Самый радиоактивный металл в мире

Обновлено: 05.10.2024

Где и как делают самый дорогой металл в мире

Но руки в любом случае нужно мыть с мылом после посещения любых подобных зон.

Сменить пол

Сменить пол

Коридоры и лестницы в реакторном корпусе застелены специальным толстым линолеумом, края которого загнуты на стены. Это нужно для того, чтобы в случае радиоактивного загрязнения можно было бы не утилизировать всё здание целиком, а просто скатать линолеум и постелить новый. Чистота тут почти как в операционной, ведь наибольшую опасность представляет здесь пыль и грязь, которая может попасть на одежду, кожу и внутрь организма - альфа и бэта-частицы не могут улететь далеко, но при ближнем воздействии они как пушечные ядра, и живым клеткам точно не поздоровится.

Где и как делают самый дорогой металл в мире

Пульт с красной кнопкой

Пульт с красной кнопкой

Зал управления реактором.

Где и как делают самый дорогой металл в мире

Где и как делают самый дорогой металл в мире

Сам пульт производит впечатление глубоко устаревшего, но зачем менять то, что спроектировано на долгие годы работы? Важнее всего то, что за щитами, а там все новое. Всё же многие датчики были переведены с самописцев на электронные табло, и даже программные системы, которые, кстати, в НИИАР и разрабатываются.

Где и как делают самый дорогой металл в мире

Где и как делают самый дорогой металл в мире

Каждый реактор имеет множество независимых степеней защиты, поэтому "фукусимы" тут не может быть в принципе. А что касается "чернобыля" - не те мощности, тут работают "карманные" реакторы. Наибольшую опасность представляют выбросы некоторых лёгких изотопов в атмосферу, но и этому не дадут случиться, как нас уверяют.

Физики-ядерщики

Физики-ядерщики

Физики института - фанаты своего дела и могут часами интересно рассказывать о своей работе и реакторах. Отведённого на вопросы часа не хватило и беседа растянулась на два нескучных часа. По-моему, нет такого человека, которому не была бы интересна ядерная физика :) А директору отделения "Реакторный исследовательский комплекс" Петелину Алексею Леонидовичу с главным инженером впору вести научно-популярные передачи на тему устройства ядерных реакторов :)

Где и как делают самый дорогой металл в мире

Если за пределами НИИАР вы будете заправлять штаны в носки, то, скорее всего, вас кто-то сфотографирует и выложит в сеть, чтобы посмеяться. Однако здесь это необходимость. Попробуйте сами догадаться, почему.

Где и как делают самый дорогой металл в мире

Welcome to the hotel Californium

Welcome to the hotel Californium

Теперь о Калифорнии-252 и зачем он нужен. Я уже рассказывал о высокопоточном нейтронном реакторе СМ и его пользе. Теперь представьте, что та энергия, которую вырабатывает целый реактор СМ, может дать всего лишь один грамм (!) Калифорния.

Калифорний-252 – мощный источник нейтронов, что позволяет использовать его для обработки злокачественных опухолей, где другая лучевая терапия бездейственна. Уникальный металл позволяет просвечивать части реакторов, детали самолетов, и обнаруживать повреждения, которые обычно тщательно скрываются от рентгеновских лучей. С его помощью удается находить запасы золота, серебра и месторождения нефти в недрах земли. Потребность в нём в мире очень велика, и заказчики порою вынуждены стоять годами в очереди за вожделённым микрограммом Калифорния! А всё потому, что производство этого металла занимает. годы. Для производства одного грамма Калифорния-252, плутоний или кюрий подвергают длительному нейтронному облучению в ядерном реакторе, в течение 8 и 1.5 лет соответственно, последовательными превращениями проходя практически всю линейку трансурановых элементов таблицы Менделеева. На этом процесс не заканчивается - из получившихся продуктов облучения химическим путем долгими месяцами выделяют сам калифорний. Это очень и очень кропотливая работа, которая не прощает спешки. Микрограммы металла собирают буквально по атомам. Этим и объясняется такая высокая цена.

Кстати, критическая масса металлического Калифорния-252 составляет всего 5 кг (для металлического шара), а в виде водных растворах солей - 10 грамм (!), что позволяет его использовать в миниатюрных ядерных бомбах. Однако, как я уже писал, в мире пока есть только 8 грамм и использовать его в качестве бомбы было бы очень расточительно :) Да и вот беда, через 2 года от существующего Калифорния остаётся ровно половина, а через 4 года он и вовсе превращается в труху из других более стабильных веществ.

Радиоактивные металлы

Радиоактивные металлы — это металлы, которые самопроизвольно излучают поток элементарных частиц во внешнюю среду. Этот процесс называют альфа(α), бета(β), гамма(γ) излучением или просто радиоактивным излучением.

Все радиоактивные металлы со временем распадаются и превращаются в стабильные элементы (иногда проходя целую цепочку превращений). У разных элементов радиоактивный распад может длиться от нескольких миллисекунд до нескольких тысяч лет.

Рядом с названием радиоактивного элемента часто указывается массовое число его изотопа. Например, Технеций-91 или 91 Tc. Разные изотопы одного и того же элемента как правило имеют общие физические свойства и различаются лишь длительностью радиоактивного распада.




Список радиоактивных металлов

Название рус.Название eng.Самый стабильный изотопПериод распада
Технеций Technetium Tc-91 4.21 x 10 6 лет
Прометий Promethium Pm-145 17.4 года
Полоний Polonium Po-209 102 года
Астат Astatine At-210 8.1 часов
Франций Francium Fr-223 22 минут
Радий Radium Ra-226 1600 лет
Актиний Actinium Ac-227 21.77 лет
Торий Thorium Th-229 7.54 x 10 4 лет
Протактиний Protactinium Pa-231 3.28 x 10 4 лет
Уран Uranium U-236 2.34 x 10 7 лет
Нептуний Neptunium Np-237 2.14 x 10 6 лет
Плутоний Plutonium Pu-244 8.00 x 10 7 лет
Америций Americium Am-243 7370 лет
Кюрий Curium Cm-247 1.56 x 10 7 лет
Беркелий Berkelium Bk-247 1380 лет
Калифорний Californium Cf-251 898 лет
Эйнштейний Einsteinium Es-252 471.7 дней
Фермий Fermium Fm-257 100.5 дней
Менделевий Mendelevium Md-258 51.5 дней
Нобелий Nobelium No-259 58 минут
Лоуренсий Lawrencium Lr-262 4 часа
Резенфордий Rutherfordium Rf-265 13 часов
Дубний Dubnium Db-268 32 часа
Сиборгий Seaborgium Sg-271 2.4 минуты
Борий Bohrium Bh-267 17 секунд
Ганий Hassium Hs-269 9.7 секунд
Мейтнерий Meitnerium Mt-276 0.72 секунды
Дармштадий Darmstadtium Ds-281 11.1 секунды
Рентгений Roentgenium Rg-281 26 секунд
Коперниций Copernicium Cn-285 29 секунд
Унунтрий Ununtrium Uut-284 0.48 секунд
Флеровий Flerovium Fl-289 2.65 секунд
Унунпентий Ununpentium Uup-289 87 миллисекунд
Ливерморий Livermorium Lv-293 61 миллисекунда

Радиоактивные элементы делятся на естественные (существующие в природе) и искусственные (получаемые в результате лабораторного синтеза). Естественных радиоактивных металлов не много — это полоний, радий, актиний, торий, протактиний и уран. Их наиболее стабильные изотопы встречаются в природе, чаще в виде руды. Все остальные металлы из списка созданы человеком.

Самый радиоактивный металл

Самый радиоактивный металл на данный момент — ливерморий. Его изотоп Ливерморий-293 распадается всего за 61 милисекунду. Впервые этот изотоп был получен в Дубне, в 2000 году.

Другой очень радиоактивный металл — унунпентий. Изотоп унунпентий-289 имеет чуть больший период распада (87 милисекунд).

Из более-менее стабильных, практически применяемых веществ, самым радиоактивным металлом считается полоний (изотоп полоний-210). Это серебристый белый радиоактивный металл. Хотя его период полураспада достигает 100 и более дней, даже один грамм этого вещества раскаляется до 500°C, а излучение может мгновенно убить человека.

Что такое радиация

Всем известно, что радиация очень опасна и лучше держаться подальше от радиоактивного излучения. С этим трудно поспорить, хотя в реальности мы постоянно подвержены влиянию радиации, где бы не находились. В земле залегает довольно большое количество радиоактивной руды, а из космоса на Землю постоянно прилетают заряженные частицы.

Кратко говоря, радиация это самопроизвольное испускание элементарных частиц. От атомов радиоактивного вещества отделяются протоны и нейтроны, «улетая» во внешнюю среду. Ядро атома при этом постепенно изменяется, превращаясь в другой химический элемент. Когда все нестабильные частицы отделяются от ядра, атом перестает быть радиоактивным. Например, торий-232 в конце своего радиоактивного распада превращается в стабильный свинец.

Наука выделяет 3 основных вида радиоактивного излучения


Альфа излучение(α) — поток альфа-частиц, положительно заряженных. Они сравнительно большие по размеру и плохо проходят даже через одежду или бумагу.

Бета излучение(β) — поток бета-частиц, негативно заряженных. Они довольно малы, легко проходят через одежду и проникают внутрь клеток кожи, что наносит большой вред здоровью. Но бета-частицы не проходят через плотные материалы, такие как алюминий.

Гамма излучение(γ) — это высокочастотная электромагнитная радиация. Гамма-лучи не имеют заряда, но содержат очень много энергии. Скопление гамма-частиц излучает яркое свечение. Гамма-частицы проходят даже через плотные материалы, что делает их очень опасными для живых существ. Их останавливают только самые плотные материалы, например, свинец.

Все эти виды излучения так или иначе присутствуют в любой точке планеты. Они не представляют опасности в малых дозах, но при высокой концентрации могут причинить очень серьезный ущерб.

Изучение радиоактивных элементов




Первооткрывателем радиоактивности является Вильгельм Рентген. В 1895 году этот Прусский физик впервые наблюдал радиоактивное излучение. На основе этого открытия был создан знаменитый медицинский прибор, названый в честь ученого.

В 1896 г изучение радиоактивности продолжил Анри Беккерель, он экспериментировал с солями урана.

В 1898 г Пьер Кюри в чистом виде получил первый радиоактивный металл — Радий. Кюри хоть и открыл первый радиоактивный элемент, однако, не успел толком его изучить. И выдающиеся свойства радия привели к быстрой гибели ученого, который беспечно носил свое «детище» в нагрудном кармане. Великое открытие отомстило своему первооткрывателю — Кюри умер в возрасте 47 лет от мощной дозы радиоактивного облучения.

В 1934 г был впервые синтезирован искусственный радиоактивный изотоп.

Сейчас изучением радиоактивности занимаются множество ученых и организаций.

Добыча и синтез




Даже естественные радиоактивные металлы не встречаются в природе в чистом виде. Их синтезируют из урановой руды. Процесс получения чистого металла чрезвычайно трудоемок. Состоит он из нескольких стадий:

  • концентрирование (дробление и выделение осадка с ураном в воде);
  • выщелачивание - то есть, перевод уранового осадка в раствор;
  • выделение чистого урана из полученного раствора;
  • перевод урана в твердое состояние.

В итоге, из тонны урановой руды можно получить всего несколько граммов урана.

Синтез искусственных радиоактивных элементов и их изотопов проходит в специальных лабораториях, в которых создаются условия для работы с подобными веществами.

Практическое применение

Чаще всего, радиоактивные металлы используют для выработки энергии.

Ядерные реакторы — это устройства, использующие уран для нагревания воды и создания потока пара, который вращает турбину, с помощью чего вырабатывается электричество.



Вообще, сфера применения радиоактивных элементов довольно широка. Они используются для изучения живых организмов, диагностирования и лечения болезней, выработки энергии и для мониторинга промышленных процессов. Радиоактивные металлы являются основой для создания ядерного оружия — самого разрушительного оружия на планете.

Радиоактивный металл и его свойства. Какой самый радиоактивный металл

Среди всех элементов периодической системы значительная часть принадлежит таким, о которых большинство людей говорят со страхом. А как же иначе? Ведь они являются радиоактивными, а это означает прямую угрозу здоровью людей.

Попробуем разобраться, какие же именно элементы являются опасными, и что они собой представляют, а также выясним, в чем заключается их вредоносное действие на организм человека.

радиоактивный металл

Общее понятие о группе радиоактивных элементов

В данную группу входят металлы. Их достаточно много, располагаются они в периодической системе сразу после свинца и до самой последней ячейки. Главный критерий, по которому принято относить тот или иной элемент к группе радиоактивных, - это его способность обладать определенным периодом полураспада.

Другими словами, радиоактивный распад - это преобразование ядра металла в другое, дочернее, которое сопровождается испусканием излучения определенного вида. При этом происходят превращения одних элементов в другие.

Радиоактивный металл - это тот, у которого хотя бы один изотоп является таковым. Даже если всего разновидностей будет шесть, и при этом лишь одна из них будет носителем данного свойства, весь элемент станет считаться радиоактивным.

Виды излучений

Основными вариантами излучения, которое испускается металлами при распадах, являются:

  • альфа-частицы;
  • бета-частицы или нейтринный распад;
  • изомерный переход (гамма-лучи).

Есть два варианта существования подобных элементов. Первый - это естественный, то есть когда радиоактивный металл встречается в природе и самым простым путем под влиянием внешних сил с течением времени преобразуется в иные формы (проявляет свою радиоактивность и распадается).

радий химический элемент

Вторая группа - это искусственно созданные учеными металлы, способные к быстрому распаду и мощному выделению большого количества радиационного излучения. Делается это для использования в определенных сферах деятельности. Установки, в которых производятся ядерные реакции по превращениям одних элементов в другие, называются синхрофазотронами.

Разница между двумя обозначенными способами полураспада очевидна: в обоих случаях он самопроизвольный, однако лишь искусственно полученные металлы дают именно ядерные реакции в процессе деструктуризации.

Основы обозначения подобных атомов

Так как у большей части элементов лишь один или два изотопа являются радиоактивными, принято указывать конкретный вид при обозначениях, а не весь элемент в целом. Например, свинец - это просто вещество. Если же принимать во внимание, что он - радиоактивный металл, то следует называть его, например, "свинец-207".

Периоды полураспада рассматриваемых частиц могут сильно варьироваться. Есть изотопы, которые существуют лишь 0,032 секунды. Но наравне с ними встречаются и те, что распадаются миллионы лет в земных недрах.

Радиоактивные металлы: список

Полный перечень всех принадлежащих к рассматриваемой группе элементов может быть достаточно внушительным, ведь всего к ней относятся около 80 металлов. В первую очередь это все, стоящие в периодической системе после свинца, включая группу лантаноидов и актиноидов. То есть висмут, полоний, астат, радон, франций, радий, резерфордий и так далее по порядковым номерам.

плутоний 239

Выше обозначенной границы располагается множество представителей, каждый из которых также имеет изотопы. При этом некоторые из них могут быть как раз радиоактивными. Поэтому важно, какие разновидности имеет химический элемент. Радиоактивный металл, точнее одна из его изотопных разновидностей, есть практически у каждого представителя таблицы. Например, их имеют:

  • кальций;
  • селен;
  • гафний;
  • вольфрам;
  • осмий;
  • висмут;
  • индий;
  • калий;
  • рубидий;
  • цирконий;
  • европий;
  • радий и другие.

Таким образом, очевидно, что элементов, проявляющих свойства радиоактивности, очень много - подавляющее большинство. Часть из них безопасна из-за слишком длинного периода полураспада и содержится в природе, другая же создана искусственно человеком для различных нужд в науке и технике и является крайне опасной для организма людей.

Характеристика радия

Название элементу дано его первооткрывателями - супругами Кюри, Пьером и Марией. Именно эти люди впервые обнаружили, что один из изотопов этого металла - радий-226 - это наиболее устойчивая форма, обладающая особыми свойствами радиоактивности. Это произошло в 1898 году, и о подобном явлении только стало известно. Подробным его изучением как раз и занялись супруги химики.

Этимология слова берет корни из французского языка, на котором оно звучит как radium. Всего известно 14 изотопных модификаций данного элемента. Но наиболее устойчивые формы с массовыми числами:

Ярко выраженной радиоактивностью обладает форма 226. Сам по себе радий - химический элемент под номером 88. Атомная масса [226]. Как простое вещество способен к существованию. Представляет собой серебристо-белый радиоактивный металл с температурой плавления около 670 0 С.

радиоактивный уран

С химической точки зрения проявляет достаточно высокую степень активности и способен реагировать с:

  • водой;
  • органическими кислотами, формируя устойчивые комплексы;
  • кислородом, образуя оксид.

Свойства и применение

Также радий - химический элемент, который формирует ряд солей. Известны его нитриды, хлориды, сульфаты, нитраты, карбонаты, фосфаты, хроматы. Также есть двойные соли с вольфрамом и бериллием.

То, что радий-226 может быть опасен для здоровья, его первооткрыватель Пьер Кюри узнал не сразу. Однако сумел убедиться в этом, когда провел эксперимент: сутки он ходил с привязанной к плечевой части руки пробиркой с металлом. На месте контакта с кожей появилась незаживающая язва, избавиться от которой ученый не мог больше двух месяцев. От своих экспериментов над явлением радиоактивности супруги не отказались, поэтому и умерли оба от большой дозы облучения.

Помимо отрицательного значения, существует и ряд областей, в которых радий-226 находит применение и приносит пользу:

Плутоний и его изотопы

Данный элемент был открыт в сороковых годах XX века американскими учеными. Впервые его выделили из урановой руды, в которой он сформировался из нептуния. Последний при этом - результат распада уранового ядра. То есть все они между собой тесно взаимосвязаны общими радиоактивными превращениями.

серебристо белый радиоактивный металл

Существует несколько устойчивых изотопов данного металла. Однако наиболее распространенной и важной практически разновидностью является плутоний-239. Известны химические реакции данного металла с:

  • кислородом,
  • кислотами;
  • водой;
  • щелочами;
  • галогенами.

По своим физическим свойствам плутоний-239 является хрупким металлом с температурой плавления 640 0 С. Основные способы воздействия на организм - это постепенное формирование онкологических заболеваний, накапливание в костях и вызывание их разрушения, заболевания легких.

Область использования - в основном ядерная промышленность. Известно, что при распаде одного грамма плутония-239 выделяется такое количество теплоты, которое сравнимо с 4-мя тоннами сгоревшего угля. Именно поэтому этот вид металла находит такое широкое применение в реакциях. Ядерный плутоний - источник энергии в атомных реакторах и термоядерных бомбах. Он же используется при изготовлении электрических аккумуляторов энергии, срок службы которых может достигать пяти лет.

Уран - источник радиации

Данный элемент был открыт в 1789 году химиком из Германии Клапротом. Однако исследовать его свойства и научиться применять их на практике люди сумели лишь в XX веке. Основная отличительная особенность в том, что радиоактивный уран способен при естественном распаде образовывать ядра:

  • свинца-206;
  • криптона;
  • плутония-239;
  • свинца-207;
  • ксенона.

В природе этот металл светло-серого цвета, обладает температурой плавления свыше 1100 0 С. Встречается в составе минералов:

  1. Урановые слюдки.
  2. Уранинит.
  3. Настуран.
  4. Отенит.
  5. Тюянмунит.

Известны три стабильных природных изотопа и 11 искусственно синтезированных, с массовыми числами от 227 до 240.

самый радиоактивный металл

В промышленности широко используется радиоактивный уран, способный быстро распадаться с высвобождением энергии. Так, его используют:

  • в геохимии;
  • горном деле;
  • ядерных реакторах;
  • при изготовлении ядерного оружия.

Влияние на организм человека ничем не отличается от предыдущих рассмотренных металлов - накопление приводит к повышенной дозе облучения и возникновению раковых опухолей.

Трансурановые элементы

Самыми главными из металлов, стоящих вслед за ураном в периодической системе, являются те, что были открыты совсем недавно. Буквально в 2004 году в свет вышли источники, подтверждающие рождение на свет 115 элемента периодической системы.

Им стал самый радиоактивный металл из всех известных на сегодняшний день - унунпентий (Uup). Его свойства остаются не изученными до сих пор, ведь период полураспада составляет 0,032 секунды! Рассмотреть и выявить подробности строения и проявляемые особенности при таких условиях просто невозможно.

Однако его радиоактивность во много раз превосходит показатели второго по данному свойству элемента - плутония. Тем не менее используется на практике не унунпентий, а более "медленные" его товарищи по таблице - уран, плутоний, нептуний, полоний и прочие.

Еще один элемент - унбибий - теоретически существует, однако доказать это практически ученые разных стран не могут с 1974 года. Последняя попытка была совершена в 2005 году, однако оказалась не подтвержденной общим советом ученых-химиков.

Торий

Был открыт еще в XIX веке Берцелиусом и назван в честь скандинавского бога Тора. Является слаборадиоактивным металлом. Такой особенностью обладают пять из его 11-ти изотопов.

Основное применение в ядерной энергетике основано не на способности испускать огромное количество тепловой энергии при распаде. Особенность в том, что ядра тория способны захватывать нейтроны и превращаться в уран-238 и плутоний-239, которые уже и вступают непосредственно в ядерные реакции. Поэтому и торий можно отнести к группе рассматриваемых нами металлов.

радиоактивные металлы список

Полоний

Серебристо-белый радиоактивный металл под номером 84 в периодической системе. Открыт был все теми же ярыми исследователями радиоактивности и всего, что с ней связано, супругами Марией и Пьером Кюри в 1898 году. Главная особенность этого вещества в том, что оно свободно существует около 138,5 дней. То есть таков период полураспада данного металла.

В природе встречается в составе урановых и других руд. Используется как источник энергии, причем достаточно мощной. Является стратегическим металлом, так как применяется для изготовления ядерного оружия. Количество строго ограничено и находится под контролем каждого государства.

Также используется для ионизации воздуха, устранения статического электричества в помещении, при изготовлении космических обогревателей и прочих схожих предметов.

Воздействие на организм человека

Все радиоактивные металлы обладают способностью проникать сквозь кожу человека и накапливаться внутри организма. Они очень плохо выводятся с продуктами жизнедеятельности, вообще не выводятся с потом.

Со временем начинают поражать дыхательную, кровеносную, нервную системы, вызывая в них необратимые изменения. Воздействуют на клетки, заставляя их функционировать неправильно. В результате происходит образование злокачественных опухолей, возникают онкологические заболевания.

Поэтому каждый радиоактивный металл - большая опасность для человека, особенно если говорить о них в чистом виде. Нельзя трогать их незащищенными руками и находиться в помещении вместе с ними без специальных защитных приспособлений.

Калифорний

Калифорний

Калифорний — искусственный радиоактивный химический элемент, актиноид, обозначаемый Cf, имеющий атомный номер 98 в периодической системе Менделеева. Известны радиоизотопы с массовыми числами 237—256. Стабильных изотопов не имеет.

Элемент был впервые синтезирован в 1950 году в Национальной лаборатории Лоуренса Беркли (тогда Лаборатория радиации Калифорнийского университета) путём бомбардировки кюрия альфа-частицами (ионами гелия-4). Актиноид, шестой трансурановый элемент, который был когда-либо синтезирован, и имеет вторую по величине атомную массу среди всех элементов, которые были произведены в таких количествах, чтобы их можно было разглядеть невооружённым глазом (после эйнштейния). Элемент был назван в честь штата Калифорния и университета из этого штата.

Содержание

  • 1 История
  • 2 Происхождение названия
  • 3 Получение
  • 4 Физические и химические свойства
  • 5 Изотопы
  • 6 Применение
  • 7 Физиологическое действие

История

Получен искусственно в 1950 году американскими физиками С. Томпсоном, К. Стритом, А. Гиорсо и Г. Сиборгом в Калифорнийском университете в Беркли при облучении 242 Cm ускоренными α-частицами.

Первые твёрдые соединения калифорния — 249 Cf2O3 и 249 CfOCl получены в 1958 году.

Происхождение названия

Назван в честь Калифорнийского университета в Беркли, где и был получен. Как писали авторы, этим названием они хотели указать, что открыть новый элемент им было так же трудно, как век назад пионерам Америки достичь Калифорнии.

Получение

Калифорний производят в двух местах: НИИАР в Димитровграде (Россия), Окриджской национальной лаборатории в США.

Для производства одного грамма калифорния плутоний или кюрий подвергают длительному нейтронному облучению в ядерном реакторе, от 8 месяцев до 1,5 лет. Затем из получившихся продуктов облучения химическим путём выделяют калифорний.

Металлический калифорний получают путём восстановления фторида калифорния CfF3 литием:

CfF3 + 3Li ⟶ Cf + 3LiF

или оксида калифорния Cf2O3 кальцием:

От других актиноидов калифорний отделяют экстракционными и хроматографическими методами.

Физические и химические свойства

Калифорний представляет собой серебристо-белый актинидный металл с температурой плавления 900 ± 30° C и предполагаемой температурой кипения 1470 °C. Чистый металл податлив и легко режется лезвием. Металлический калифорний начинает испаряться при температуре выше 300 °C под вакуумом. Образует сплавы с лантаноидными металлами, но о них мало что известно.

Калифорний — чрезвычайно летучий металл. Существует в двух полиморфных модификациях. Ниже 600 °C устойчива α-модификация с гексагональной решёткой (параметры а = 0,339 нм, с = 1,101 нм), выше 600 °C — β-модификация с кубической гранецентрированной решёткой. Температура плавления металла 900 °C, температура кипения 1227 °C.

По химическим свойствам калифорний подобен актиноидам. Синтезированы галогениды калифорния — CfX3 (X — атом галогена), оксигалогениды — CfOX. Для получения диоксида калифорния CfO2 оксид Cf2O3 окисляют при нагревании кислородом под давлением 10 МПа. В растворах Cf 4+ получают, действуя на соединения Cf 3+ сильными окислителями. Синтезирован твёрдый дийодид калифорния CfI2. Из водных растворов Cf 3+ восстанавливается до Cf 2+ электрохимически.

Изотопы

Известно 17 изотопов калифорния, наиболее стабильными из которых являются 251 Cf с периодом полураспада T1/2 = 900 лет, 249 Cf (T1/2 = 351 год), 250 Cf (T1/2 = 13,08 года) и 252 Cf (T1/2 = 2,645 года). Последний изотоп имеет высокий коэффициент размножения нейтронов (выше 3) и критическую массу около 5 кг (для металлического шара). Грамм 252 Cf испускает около 3⋅10 12 нейтронов в секунду. 251 Cf упоминается в книге Чингиза Абдуллаева «Символы распада» как элемент миниатюрной ядерной бомбы — «ядерного чемоданчика». Встречающиеся иногда оценки критической массы, составляющие порядка 10 г, относятся к водным растворам солей калифорния.

Применение

Наибольшее применение нашёл изотоп 252 Cf. Он используется как мощный источник нейтронов в нейтронно-активационном анализе, в лучевой терапии опухолей. Кроме того, изотоп 252 Cf используется в экспериментах по изучению спонтанного деления ядер. Калифорний является чрезвычайно дорогим металлом. Цена 1 грамма изотопа 252 Cf составляет около 4 млн долларов США, и она вполне оправдана, так как ежегодно получают 40—60 миллиграммов.

Продукты распада ядер калифорния-252 ( 252 Cf) с энергией порядка 80—100 МэВ используют для бомбардировки и ионизации пробы в спектрометрии (см. Плазменная десорбционная ионизация). При делении ядра 252 Cf возникают движущиеся в противоположных направлениях частицы. Одна из частиц попадает в триггерный детектор и сигнализирует о начале отсчёта времени. Другая частица попадает на матрицу пробы, выбивая ионы, которые направляются во времяпролётный масс-спектрометр.

Изотоп 249 Cf применяют в научных исследованиях. При работе с ним не требуется защита от нейтронного излучения.

Физиологическое действие

Радионуклид 252 Cf высокотоксичен. ПДК в воде открытых водоёмов 1,33⋅10 −4 Бк/л.

Читайте также: