемая на 1°С. От этого показателя зависит расход топлива на нагревание металлической заготовки до нужной температуры. Теплоемкость большинства металлов находится в пределах 300-400 Дж/(кг*К), металлических сплавов – 100-2000 Дж/(кг*К).

Теплопроводность металлов – это перенос тепла от более горячих частиц к более холодным по закону Фурье при их макроскопической неподвижности. Она зависит от структуры материала, его химического состава и типа межатомной связи. В металлах передача тепла производится электронами, в других твердых материалах – фононами. Теплопроводность металлов тем выше, чем более совершенную кристаллическую структуру они имеют. Чем больше металл имеет примесей, тем более искажена кристаллическая решетка, и тем ниже теплопроводность. Легирование вносит такие искажения в структуру металлов и понижает теплопроводность относительно основного металла.

У всех металлов хорошая теплопроводность, но у одних выше, чем у других. Пример таких металлов – золото, медь, серебро. Более низкая теплопроводность – у олова, алюминия, железа. Повышенная теплопроводность металлов является достоинством либо недостатком, в зависимости от сферы их использования. Например, она необходима металлической посуде для быстрого нагрева пищи. В то же время применение металлов с высокой теплопроводностью для изготовления ручек посуды затрудняет ее использование – ручки слишком быстро нагреваются, и до них невозможно дотронуться. Поэтому здесь используют теплоизолирующие материалы.

Еще одна характеристика металла, влияющая на его свойства – тепловое расширение. Оно выглядит как увеличение в объеме металла при его нагревании и уменьшение – при охлаждении. Это явление обязательно необходимо учитывать при изготовлении металлических изделий. Так, например, крышки кастрюль делают накладными, у чайников тоже предусмотрен зазор между крышкой и корпусом, чтобы при нагревании крышку не заклинило.

Для каждого металла вычислен коэффициент теплового расширения. Его определяют нагреванием на 1°С опытного образца, имеющего длину 1 м. Самый большой коэффициент имеют свинец, цинк, олово. Поменьше он у меди и серебра. Еще ниже – железа и золота.

По химическим свойствам металлы делятся на несколько групп. Существуют активные металлы (например, калий или натрий), способные мгновенно вступать в реакцию с воздухом или водой. Шесть самых активных металлов, составляющий первую группу периодической таблицы, называют щелочными. Они имеют маленькую температуру плавления и так мягки, что могут быть разрезаны ножом. Соединяясь с водой, они образуют щелочные растворы, отсюда и их название.

Вторую группу составляют щелочноземельные металлы – кальций, магний и пр. Они входят в состав многих минералов, более твердые и тугоплавкие. Примерами металлов следующих, третьей и четвертой групп, могут служить свинец и алюминий. Это довольно мягкие металлы и они часто используются в сплавах. Переходные металлы (железо, хром, никель, медь, золото, серебро) менее активны, более ковки и часто применяются в промышленности в виде сплавов.

Положение каждого металла в ряду активности характеризует его способность вступать в реакцию. Чем активнее металл, тем легче он забирает кислород. Их очень трудно выделить из соединений, в то время, как малоактивные виды металлов можно встретить в чистом виде. Самые активные из них – калий и натрий – хранят в керосине, вне его они сразу же окисляются. Из металлов, используемых в промышленности, наименее активным является медь. Из нее делают резервуары и трубы для горячей воды, а также электрические провода.

Общие свойства металлов. Металлическая связь. Тепло- и электропроводность. Физико-механические и химические свойства металлов.

Общие свойства металлов. Физико-механические и химические свойства металлов.

Объясняются особым строением кристаллической решетки - наличием свободных электронов ("электронного газа").

- Пластичность - способность изменять форму при ударе, вытягиваться в проволоку, прокатываться в тонкие листы. В ряду Au,Ag,Cu,Sn,Pb,Zn,Fe уменьшается.

- Блеск, обычно серый цвет и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл квантами света.

- Электропроводность.Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. В ряду Ag,Cu,Al,Fe уменьшается. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение "электронного газа".

- Теплопроводность. Закономерность та же. Обусловлена высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность - у висмута и ртути.

- Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

- Плотность. Она тем меньше, чем меньше атомная масса металла и чем больше радиус его атома (самый легкий - литий (r=0,53 г/см3); самый тяжелый – осмий (r=22,6 г/см3).

- Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -390C), самый тугоплавкий металл – вольфрам (t0пл. = 33900C).

Металлы с t0пл. выше 10000C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me0 – ne Men+

I. Реакции с неметаллами

С водородом (реагируют только щелочные и щелочноземельные металлы):

II. Реакции с кислотами

Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl MgCl2 + H2

2Al+ 6HCl 2AlCl3 + 3H2

6Na + 2H3PO4 2Na3PO4 + 3H2

Восстановление металлами кислот-окислителей смотри в разделах: "окислительно-восстановительные реакции", "серная кислота", "азотная кислота".

III. Взаимодействие с водой

Активные (щелочные и щелочноземельные металлы) образуют растворимое основание и водород:

2Na0 + 2H2O 2NaOH + H2

Ca0 + 2H2O Ca(OH)2 + H2

Металлы средней активности окисляются водой при нагревании до оксида:

Zn0 + H2O ZnO + H2

Неактивные (Au, Ag, Pt) - не реагируют.

Вытеснение более активными металлами менее активных металлов из растворов их солей:

Fe+ CuSO4 Cu + FeSO4

Металлическая связь— связь между положительными ионами в кристаллах металлов, осуществляемая за счет притяжения электронов, свободно перемещающихся по кристаллу. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов. Эти электроны достаточно слабо связаны со своими ядрами и могут легко отрываться от них. В результате в кристаллической решетке металла появляются положительно заряженные ионы и свободные электроны. Поэтому в кристаллической решетке металлов существует большая свобода перемещения электронов: одни из атомов будут терять свои электроны, а образующиеся ионы могут принимать эти электроны из «электронного газа». Как следствие, металл представляет собой ряд положительных ионов, локализованных в определенных положениях кристаллической решетки, и большое количество электронов, сравнительно свободно перемещающихся в поле положительных центров. В этом состоит важное отличие металлических связей от ковалентных, которые имеют строгую направленность в пространстве.

Металлическая связь отличается от ковалентной также и по прочности: ее энергия в 3-4 раза меньше энергии ковалентной связи.

Энергия связи — энергия, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества. Энергии ковалентных и ионных связей обычно велики и составляют величины порядка 100-800 кДж/моль.

Теплопроводность Способность тела передавать теплоту от более нагретых его частей менее нагретым Ag, Cu, Au, Al, W, Fe

В ряду наблюдается уменьшение теплопроводности

Электропроводность Свойство вещества проводить электрический ток (обусловлено наличием в нем свободных электронов) Ag, Cu, Au, Al, W, Fe

В ряду наблюдается уменьшение электропроводности.

При нагревании электропроводность уменьшается, так как усиливается колебательное движение атомов и ионов в узлах решетки и затрудняется движение электронов -

Электропроводность металлов

Электропроводность металлов

Электропроводность металлов и сплавов – физическое свойство, которое учитывается при производстве разных видов изделий. Например, для изготовления электрических кабелей, микросхем используют металлы с высокими показателями электропроводности.

Данный параметр зависит от факторов окружающей среды: температуры, давления, агрегатного состояния, наличия магнитных полей и т. д. Если говорить о чистых металлах и влиянии температуры на их электропроводность, то с ростом она падает. Подробнее о том, что собой представляет электропроводность металлов, вы узнаете из нашего материала.

Природа электропроводности металлов

Электропроводностью называют способность тела, вещества проводить ток. Кроме того, этим термином обозначается физическая величина, которая численно характеризует данную способность. Электропроводность металла определяется числом свободных ионов в проводнике – их движение и является электрическим током. Данный показатель исчисляется в сименсах, а в международной системе единиц для его обозначения используется буква «S».

В зависимости от того, какой электропроводностью обладают металлы и иные вещества, среди них выделяют проводники, диэлектрики и полупроводники. Правда, между данными группами практически не существует четкого разграничения.

Чем обусловлена высокая электропроводность металлов-проводников? Они имеют большое количество свободных ионов. Среди веществ этой группы выделяют два рода, исходя из физической природы протекания тока. К первому относятся металлы с электронной проводимостью, по которым ток проходит благодаря движению свободных электронов.

Ко второму причисляют растворы кислот, щелочей, солей или электролиты, имеющие ионную проводимость. Иными словами, здесь интересующий нас процесс связан с движением положительных и отрицательных ионов. Уровень электропроводности проводников превышает 106(Ом·м)-1.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Диэлектрики обладают малым числом свободных ионов, поэтому отличаются низкой электропроводностью, практически не проводят ток. Такими материалами являются дерево, смолы, пластмассы, стекло, пр. Для них данный показатель составляет менее 106(Ом·м)-1.

По своим проводящим свойствам полупроводники занимают промежуточное положение между материалами описанных выше групп. К ним относятся германий, кремний, селен, прочие соединения, получаемые искусственно.

Природа электропроводности металлов

Существует зависимость электропроводности металлов и иных веществ от температуры, но она является индивидуальной для каждого материала. Повышение степени нагрева металлов приводит к сокращению времени свободного пробега электронов. Увеличение температуры влечет за собой возрастание тепловых колебаний кристаллической решетки, на которой рассеиваются электроны, что вызывает уменьшение электропроводности.

Полупроводникам свойственна другая зависимость электропроводности металлов от температуры: ее повышение провоцирует рост электропроводности, поскольку увеличивается число электронов проводимости и положительных носителей заряда. У диэлектриков электропроводность тоже может возрастать, однако для этого требуется очень высокое электрическое напряжение.

Металлы способны проводить ток, поскольку воздействие электромагнитного поля вызывает потерю связи между электроном и атомом из-за высокой степени ускорения.

Электрическое сопротивление металлов

Электрическое сопротивление является частью закона Ома и исчисляется в омах (Ом). Нужно понимать, что электрическое и удельное сопротивление являются разными явлениями. Если первое представляет собой свойство объекта, то второе характеризует материал.

Так, электрическое сопротивление резистора зависит от формы и удельного сопротивления материала, использованного для изготовления данного элемента электрической цепи.

Электрическое сопротивление металлов

Допустим, проволочный резистор состоит из длинной тонкой проволоки и обладает более высоким сопротивлением, чем аналогичный элемент, но выполненный из короткой и толстой проволоки. При этом оба они сделаны из одного металла.

Если сравнить два резистора из проволоки одинаковой длины и диаметра, то большим электрическим сопротивлением будет обладать тот, который состоит из материала с высоким удельным сопротивлением. А его аналогу из материала с низким удельным сопротивлением будет свойственно меньшее электрическое сопротивление.

В этом случае работает тот же принцип, что и в гидравлической системе, прокачивающей воду по трубам:

  • Чем больше длина трубы и меньше ее толщина, тем с более высоким сопротивлением сталкивается жидкость.
  • Вода будет испытывать на себе меньшее сопротивление в пустой трубе, чем в заполненной песком.

Под удельным сопротивлением понимают способность материала препятствовать прохождению электрического тока. В физике существует и обратная величина, известная как проводимость. Она выглядит таким образом:

Σ = 1/ρ, где ρ – удельное сопротивление вещества.

Электропроводность металлов и других веществ зависит от свойств носителей зарядов. В металлах присутствуют свободные электроны – на внешней оболочке их число доходит до трех. Во время химических реакций с элементами из правой части таблицы Менделеева атом металла отдает их. С электропроводностью чистых металлов все несколько иначе. В их кристаллической структуре эти наружные электроны общие и переносят заряд под действием электрического поля.

В случае с растворами в качестве носителей заряда выступают ионы.

Степень электропроводности разных металлов и сплавов

Развитием электронной теории электропроводности металлов занимался немецкий физик Пауль Друде. Именно благодаря его исследованиям стало известно о сопротивлении, наблюдаемом при прохождении электрического тока через проводник. В результате удалось разделить вещества на группы, исходя из степени их проводимости.

Степень электропроводности разных металлов и сплавов

Данная информация необходима, например, чтобы выбрать наиболее подходящий металл для производства кабеля, обладающего определенным набором свойств. Ошибка в этом случае чревата перегревом под действием тока избыточного напряжения и последующим возгоранием.

Серебро – это металл, обладающий самой высокой электропроводностью. При +20 °C этот показатель равен 63,3×104 см-1. Тем не менее, производство серебряной проводки является нерентабельным, поскольку речь идет о достаточно редком металле. В большинстве случаев он идет на изготовление ювелирных изделий, украшений, монет.

Среди неблагородных цветных металлов самая высокая электропроводность характеризует медь – она составляет 57×104 см-1 при +20 °C. Помимо этого, медь хорошо справляется с постоянными электрическими нагрузками, долговечна, надежна, имеет высокую температуру плавления, поэтому может долго работать в нагретом состоянии. Все названные свойства позволяют активно применять данный металл для бытовых целей и на производстве.

Не реже меди используется алюминий, ведь по электропроводности он уступает только серебру, меди и золоту. Его температура плавления практически в два раза ниже, чем у меди, из-за чего алюминий не может выдерживать предельные нагрузки. По этой причине его применяют в сетях с невысоким напряжением. Узнать электропроводность остальных металлов можно в соответствующей таблице.

По проводимости любой сплав значительно уступает чистому металлу, что объясняется слиянием структурной сетки, вызывающим нарушение нормального функционирования электронов. Так, медные провода изготавливают только из металла с максимальной долей примесей 0,1 % или даже 0,05 %, если речь идет об отдельных разновидностях кабеля.

Приведенные показатели – это удельная электропроводность металлов, которая представляет собой отношение плотности тока к величине электрического поля в проводнике.

Опасность металлов с высокой электропроводностью

Щелочные металлы имеют крайне высокую электропроводность, объясняют этот факт тем, что в них электроны практические не привязаны к ядру и могут быть без труда выстроены в требуемой последовательности. Еще одна особенность этих металлов состоит в низкой температуре плавления в сочетании со значительной химической активностью, что обычно не позволяет использовать их в качестве материалов для кабелей.

Находясь в незащищенном виде, металлы с высокой электропроводностью несут в себе большую опасность. Прикосновение к оголенным проводам вызывает электрический ожог, разряд воздействует на внутренние органы, что нередко становится причиной мгновенной смерти человека.

Поэтому металл закрывают специальными изоляционными материалами, которые могут быть жидкими, твердыми, газообразными – конкретный тип подбирается в соответствии со сферой использования изделия. Вне зависимости от агрегатного состояния защиты она призвана изолировать электрический ток в цепи, чтобы не допустить его воздействия на окружающую среду.

Зависимость электропроводности металлов от факторов внешней среды

Проводимость не является постоянной величиной. В таблицах приведены сведения, характерные для нормальных условий или при температуре +20 °С. В реальной жизни сложно обеспечить идеальные условия для работы цепи. Удельное сопротивление, а значит, и проводимость, определяется такими характеристиками:

  • температурой;
  • давлением;
  • наличием магнитных полей;
  • светом;
  • агрегатным состоянием вещества.

Изменения интересующего нас параметра зависят от условий среды и свойств конкретного материала. Электропроводность ферромагнетиков, в число которых входят железо и никель, увеличивается при совпадении направления тока с направлением силовых линий магнитного поля. Зависимость электропроводности от теплопроводности металлов и окружающей температуры практически линейная, даже есть понятие температурного коэффициента сопротивления – данную величину можно уточнить в таблицах.

Правда, направление зависимости определяется конкретным веществом: у металлов оно при увеличении температуры повышается, у редкоземельных элементов и растворов электролитов увеличивается в пределах одного агрегатного состояния.

Полупроводники характеризуются гиперболической и обратной зависимостью электропроводности от температуры: рост степени нагрева приводит к повышению электропроводности металлов. Данная особенность качественно отличает проводники от полупроводников. Зависимость ρ проводников от температуры выглядит следующим образом:

Зависимость электропроводности металлов от факторов внешней среды

На графике отображено удельное сопротивление меди, платины, железа. Некоторые металлы характеризуются иначе: ртуть при понижении температуры до 4°K становится сверхпроводимой, почти полностью теряя удельное сопротивление.

У полупроводников зависимость будет представлена так:

Зависимость полупроводников

Когда металл переходит в жидкое агрегатное состояние, его ρ повышается, а дальнейшее изменение свойств может быть разным. Так, висмут в расплавленном виде имеет более низкое удельное сопротивление, чем при комнатной температуре, а у жидкой меди оно повышается в десять раз. Никелю свойственно выходить из линейного графика уже при достижении температуры +400 °C, но далее ρ падает.

Температурная зависимость вольфрама так высока, что приводит к перегоранию ламп накаливания: ток нагревает спираль, из-за чего ее сопротивление многократно возрастает.

Удельное сопротивление сплавов зависит от задействованной при производстве технологии. Данное свойство простой механической смеси определяется как средний показатель ее компонентов. Тогда как для сплава замещения оно окажется иным и обычно отличается в большую сторону.

Рекомендуем статьи

Стоит пояснить, что под сплавом замещения понимают такой, в котором несколько элементов формируют одну кристаллическую решетку. Данная особенность прослеживается у нихрома, используемого для изготовления спиралей электроплит. Удельное сопротивление, а значит, и электропроводность этого металла совпадает с показателем проводников, а при подключении к сети он нагревается до красноты.

Выше были представлены только основные теории, касающиеся физических свойств металлов, а именно электропроводности, сопротивления. Например, не была затронута квантовая теория проводимости Зоммерфельда. Этого краткого знакомства вполне достаточно, чтобы понять, что сопротивление является сложным и комплексным понятием, которое невозможно полностью разобрать на основе простейшего закона Ома.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

9 теплопроводов и их характеристики

В проводники тепла Это те материалы, структура которых такова, что тепло может проходить через них очень легко. Следует помнить, что вся материя состоит из атомов и молекул, находящихся в постоянном колебательном движении, и что тепло приводит к еще большему возбуждению этих частиц.

Некоторые материалы проводят тепло лучше, чем другие, потому что их внутренняя конфигурация облегчает поток энергии. Например, дерево не является хорошим проводником тепла, потому что для его нагрева требуется много времени. Но с другой стороны, железо, медь и другие металлы есть, а это означает, что их частицы очень быстро приобретают кинетическую энергию.

Вот почему металлы являются фаворитом для изготовления кухонной утвари, такой как кастрюли и сковороды. Они быстро нагреваются и достигают температуры, достаточной для правильного приготовления пищи.

Однако ручки и ручки, контактирующие с руками пользователя, изготовлены из других теплоизоляционных материалов. Таким образом, с кастрюлями легко обращаться, даже если они горячие.

Типы проводников

В зависимости от способа отвода тепла материалы подразделяются на:

–Теплопроводники: алмаз и металлы, среди которых медь, железо, цинк и алюминий. Хорошие проводники электричества обычно также хорошо проводят тепло.

–Теплоизоляция: дерево, резина, стекловолокно, пластик, бумага, шерсть, аниме, пробка, полимеры - хорошие примеры. Газы тоже не являются хорошими проводниками.

Теплопроводность материалов

Свойство, которое по сути характеризует способ, которым каждый из них проводит тепло, называется Теплопроводность. Чем выше теплопроводность вещества, тем лучше оно проводит тепло.

Теплопроводность веществ определяется экспериментально. В Международной системе единиц SI теплопроводность измеряется в ватт / (метр x кельвин) или Вт / (м · К). Это трактуется следующим образом:

1 Вт / (м · К) эквивалентен 1 ватту мощности, передаваемой на длину, равную 1 метру, когда разница температур между двумя крайними значениями составляет 1 кельвин.

Другой единицей теплопроводности, используемой в англосаксонских странах, является BTUH / (ft.ºF), где инициалы BTUH соответствуют Британская тепловая единица в час.

Значения теплопроводности

Ниже приведены значения теплопроводности некоторых элементов и материалов, встречающихся в природе и часто используемых в промышленности.

Однако следует отметить, что есть синтетические соединения, все еще находящиеся на стадии экспериментов, чья теплопроводность намного превышает теплопроводность алмаза, который возглавляет таблицу.

Температура имеет решающее значение для теплопроводности металлов. С повышением температуры увеличивается и теплопроводность (хотя электропроводность уменьшается). Для неметаллов теплопроводность примерно постоянна в широком диапазоне температур.

Значения в таблице указаны при 25ºC и давлении 1 атмосфера.

При выборе материала по его тепловым свойствам необходимо учитывать, что он расширяется при нагревании. Эта емкость определяется Коэффициент температурного расширения.

Основные теплопроводы

Алмаз

Это лучший проводник тепла при комнатной температуре, намного лучше, чем медь и любой другой металл. В алмазе, который является электрическим изолятором, тепло течет не через электроны проводимости, а через распространение колебаний в его высокоорганизованной кристаллической структуре. Эти колебания называются фононами.

Также он имеет низкий коэффициент теплового расширения, а это значит, что его размеры при нагревании останутся близкими к исходным. Когда требуется хороший проводник тепла, который не проводит электричество, лучшим вариантом будет алмаз.

Из-за этого он широко используется для отвода тепла, выделяемого компьютерными схемами и другими электронными устройствами. Но у него есть серьезный недостаток: это очень дорого. Хотя есть синтетические алмазы, их нелегко сделать, и они также дороги.

Серебряный

Это очень ценный металл для украшения благодаря своей яркости, цвету и пластичности. Он устойчив к окислению и среди всех металлов имеет самую высокую теплопроводность, а также отличную электропроводность.

По этой причине он имеет множество применений в промышленности, как отдельно, так и в сплавах с другими элементами, такими как никель и палладий.

С помощью печатных схем из чистого серебра изготавливаются высокотемпературные сверхпроводящие кабели и покрываются проводники для использования в электронике, а также используются сплавы для создания электрических контактов.

Его недостаток состоит в том, что он относительно редок и поэтому дорог, но уникальное сочетание физических свойств для этих применений делает его отличной альтернативой, поскольку он очень гибкий и с его помощью можно получить проводники хорошей длины.

Медь

Это один из наиболее часто используемых металлов, когда требуется хорошая теплопроводность, потому что он не подвержен коррозии, а его температура плавления довольно высока, что означает, что он не будет плавиться легко при воздействии тепла.

Другими преимуществами, которые он имеет, является его пластичность, а также отсутствие магнитных полей. Медь пригодна для вторичной переработки и намного дешевле серебра. Однако у него высокий коэффициент теплового расширения, а это значит, что его размеры заметно изменяются при нагревании.

Благодаря хорошим тепловым свойствам он широко используется в кухонной утвари, например, в медных горшках, покрытых сталью. Также для производства теплообменников в резервуарах для горячей воды, в системах центрального отопления, автомобильных радиаторах и для отвода тепла в электронных устройствах.

Золото

Это по преимуществу драгоценный металл, занимающий ведущее место в истории человечества. Помимо этого особого значения, золото является пластичным, прочным и отличным проводником тепла и электричества.

Поскольку золото не подвержено коррозии, оно используется для переноса малых токов в твердотельные электронные компоненты. Эти токи настолько малы, что их можно легко прервать при малейшем признаке коррозии, поэтому золото гарантирует надежность электронных компонентов.

Он также используется для изготовления разъемов для наушников, контактов, реле и соединительных кабелей. Такие устройства, как смартфоны, калькуляторы, ноутбуки, настольные компьютеры и телевизоры, содержат небольшое количество золота.

Специальные стекла для помещений с кондиционированием воздуха также содержат диспергированное золото таким образом, что они помогают отражать солнечное излучение наружу, сохраняя свежесть внутри, когда очень жарко. Таким же образом они помогают поддерживать внутреннее тепло в доме зимой.

Литий

Это самый легкий из всех металлов, хотя он очень реактивен, поэтому легко подвергается коррозии. С ним также нужно обращаться с большой осторожностью, поскольку он легко воспламеняется. В связи с этим, хотя его много, он находится не в свободном состоянии, а в соединениях, для которых он должен быть выделен обычно электролитическими методами.

Его теплопроводность аналогична теплопроводности золота, но намного дешевле. Карбонат лития - это соединение, используемое при производстве термостойкого стекла и керамики.

Другое широко распространенное применение лития - производство долговечных и легких батарей, в которых хлорид лития используется для извлечения металлического лития. Добавленный при обработке алюминия, он увеличивает его электрическую проводимость и снижает рабочие температуры.

Алюминий

Этот легкий, недорогой, высокопрочный и простой в эксплуатации металл является одним из основных материалов, используемых для изготовления теплообменников в оборудовании для кондиционирования воздуха, таком как кондиционеры и обогреватели.

Как внутри страны, так и в промышленности алюминиевая посуда широко используется на кухнях по всему миру.

Алюминиевая посуда, такая как кастрюли, сковороды и противни, чрезвычайно эффективна. Они не меняют вкус пищи и позволяют теплу быстро и равномерно распространяться во время приготовления.

Тем не менее, алюминиевые кастрюли и сковороды были заменены нержавеющей сталью, которая не так хорошо проводит тепло. Это связано с тем, что нержавеющая сталь не вступает в реакцию с более сильными кислотами, например, с томатным соусом.

Вот почему предпочтительно делать томатные соусы в стальной посуде, чтобы предотвратить попадание алюминия в пищу, поскольку некоторые из них связывают алюминий - присутствующий в антацидах, тальках, дезодорантах и ​​многих других продуктах - с появлением дегенеративных заболеваний, хотя большинство экспертов, а также FDA отвергают эту гипотезу.

Посуда из анодированного алюминия не имеет риска высвобождения частиц алюминия и, в принципе, может использоваться с большей безопасностью.

Бронза

Бронза - это сплав меди и олова, в меньшей степени, других металлов. Он присутствует в истории человечества с давних времен.

Это настолько важно, что период предыстории даже был назван бронзовым веком, временем, когда люди открыли и начали использовать свойства этого сплава.

Бронза устойчива к коррозии, с ней легко работать. Первоначально из него изготавливали различную утварь, инструменты, украшения, предметы искусства (например, скульптуры) и оружие, а также чеканили монеты. Сегодня он все еще используется для изготовления трубок, механических деталей и музыкальных инструментов.

Цинк

Это очень ковкий и пластичный голубовато-белый металл, с которым легко работать, хотя и с низкой температурой плавления. Он известен с древних времен, в основном используется в сплавах.

В настоящее время он используется для цинкования стали и защиты от коррозии. Также для производства батарей, пигментов и производства специальных цинковых листов для строительной индустрии.

Железо

Железо - еще один металл, имеющий большое историческое значение. Как и бронза, железо связано с периодом доисторической эпохи, когда произошел великий технический прогресс: железным веком.

Сегодня чугун по-прежнему находит широкое применение в производстве инструментов, посуды, в строительстве и в качестве материала для изготовления автомобильных деталей.

Как мы видели, железо является очень хорошим проводником тепла. Железные предметы очень хорошо распределяют тепло и сохраняют его надолго. Он также имеет высокую температуру плавления, что делает его устойчивым к высоким температурам, поэтому его можно использовать при производстве всех типов печей, как промышленных, так и бытовых.

Самый электропроводный металл в мире


Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), - серебро.

самый электропроводный металл

Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

самый электропроводный металл в мире

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

самый электропроводный металл это

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство - высокая теплопроводность.

Топ лучших проводников - металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро - 62 500 000.
  2. Медь – 59 500 000.
  3. Золото – 45 500 000.
  4. Алюминий - 38 000 000.

Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.

Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

самый электропроводный металл серебро

Самый электропроводный металл - это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

Читайте также: