Самый теплопроводный металл в мире

Обновлено: 27.09.2024

В проводники тепла Это те материалы, структура которых такова, что тепло может проходить через них очень легко. Следует помнить, что вся материя состоит из атомов и молекул, находящихся в постоянном колебательном движении, и что тепло приводит к еще большему возбуждению этих частиц.

Некоторые материалы проводят тепло лучше, чем другие, потому что их внутренняя конфигурация облегчает поток энергии. Например, дерево не является хорошим проводником тепла, потому что для его нагрева требуется много времени. Но с другой стороны, железо, медь и другие металлы есть, а это означает, что их частицы очень быстро приобретают кинетическую энергию.

Вот почему металлы являются фаворитом для изготовления кухонной утвари, такой как кастрюли и сковороды. Они быстро нагреваются и достигают температуры, достаточной для правильного приготовления пищи.

Однако ручки и ручки, контактирующие с руками пользователя, изготовлены из других теплоизоляционных материалов. Таким образом, с кастрюлями легко обращаться, даже если они горячие.

Типы проводников

В зависимости от способа отвода тепла материалы подразделяются на:

–Теплопроводники: алмаз и металлы, среди которых медь, железо, цинк и алюминий. Хорошие проводники электричества обычно также хорошо проводят тепло.

–Теплоизоляция: дерево, резина, стекловолокно, пластик, бумага, шерсть, аниме, пробка, полимеры - хорошие примеры. Газы тоже не являются хорошими проводниками.

Теплопроводность материалов

Свойство, которое по сути характеризует способ, которым каждый из них проводит тепло, называется Теплопроводность. Чем выше теплопроводность вещества, тем лучше оно проводит тепло.

Теплопроводность веществ определяется экспериментально. В Международной системе единиц SI теплопроводность измеряется в ватт / (метр x кельвин) или Вт / (м · К). Это трактуется следующим образом:

1 Вт / (м · К) эквивалентен 1 ватту мощности, передаваемой на длину, равную 1 метру, когда разница температур между двумя крайними значениями составляет 1 кельвин.

Другой единицей теплопроводности, используемой в англосаксонских странах, является BTUH / (ft.ºF), где инициалы BTUH соответствуют Британская тепловая единица в час.

Значения теплопроводности

Ниже приведены значения теплопроводности некоторых элементов и материалов, встречающихся в природе и часто используемых в промышленности.

Однако следует отметить, что есть синтетические соединения, все еще находящиеся на стадии экспериментов, чья теплопроводность намного превышает теплопроводность алмаза, который возглавляет таблицу.

Температура имеет решающее значение для теплопроводности металлов. С повышением температуры увеличивается и теплопроводность (хотя электропроводность уменьшается). Для неметаллов теплопроводность примерно постоянна в широком диапазоне температур.

Значения в таблице указаны при 25ºC и давлении 1 атмосфера.

При выборе материала по его тепловым свойствам необходимо учитывать, что он расширяется при нагревании. Эта емкость определяется Коэффициент температурного расширения.

Основные теплопроводы

Алмаз

Это лучший проводник тепла при комнатной температуре, намного лучше, чем медь и любой другой металл. В алмазе, который является электрическим изолятором, тепло течет не через электроны проводимости, а через распространение колебаний в его высокоорганизованной кристаллической структуре. Эти колебания называются фононами.

Также он имеет низкий коэффициент теплового расширения, а это значит, что его размеры при нагревании останутся близкими к исходным. Когда требуется хороший проводник тепла, который не проводит электричество, лучшим вариантом будет алмаз.

Из-за этого он широко используется для отвода тепла, выделяемого компьютерными схемами и другими электронными устройствами. Но у него есть серьезный недостаток: это очень дорого. Хотя есть синтетические алмазы, их нелегко сделать, и они также дороги.

Серебряный

Это очень ценный металл для украшения благодаря своей яркости, цвету и пластичности. Он устойчив к окислению и среди всех металлов имеет самую высокую теплопроводность, а также отличную электропроводность.

По этой причине он имеет множество применений в промышленности, как отдельно, так и в сплавах с другими элементами, такими как никель и палладий.

С помощью печатных схем из чистого серебра изготавливаются высокотемпературные сверхпроводящие кабели и покрываются проводники для использования в электронике, а также используются сплавы для создания электрических контактов.

Его недостаток состоит в том, что он относительно редок и поэтому дорог, но уникальное сочетание физических свойств для этих применений делает его отличной альтернативой, поскольку он очень гибкий и с его помощью можно получить проводники хорошей длины.

Медь

Это один из наиболее часто используемых металлов, когда требуется хорошая теплопроводность, потому что он не подвержен коррозии, а его температура плавления довольно высока, что означает, что он не будет плавиться легко при воздействии тепла.

Другими преимуществами, которые он имеет, является его пластичность, а также отсутствие магнитных полей. Медь пригодна для вторичной переработки и намного дешевле серебра. Однако у него высокий коэффициент теплового расширения, а это значит, что его размеры заметно изменяются при нагревании.

Благодаря хорошим тепловым свойствам он широко используется в кухонной утвари, например, в медных горшках, покрытых сталью. Также для производства теплообменников в резервуарах для горячей воды, в системах центрального отопления, автомобильных радиаторах и для отвода тепла в электронных устройствах.

Золото

Это по преимуществу драгоценный металл, занимающий ведущее место в истории человечества. Помимо этого особого значения, золото является пластичным, прочным и отличным проводником тепла и электричества.

Поскольку золото не подвержено коррозии, оно используется для переноса малых токов в твердотельные электронные компоненты. Эти токи настолько малы, что их можно легко прервать при малейшем признаке коррозии, поэтому золото гарантирует надежность электронных компонентов.

Он также используется для изготовления разъемов для наушников, контактов, реле и соединительных кабелей. Такие устройства, как смартфоны, калькуляторы, ноутбуки, настольные компьютеры и телевизоры, содержат небольшое количество золота.

Специальные стекла для помещений с кондиционированием воздуха также содержат диспергированное золото таким образом, что они помогают отражать солнечное излучение наружу, сохраняя свежесть внутри, когда очень жарко. Таким же образом они помогают поддерживать внутреннее тепло в доме зимой.

Литий

Это самый легкий из всех металлов, хотя он очень реактивен, поэтому легко подвергается коррозии. С ним также нужно обращаться с большой осторожностью, поскольку он легко воспламеняется. В связи с этим, хотя его много, он находится не в свободном состоянии, а в соединениях, для которых он должен быть выделен обычно электролитическими методами.

Его теплопроводность аналогична теплопроводности золота, но намного дешевле. Карбонат лития - это соединение, используемое при производстве термостойкого стекла и керамики.

Другое широко распространенное применение лития - производство долговечных и легких батарей, в которых хлорид лития используется для извлечения металлического лития. Добавленный при обработке алюминия, он увеличивает его электрическую проводимость и снижает рабочие температуры.

Алюминий

Этот легкий, недорогой, высокопрочный и простой в эксплуатации металл является одним из основных материалов, используемых для изготовления теплообменников в оборудовании для кондиционирования воздуха, таком как кондиционеры и обогреватели.

Как внутри страны, так и в промышленности алюминиевая посуда широко используется на кухнях по всему миру.

Алюминиевая посуда, такая как кастрюли, сковороды и противни, чрезвычайно эффективна. Они не меняют вкус пищи и позволяют теплу быстро и равномерно распространяться во время приготовления.

Тем не менее, алюминиевые кастрюли и сковороды были заменены нержавеющей сталью, которая не так хорошо проводит тепло. Это связано с тем, что нержавеющая сталь не вступает в реакцию с более сильными кислотами, например, с томатным соусом.

Вот почему предпочтительно делать томатные соусы в стальной посуде, чтобы предотвратить попадание алюминия в пищу, поскольку некоторые из них связывают алюминий - присутствующий в антацидах, тальках, дезодорантах и ​​многих других продуктах - с появлением дегенеративных заболеваний, хотя большинство экспертов, а также FDA отвергают эту гипотезу.

Посуда из анодированного алюминия не имеет риска высвобождения частиц алюминия и, в принципе, может использоваться с большей безопасностью.

Бронза

Бронза - это сплав меди и олова, в меньшей степени, других металлов. Он присутствует в истории человечества с давних времен.

Это настолько важно, что период предыстории даже был назван бронзовым веком, временем, когда люди открыли и начали использовать свойства этого сплава.

Бронза устойчива к коррозии, с ней легко работать. Первоначально из него изготавливали различную утварь, инструменты, украшения, предметы искусства (например, скульптуры) и оружие, а также чеканили монеты. Сегодня он все еще используется для изготовления трубок, механических деталей и музыкальных инструментов.

Цинк

Это очень ковкий и пластичный голубовато-белый металл, с которым легко работать, хотя и с низкой температурой плавления. Он известен с древних времен, в основном используется в сплавах.

В настоящее время он используется для цинкования стали и защиты от коррозии. Также для производства батарей, пигментов и производства специальных цинковых листов для строительной индустрии.

Железо

Железо - еще один металл, имеющий большое историческое значение. Как и бронза, железо связано с периодом доисторической эпохи, когда произошел великий технический прогресс: железным веком.

Сегодня чугун по-прежнему находит широкое применение в производстве инструментов, посуды, в строительстве и в качестве материала для изготовления автомобильных деталей.

Как мы видели, железо является очень хорошим проводником тепла. Железные предметы очень хорошо распределяют тепло и сохраняют его надолго. Он также имеет высокую температуру плавления, что делает его устойчивым к высоким температурам, поэтому его можно использовать при производстве всех типов печей, как промышленных, так и бытовых.

Теплопроводность металлов

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов - один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

таблица теплопроводности металлов

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

теплопроводность стали и меди

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

радиатор отопления и алюминия

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Теплопроводность чистых металлов

Таблица теплопроводности металлов

Теплопроводность металлов в зависимости от температуры

В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).

Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.

Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).

Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).

Таблица теплопроводности металлов в зависимости от температуры

Примечание: В таблице также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).

Добавить комментарий Отменить ответ

Теплопроводность строительных материалов, их плотность и теплоемкость

Плотность, теплопроводность и удельная теплоемкость строительных и других популярных материалов. Более 400 материалов в таблице!

Плотность воды, теплопроводность и физические свойства H2O

Подробные таблицы значений плотности воды, ее теплопроводности и других теплофизических свойств в зависимости от температуры…

Физические свойства воздуха: плотность, вязкость, удельная теплоемкость

Таблицы физических свойств воздуха: плотность воздуха, его удельная теплоемкость и вязкость в зависимости от температуры…

Теплопроводность стали и чугуна. Теплофизические свойства стали

Теплопроводность стали и чугуна, физические свойства стали в таблицах при различной температуре…

Физические свойства и допустимая температура применения сплавов магния

Физические свойства сплавов магния: плотность, коэффициент теплопроводности, удельная теплоемкость, КТЛР, максимальная температура применения и др.

Оргстекло: тепловые и механические характеристики

Рассмотрены тепловые, механические, оптические и электрические характеристики органического стекла…

Физические свойства технической соли

Насыпная плотность, удельная теплоемкость, коэффициент теплопроводности и другие физические свойства технической соли…

Характеристики теплоизоляционных плит Изорок (Isoroc)

Плотность, коэффициент теплопроводности и другие важнейшие характеристики теплоизоляционных плит Изорок различных модификаций…

Теплопроводность, теплоемкость, плотность и другие свойства этилового спирта C2H5OH

Свойства жидкого этилового спирта на линии насыщения В таблице приведены следующие теплофизические свойства этилового спирта…

Теплопроводность, плотность песка

В таблице даны значения таких теплофизических свойств, как теплопроводность песка (размерность ккал/(м·час·град)), температуропроводность песка (размерность…


Свойства строительных и теплоизоляционных материалов

Теплопроводность теплоизоляционных и вспомогательных материалов В таблице представлены значения коэффициента теплопроводности теплоизоляционных и вспомогательных материалов в…


Вязкость и плотность растворов щелочей

В таблице даны значения плотности и коэффициента динамической вязкости водных растворов щелочей (оснований). Динамическая вязкость…

Плотность, теплопроводность, теплоемкость кислорода O2

Плотность, теплоемкость, свойства кислорода O2 В таблице представлены теплофизические свойства кислорода такие, как плотность, энтальпия, энтропия,…

Плотность металлов и сплавов

В таблице представлена плотность металлов и сплавов, а также коэффициент К отношения их плотности к…

Плотность, теплопроводность, паропроницаемость строительных материалов

В таблице представлены теплофизические свойства строительных материалов: плотность, коэффициент теплопроводности, коэффициент паропроницаемости при комнатной температуре и…


Теплофизические свойства молочных продуктов

Теплофизические свойства молочных продуктов В таблице представлены теплофизические свойства молочных продуктов при температуре 15°С. Даны следующие…


Свойства моторных масел SHELL

Представлены свойства моторных масел производства компании SHELL. Даны следующие свойства: класс SAE (Society of Automotive…

Теплопроводность цветных металлов, теплоемкость и плотность сплавов

Теплопроводность цветных металлов

Теплопроводность цветных металлов и технических сплавов

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

Теплопроводность цветных металлов и технических сплавов - таблица

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град).
Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

Коэффициенты теплопроводности металлов и сплавов - таблица

Коэффициенты теплопроводности сплавов

В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС.
Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

Коэффициент теплопроводности сплавов - таблица

Удельное сопротивление и температурный коэффициент расширения (КТР) металлической проволоки (при 18ºС)

В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов.
Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк.
Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.

Удельное сопротивление и температурный коэффициент расширения (КТР) металлической проволоки - таблица

Удельная теплоемкость цветных сплавов

В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град).
Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.

Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.

Удельная теплоемкость сплавов - таблица

Удельная теплоемкость многокомпонентных специальных сплавов

Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС.
Размерность теплоемкости кал/(г·град).
Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

Удельная теплоемкость многокомпонентных специальных сплавов - таблица

Плотность сплавов

Представлена таблица значений плотности сплавов при комнатной температуре.
Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.

Плотность сплавов - таблица

ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10 -3 . Не забудьте умножить на 1000!
Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м 3 .

Удельная теплоемкость металлов при различных температурах

Значения удельной теплоемкости металлов

Представлена таблица значений массовой удельной теплоемкости металлов при различных температурах и постоянном давлении. Теплоемкость металлов в таблице указана при отрицательных и положительных температурах (от -253 до 3422°С). Определить удельную теплоемкость металла можно как величину, численно равную количеству теплоты, которое необходимо подвести к единице массы металла для увеличения его температуры на один градус.

Какова удельная теплоемкость металла? При средних и высоких температурах абсолютные значения и температурные зависимости удельной теплоемкости металлов различаются достаточно сильно. Так, при комнатных температурах наибольшей удельной теплоемкостью отличается литий — она равна 3390 Дж/(кг·град) при температуре 20°С. Также к металлам с высокой теплоемкостью при средних (до 350°С) температурах можно отнести такие металлы, как магний, алюминий, бериллий, натрий, плутоний.

Наименьшим значением теплоемкости обладают металлы с высокой атомной массой, например торий и уран. Удельная теплоемкость этих металлов равна, соответственно 113 и 116 Дж/(кг·град). Несмотря на столь большой диапазон изменения этой величины, имеют место некоторые схожие значения, наиболее хорошо прослеживающиеся для металлов одной подгруппы, что является следствием периодической системы Менделеева.

Следует отметить, что при низких отрицательных температурах металлы также имеют широкий диапазон значений теплоемкости. Например, при температуре -173°С по данным таблицы минимальной теплоемкостью обладает вольфрам. Теплоемкость вольфрама при этой температуре равна всего 87 Дж/(кг·град). Металлом с самой высокой теплоемкостью при отрицательных температурах является все тот же литий, имеющий низкую атомную массу.

Удельная теплоемкость металлов при различных температурах — таблица
Металл Температура,°С Удельная теплоемкость,
Дж/(кг·град)
Алюминий Al -173…27…127…327…527…661…727…1127…1327 483…904…951…1037…1154…1177…1177…1177…1177
Барий Ba -173…27…127…327…527…729…927…1327 177…206…249…290…316…300…292…278
Бериллий Be -173…27…127…327…527…727…927…1127…1287…1327 203…1833…2179…2559…2825…3060…3281…3497…3329…3329
Ванадий V 27…127…327…527…727…927…1127…1527…1947 484…503…531…557…585…617…655…744…895
Висмут Bi 27…127…272…327…527…727 122…127…146…141…135…131
Вольфрам W -173…27…127…327…727…1127…1527…2127…2527…3127…3422 87…132…136…141…148…157…166…189…208…245…245
Гадолиний Gd 27…127…327…527…727…1127…1312 236…179…185…196…207…235…179
Галлий Ga -173…27…30…127…327…527…727 266…384…410…394…382…378…376
Гафний Hf 27…127…327…527…727…927…1127…1527…2127…2233 144…147…156…165…169…183…192…211…202…247
Гольмий Ho 27…127…327…527…727…927…1127…1327…1470…1527 165…169…172…176…193…218…251…292…266…266
Диспрозий Dy 27…127…327…527…727…927…1127…1327…1409…1527 173…172…174…188…210…230…274…296…307…307
Европий Eu 27…127…327…527…727…826…1127 179…184…200…217…250…251…251
Железо Fe -173…27…127…327…527…727…1127…1327…1537 216…450…490…572…678…990…639…670…830
Золото Au 27…127…327…527…727…927…1105…1127 129…131…135…140…145…155…170…166
Индий In -223…-173…27…127…157…327…527…727 162…203…235…250…256…245…240…237
Иридий Ir 27…127…327…527…727…927…1127…1327…2127…2450 130…133…138…144…153…161…168…176…206…218
Иттербий Yb 27…127…427…527…727…820…927 155…159…175…178…208…219…219
Иттрий Y 27…127…327…527…727…1127…1327…1522 298…305…321…338…355…389…406…477
Кадмий Cd 27…127…321…327…527 231…242…265…265…265
Калий K -173…-53…0…20…63…100…300…500…700 631…690…730…760…846…817…775…766…775
Кальций Ca -173…27…127…327…527…727…842…1127 500…647…670…758…843…991…774…774
Кобальт Co 27…127…327…527…727…1127…1327…1497…1727 421…451…504…551…628…800…650…688…688
Лантан La 27…127…327…527…727…920 195…197…200…218…238…236
Литий Li -187…20…100…300…500…800 2269…3390…3789…4237…4421…4572
Лютеций Lu 27…127…327…527…727…1127…1327…1650 153…153…156…163…173…207…229…274
Магний Mg -173…27…127…327…527…650…727…1127 648…1025…1070…1157…1240…1410…1391…1330
Марганец Mn -173…27…127…327…527…727…1127…1246…1327 271…478…517…581…622…685…789…838…838
Медь Cu 27…127…327…527…727…927…1085…1327 385…398…417…433…451…481…514…514
Молибден Mo 27…127…327…527…727…1127…1327…1527…1727…2127…2623 250…262…276…285…294…320…337…357…379…434…418
Мышьяк As -253…-233…-193…-123…-23…127…327…727 15…75…175…275…314…339…354…383
Натрий Na -173…-53…-13…20…100…300…500…700 977..1180…1200…1221…1385…1280…1270…1275
Неодим Nd 27…127…327…527…727…927…1024…1127 190…200…223…253…291…309…338…338
Нептуний Np 127 147
Никель Ni -173…-50…20…100…300…500…800…1000…1300…1455 423…442…457…470…502…530…565…580…586…735
Ниобий Nb 27…127…327…527…727…1127…1327…1527…1727…2127…2477 263…274…285…293…301…322…335…350…366…404…450
Олово Sn -173…27…127…232…327…527…727 187…229…244…248…242…236…235
Осмий Os 27…127…327…527…727…1127…1327…1527…1727…1927 130…132…136…140…144…152…156…160…164…168
Палладий Pd 27…127…327…527…727…927…1127…1527 244…249…256…264…277…291…306…343
Платина Pt 27…127…327…527…727…1127…1527…1772 133…136…141…147…152…163…174…178
Плутоний Pu 27…127…327…527…727 134…586…1500…2430…3340
Празеодим Pr 27…127…327…527…727…935 184…202…224…253…287…305
Радий Ra 950 136
Рений Re 27…127…327…527…727…927…1127…1327…1527…1927 136…139…145…151…157…163…168…174…180…192
Родий Rh 27…127…327…527…727…1127…1327…1727 243…253…273…293…311…342…355…376
Ртуть Hg -223…-173…-73…-39…27…127…227…327 99…121…136…141…139…137…136…135
Рубидий Rb -173…-73…20…40…127…327…527…727 299…321…356…364…361…356…359…368
Рутений Ru 27…127…327…527…727…1127…1327…1527…1727…1927…2334 238…241…251…265…278…306…325…346…367…389…414
Самарий Sm 27…127…327…527…727…1078…1227 197…221…272…293…300…313…334
Свинец Pb -223…-173…-73..27…127…227…328…527…727 103…117…123…128…133…138…146…143…140
Серебро Ag 27…127…327…527…727…962…1127 235…239…250…256…277…310…310
Скандий Sc 27…127…327…527…727…1127…1541…1627 568…586…611…647…694…815…978…978
Стронций Sr -173…27…127…327…527…768…1127 268…306…314…343…377…411…411
Сурьма Sb -223…-173…27…127…327…527…630…927 100…163…209…213…224…234…275…275
Таллий Tl -173…27…127…303…727 120…129…134…149…141
Тантал Ta 27…127…327…527…727…1127…1527…2127…2327…2727…3022 140…144…150…154…157…160…162…177…187…219…243
Тербий Tb 27…127…327…527…727…1127…1357 182…179…189…207…226…272…292
Технеций Tc 27…127…327…527…727…1127…1327…2127…2200 210…211…225…256…290…324…318…297…290
Титан Ti 27…127…327…527…727…1127…1327…1527…1671…1727 531…556…605…637…647…664…729…800…989…989
Торий Th -173…27…127…327…527…727…1127…1327…1750…1927 98…113…117…124…132…140…155…163…198…198
Тулий Tm 27…127…327…527…727…1127…1327…1545 159…161…163…175…186…204…213…244
Уран U -173…27…127…327…527…727…842…1127 1135…1327…1927 93…116…125…146…175…178…161…161…201…203…209
Хром Cr 25…127…327…527…727…1127…1327…1527…1727…1907 453…482…517…558…614…764…849…936…1020…962
Цезий Cs -173…27…29…127…327…527…727 194…244…246…241…226…219…225
Церий Ce 27…127…327…527…727…804…927 292…202…228…246…268…269…269
Цинк Zn 27…127…327…420…527…727 389…403…436…480…480…480
Цирконий Zr 27…127…327…527…727…1127…1327…1527…1727…1860 279…295…321…345…367…325…341…360…381…467
Эрбий Er 27…127…327…527…727…1127…1327…1505 168…169…174…181…192…220…238…231

Зависимость удельной теплоемкости металлов от температуры различна. Наиболее сильную зависимость теплоемкости от температуры имеют плутоний и бериллий. Для многих металлов увеличение температуры приводит к постоянному росту их теплоемкости. У других металлов теплоемкость при нагревании увеличивается, а при достижении температуры плавления снижается или остается практически постоянной. Удельная теплоемкость металлов в жидком (расплавленном) состоянии практически не меняется.

Металлы в таблице расположены в алфавитном порядке, величина теплоемкости соответствует указанным температурам, допускается интерполяция значений. Например, удельную теплоемкость алюминия при температуре 90°С можно определить по таблице следующим образом: 904+(951-904)/(127-27)*90=946,3 Дж/(кг·град).

Читайте также: