Самый жидкий металл в мире

Обновлено: 19.09.2024


Миллионы лет назад наши далекие предки изготавливали себе инструменты из дерева и камней, но спустя тысячелетия они научились пользоваться металлами. С этого момента человечество начало развиваться немыслимыми темпами, и всё дошло до того, что большинство окружающих нас объектов сделано из железа, алюминия и других разновидностей этого материала.
Практически все металлы хорошо проводят электричество и тепло, при определенных условиях они пластичны и отлично подходят для изготовления различных деталей для электроники, а также обладают характерным металлическим блеском. Но в периодической таблице Менделеева есть металлы, которые обладают уникальными свойствами, которыми не могут похвастаться все остальные. Они по-своему удивительны, и когда-то давно этим металлам присваивали чуть ли не волшебные качества. Итак, давайте перечислим их, а также узнаем о свойствах и других интересных особенностях.

Самый жидкий металл


Ртуть считается самым жидким металлом и, в то же время, одним из самых опасных для человеческого организма. Он практически всегда пребывает в жидком состоянии, потому что температура его плавления равна -38 градусам Цельсия. Именно поэтому этот металл используется в градусниках — при увеличении температуры, жидкость расширяется. Поскольку градусник сделан в виде стеклянной трубочки, расширяться она может только в одном направлении. Чтобы на показатели градусника не влияли другие условия вроде атмосферного давления, из трубочки выкачан воздух.

В средневековье считалось, что при смешивании ртути, серы и загадочного «философского камня» можно получить чистое золото. Поэтому внимания этому металлу уделялось очень много. С средние века получить из ртути золота никому не удалось, но это стало под силу ученым в 1947 году — они поместили 100 миллиграмм ртути в атомный реактор и получили 35 микрограмм золота. Вот и второе удивительное свойство ртути — его можно превратить в золото, но это слишком дорогой процесс.
Третья особенность ртути заключается в том, что при вдыхании его паров человек получает сильное отравление — опасные вещества оседают в легких. Симптомы отравления включают в себя слабость, понижение аппетита, боль при глотании, набухание десен и сильная боль в животе. Из-за своей ядовитости, ртуть входит в десятку химических веществ, представляющих опасность для общественного здоровья.

Самый тугоплавкий металл


А теперь давайте поговорим о полной противоположности ртути — металле, именуемом как вольфрам. В то время как ртуть может расплавиться на человеческой ладони, для расплавления вольфрама необходима температура на уровне 3422 градусов Цельсия.

Сам по себе вольфрам не опасен, но изделия, в котором он используется, могут убить. Этот металл часто используется как наконечник патронов, которые могут пробить даже бронежилет. Только его добавляют совсем чуть-чуть, потому что вольфрам — очень тяжелый металл.
Из-за своей тугоплавкости вольфрам трудно поддается деформации, поэтому в чистом виде его используют очень редко. Как правило, изделия из вольфрама имеют и другие примеси — они делают его более податливым и значительно уменьшают вес.

Самый твердый металл


Самым твердым и при этом легким металлом на нашей планете считается титан. Благодаря своим свойствам он активно используется в авиации и кораблестроении — материал отлично подходит для изготовления корпусов самолетов и кораблей. К тому же, благодаря прочности и легкости, из титана изготавливают бронежилеты. Этот металл безопасен для человеческого организма, поэтому часто применяется в медицине для изготовления инструментов и даже протезов — искусственных частей тела.

При нагревании титан начинает поглощать кислород, хлор, азот и другие газы. Благодаря этому удивительному свойству, металл используется в различных фильтрах — пропуская различные газы через нагретые до 600 градусов Цельсия титановые трубки, можно очистить их от примесей. Таким же образом можно очистить воду от кислорода, что особенно полезно в пищевой промышленности. Считается, что содержащийся в воде кислород ухудшает качество некоторых продуктов — как минимум, он может сократить срок годности пива.

Самый радиоактивный металл

Единственным металлом, который может использоваться в качестве топлива в ядерных реакторах, является уран. Многие люди считают его очень опасным из-за высокой радиоактивности. Однако природный уран безопасен для здоровья человека, а опасность представляет его разновидность под названием U-235 — именно она используется в ядерных реакторах.



Когда-то давно из природного урана даже изготавливали посуду. Например, осколки желтого стекла с содержанием урана были найдены на территории итальянского города Неаполь — по расчетам ученых, стекло было изготовлено в 79 году нашей эры. Он был безопасен для людей и никаких намеков на радиацию вроде свечения не наблюдалось.
Природного урана U-235, пригодного для использования в ядерных реакторах, сегодня в природе очень мало — на протяжении долгих лет он просто улетучился. Зато миллиарды лет назад его было очень много, и ядерные реакции могли запускаться прямо на природе, без участия человека. Так, на территории африканской страны Габон, около 1,8 миллиарда лет назад происходила естественная реакция деления ядер урана. Уран горел на протяжении сотен лет, но в итоге реакция прекратилась из-за истощения запасов металла.

Самый тяжелый металл


Самым тяжелым металлом из всей таблицы Менделеева считается осмий. Его удивительным свойством является то, что будучи самым тяжелым, на воздухе он становится летучим, ядовитым веществом. Название «осмий» с древнегреческого языка можно перевести как «запах». Такое наименование металлу было дано неспроста — в 1803 году английский химик Смитсон Теннант (Smithson Tennant) на собственном опыте ощутил, что металл пахнет хлором и неприятен настолько, что раздражает горло.

Благодаря своей твердости, осмий часто используется в механизмах, а именно в местах, где происходит сильное трение. Также он используется в изготовлении нитей для ламп накаливания. Ядовитые свойства возникают только на открытом воздухе — металл превращается в токсичное вещество тетраоксид осмия, которое вызывает раздражение глаз, поражение верхних дыхательных путей и даже воспаление почек.

Самый стойкий металл

Самым стойким металлом считается иридий — его невозможно растворить ни в одной кислоте. Из-за стойкости, этот металл используется в Международном бюро мер и весов — из него создан эталон килограмма. Этот цилиндр из иридия необходим для того, чтобы у всех стран было единое представление о том, сколько именно должен весить килограмм. Это важно, потому что любое отклонение может стать причиной неисправности в самолётах и кораблях и, впоследствии, серьезной катастрофы.



Также иридий используется при изготовлении денег. Например, в африканской стране Руанде была выпущена иридиевая монета номиналом 10 руандийских франков. Можно сказать, что это самая устойчивая к химическому воздействию монета. Повредить ее можно разве что кину в сосуд со фтором — сильнейшим окислителем. Но разрушительная реакция начнется только при нагревании до 450 градусов Цельсия.

Самый дорогой металл


Многие люди инвестируют в металлы и одним из самых дорогих сегодня является золото. По курсу за июнь 2020 года, грамм золота стоит около 4000 рублей, тогда как цена той же массы платины еле достигает 2000 рублей. Чуть выше мы уже выяснили, что добывать золото из ртути — это очень дорогой процесс. Поэтому получением золота занимаются работники аффинажных заводов — грубо говоря, они извлекают золота из смесей других металлов.

Так как персонал работает с очень дорогим металлом, в заводах действует строгий контроль. Если у человека, например, есть золотой зуб — охрана всегда проверяет, находится ли он на месте. А то вдруг человек избавится от золотого зуба и решит пронести кусочек драгоценного металла, поместив его в освободившемся пространстве между зубами? В некоторых аффинажных заводах работники проходят внутрь голыми и облачаются в рабочую одежду внутри.

Самый редкий металл


Франций — самый редкий металл. По расчетам ученых, в земной коре его концентрация равна всего лишь 340 граммам.

Франций очень радиоактивен, поэтому на данный момент он практически нигде не используется. Однако иногда ученые все же используют разновидности франция в ходе научных исследований. Также предпринимались попытки диагностики рака с использованием технологий, где франций тоже был задействован.

Самый легкий металл

Звание самого легкого металла по праву достается литию. Он окрашен в серебристо-белый цвет и настолько мягок, что легко режется ножом. Так как он является самым легким металлом в таблице Менделеева, при попадании в воду он всплывает на поверхность.

Жидкий металл: подводные камни. Взгляд глазами химика

image

Написать эту статью меня сподвиг пост NotSlow Не так страшен жидкий металл. Там все просто: подстраховался от замыкания, нанес тонким слоем, прикрутил и радуйся низким температурам. Но так ли все хорошо на самом деле?

Для начала нужно выяснить, что это за жидкий металл такой. Среди чистых металлов единственный, который может быть жидким при комнатной температуре — это ртуть. В здравом уме никто сейчас не станет применять ртуть в качестве термоинтерфейса из-за ее крайней токсичности и испаряемости. Два других становятся жидкими уже при температуре человеческого тела — это цезий и галлий. Цезий — это «фтор наоборот» по своей химической активности, он возгорается и взрывается от малейших следов воздуха и влаги и даже разрушает стекло. Остается галлий (на КПДВ именно он). При комнатной температуре галлий все же твердый, однако с некоторыми другими легкоплавкими металлами он образует эвтектики, плавящиеся при 20,5°С (галлий-олово) и даже 15,3 °С (галлий-индий). Еще ниже — в районе 5 °С — плавится тройная эвтектика галлий-индий-олово (62, 25 и 13% соответственно). Имеющиеся в продаже термоинтерфейсы типа «жидкий металл» — это как раз и есть сплавы на основе этих трех элементов, возможно с некоторыми дополнительными присадками.

Исходя из этого, ясны и подводные камни. Первый из них — это абсолютная несовместимость галлийсодержащих сплавов с алюминием!

Во времена, когда уроки химии в школе непременно сопровождались демонстрацией опытов, был среди них и опыт по амальгамированию алюминия. Алюминий покрывали слоем ртути и он тотчас начинал бурно окисляться, рассыпаясь прямо на глазах. Ртуть защищала алюминий от образования оксидного слоя и он образовывался уже на поверхности амальгамы, но не был способен остановить окисление, так как на поверхности жидкости он не удерживался сплошным слоем, растрескивался, и в трещинах открывалась свежая, неокисленная поверхность амальгамы.

Ровно так же действует и галлиевый сплав с той только разницей, что он способен буквально пропитывать алюминий насквозь, проникая в межкристаллитные промежутки. Алюминий, пропитанный жидким галлием, не только окисляется на глазах, но еще и крошится в руках.
Так что ЖМ следует держать от алюминия подальше. И это касается не только алюминиевых радиаторов: случайная капелька «жидкого металла» может уничтожить и корпус ноутбука, если тот из алюминиевого сплава, и любую другую алюминиевую деталь. Хотя бы корпус какого-нибудь конденсатора. Причем капелька эта является классическим катализатором — делает свое черное дело, не расходуясь сама.

image

Но и медь к галлию небезразлична. На рисунке выше я привел T-x диаграмму системы медь-галлий (из справочника «Диаграммы состояния двойных металлических систем» под ред. Лякишева), на которой видно бесчисленное множество интерметаллических соединений. Как только галлий вступит в контакт с медью, они тут же начинают образовываться. Жидкий галлий (к его сплавам это тоже относится) вообще очень охотно смачивает и металлы, и неметаллы, а явное химическое сродство этому крайне способствует. Так что «жидкий металл» будет просто впитываться в медь, образуя на границе между металлами корку интерметаллидов. Последние не являются металлами с физической точки зрения, они тугоплавки, хрупки и обладают плохой тепло- и электропроводностью, но главное — «жидкий металл» будет расходоваться на их образование и просто уйдет из зазора. Многие из тех, кто пробовал в деле ЖМ, сообщают, что со временем он перестает работать, и сняв радиатор, они обнаружили, что жидкий металл «испарился». Испариться он не мог — заметное давление пара у его компонентов появляется только свыше тысячи градусов — он просто впитался в медь, прореагировал с ней. Устранить это явление помогает никелевое покрытие на меди, хоть оно и является дополнительным препятствием для тепла.

Кстати, впитываемость галлия и его сплавов в металлы еще касается паяных соединений — помните про ту маленькую капельку, которая может разрушить алюминиевый корпус? Так вот, такая же капелька, попавшая на припой, сделает и его хрупкой, а пайку ненадежной. В какой-то момент это «сработает». Поэтому лично я бы держал «жидкий металл» как можно дальше от любой электроники.

И последнее, о чем следовало бы написать: «жидкий металл», увы, небезвреден. Галлий по некоторым данным сравним по токсичности с мышьяком, второй его компонент, индий — также является токсичным тяжелым металлом. В отличие от ртути сплавы на основе галлия все же абсолютно нелетучи при обычной температуре, так что отравиться их парами не получится, однако из-за своей способности легко прилипать ко всему на свете эти сплавы невероятно мазучие. Испачкать ими, к примеру, руки — легче легкого, а отмыть их до конца очень сложно. Потом это все попадет в рот. Поэтому — работаем с «жидким металлом» и всем, что с ним контактировало только в резиновых перчатках и отдельно от еды, питья и курения. И да, никогда не делайте так, как на КПДВ!

Не так страшен жидкий металл


Наверное многие знают или хотя бы раз слышали о существовании такой «термопасты» как жидкий металл. Если коротко — это термоинтерфейс, теплопроводность которого на порядок выше даже самой лучшей обычной термопасты. Именно так — не в 2, не в 3, а в целых 10 раз выше.

Но почему же его не используют все и везде? У многих жидкий металл ассоциируется со страшной процедурой delidding (скальпирование, снятие верхней крышки процессора). Страх повредить драгоценный процесор, плюс страх перед сложностью нанесения (по сравнению с обычной термопастой). И главное — боязнь, что жидкий металл случайно попадет куда-то не туда и что-нибудь замкнет.

Да, все эти страхи обоснованы. Однако если Вы уверены, что руки растут из правильного места, то глупо хотя бы раз не попробовать воспользоваться магией под названием liquid metal. Ни один кулер никогда не даст вам такого прироста производительности системы охлаждения.

А в некоторых случаях даже в скальпировании нет необходимости. О чем и пойдет речь далее.

Предисловие

Сколько себя помню, меня всегда раздражали «тормоза» компьютеров. Всегда искал способы повысить отзывчивость. Еще на далекой Windows 98 правил реестр для минимальных задержек меню (MenuShowDelay=1 > HKEY_CURRENT_USER\Control Panel\Desktop), один из первых использовал только появившийся Gigabyte I-Ram (4 планки памяти с li-ion аккумулятором) под операционку, а уж про опыт с самыми разными SSD так вообще отдельную статью можно писать.

Ну и конечно же разгон процессора — это само собой разумеется. Нет, без экстрима и даже без водяных установок, но с температурой приходилось бороться. Корпус с огромным 40см вентилятором, различные дополнительные радиаторы, лучшие термопасты (Noctua NT-H1, Gelid GC-Extreme), много чего перепробовано.




Жидкий металл конечно тоже давно не давал покоя. Но сперва решил потренироваться «на кошках».

Подопытный

Суть в том, что эксперименты со скальпированием можно отложить на потом, а опробовать супер-термоинтерфейс уже сейчас. Правда ли жидкий металл так хорош как говорят или привирают. Ведь процессоры ноутбуков в большинстве своем уже «голые». Просто добавь воды жидкого металла.

Есть у меня Lenovo T450s. Уже относительно старенький, но на вполне бодром (по меркам ноутбуков) i7-5600u. Надо ли уточнять что базовая производительность меня совершенно не устраивала. Конечно же были отключены все энергосбережения, только max performance, только хардкор. Пусть и в ущерб времени работы от увеличенной (72Wh) батареи, но процессор почти всегда работает на 3+ Ггц. Ну не люблю я когда медленно, это уже зависимость.

В итоге конечно же за этим ноутом руки всегда в тепле. Нет, до фена ему далеко, но небольшой перегрев чувствуется даже при не на 100% занятом процессоре.

Вот как это выглядит графически:


При 100% нагрузке имеем температуру 95+ градусов и постоянный троттлинг процессора.

Conductonaut

Жидкий металл можно купить от нескольких производителей. Возможно какие-то лучше/хуже или выгодней по цене за грамм. Но задачи не стояло выяснить кто лучший. Было решено попробовать вариант от Thermal Grizzly.

Обычно за подобными эксклюзивными вещами иду всегда закупаться на ebay, amazon и т.п. Но каково же было удивление когда обнаружил то что нужно, да еще и по более низкой цене, в местном сетевом магазине. Хоть и под заказ конечно, но ожидание заняло всего лишь дня 3.


Все полностью локализировано.




В комплекте, помимо самого шприца с волшебным веществом, получаем: металлическую насадку-иглу и подобную пластиковую (даже не знаю зачем она), алкогольные тампоны для протирки, две ватные палочки, инструкция и большое красное предупреждение — «Не использовать с алюминиевыми радиаторами». Хотя слабо представляю кого-то, кто на столько заморочится термоинтерфейсом, но при этом будет использовать менее термопроводные алюминиевые радиаторы.


Добравшись до процессора, очень удивился когда увидел один из кристаллов совершенно без термопасты. Еще более удивила медная пластина радиатора над ним, сделанная более утопленной на примерно 1мм. Таким образом слой термоинтерфейса там должен быть очень уж толстый.

Но погуглив, узнал что на самом деле так и должно быть. Второй кристалл — это PCH (южный + частично серверный мост). И он так понимаю не особо греется и уж тем более не должен дополнительно подогреваться теплом процессора. Поэтому оставил его как есть.


Снял черную защитную наклейку и очистил старую термопасту с процессора и радиатора.

Следующий шаг — защита от короткого замыкания. Не думаю конечно, что жидкий металл будет как вода плескаться по всему окружению. Но минимальную защиту сделать необходимо.

В строительном магазине приобрел балончик жидкой резины.


И с помощью ватной палочки (обычной, не из комплекта Thermal Grizzly) аккуратно закрасил все контакты процессора. Вместо жидкой резины можно много чего другого использовать, но решил испробовать именно ее.


Далее, вернул обратно черную защитную пленку и сверху еще раз прошелся жидкой резиной вокруг самого кристалла процессора.


И наконец самое интересное. Крайне аккуратно выдавил из шприца капельку похожую на ртуть.
Сперва на медную пластину радиатора. Начал растирать ее тампоном, но ничего не получалось вначале. По ощущениям это похоже на лужение меди. По началу припой никак не хочет прилипать, но потом схватывается и очень хорошо и равномерно держится. Повторюсь, не надо сразу много жидкого металла, нужно выдавить крохотную каплю и «залудить» необходимую поверхность. Примерно на глаз прикидывая в каком месте радиатор будет как раз над кристаллом процессора. А дальше при необходимости можно чуть добавить в центр. Но не нужно наносить толстый слой, иначе жидкий металл просто выдавится каплями наружу. И хорошо если попадет на нашу жидкую резину, а не куда-то дальше.

И точно также размазал поверхность CPU. Соединил смазанные части бутерброда и собрал все обратно как было.

Уже хорошо. Но нет, самое интересное оказалось дальше.

Я конечно ожидал улучшения, но без особых иллюзий. Ну максимум на 10-15 градусов улучшения расчитывал. Однако, как говорится, фото заменит тысячу слов:


Средняя температура под полной нагрузкой снизилась с ~95 до ~65 градусов. Это целых 30 градусов разницы. И абсолютно никакого троттлинга.

Спустя несколько дней использования, могу сказать что процессор конечно выделять тепла меньше не стал. Он как жарил так и жарит, но тепло его теперь гораздо быстрей отводится и больше нет и намека на перегрев.

Выводы

Действительно ли есть толк от жидкого металла — есть, еще и какой.

Действительно ли так сложно и страшно его наносить — как по мне так слишком преувеличивают.

В общем, однозначно рекомендую всем.
Буду позже еще экспериментировать с разными другими процессорами и возможно на видеокарте испробую.

Heavy metal: топ самых необычных металлов мира


У многих из нас слово "металл" ассоциируется с твердым и холодным веществом, из которого изготавливают входные двери, столовые приборы и прочие элементы обихода. На самом же деле, металлы, известные человечеству, невероятно разнообразны, и далеко не каждый из них подходит для использования в быту. О самых необычных из них читайте далее.

Алхимики древности полагали, что именно из ртути можно извлечь тот самый философский камень, так как считали этот металл "абсолютным веществом" благодаря его необычному свойству – жидкости. На самом деле, ртуть может быть твердой, однако ее температура плавления составляет всего 38,83°C, поэтому чаще мы встречаем ее в жидком виде. Например, в стеклянных градусниках, которые строго запрещается ронять или умышленно разбивать из-за еще одного свойства этого металла – высокой токсичности.

Суровый титан получил свое название в честь могущественнейших из божеств, в которых верили люди, живущие в древности. И неудивительно, ведь именно он является самым твердым металлом в мире. Что интересно, при своей невероятной прочности титан довольно легок, благодаря чему его так охотно используют авиаконструкторы. Нагретый титан способен поглощать различные газы – хлор, кислород и даже азот.

Калий – мягкий щелочной металл серебристо-белого цвета, имеющий атомный номер 19. В природе он не встречается в чистом виде, а существует лишь в соединении с другими элементами. Так, много калия содержится в морской воде и различных минералах. Этот металл почти мгновенно окисляется на воздухе, а также легко вступает в бурные химические реакции, в частности с водой, соединяясь с которой образует щелочь. Наряду с калием самыми мягкими щелочными металлами на Земле также имеют право называться цезий и рубидий.

Осмий значится в периодической таблице Менделеева как самый тяжелый металл из всех существующих. Отличить это вещество от других металлов можно по бело-синему оттенку и неприятному запаху, похожему на микс хлора и чеснока. Благодаря этому необычному амбре осмий и получил свое название, которое переводится с древнегреческого как "запах". Осмий тугоплавок, поэтому часто используется для изготовления ламп и других приборов. Разделение изотопов осмия – кропотливый и трудоемкий процесс, поэтому некоторые изотопы этого вещества довольно дороги. Так, Казахстан, будучи экспортером чистого осмия-187, с 2004 года предлагает это вещество к продаже по цене 10 000 долларов за один грамм.

Самым легким металлом, известным науке на сегодняшний день, является литий. Как и прочие легкие металлы, он щелочной, поэтому обладает высокой химической активностью. Литий почти вдвое легче воды и может плавать даже в керосине, поэтому для его хранения обычно применяются такие вещества, как минеральное масло, петролейный эфир, парафин и газолин.

Вольфрам – блестящий металл светло-серого цвета, имеющий самые высокие температуры плавления и кипения. Вытянуть кусочек вольфрама в тонкую нить можно, лишь подогрев его до около 1 600°C, расплавить – только при 3 422°C, а довести до кипения – при 5 555°C. Более высокую температуру плавления имеет только углерод, который не является металлическим элементом. Вольфрам проявляет себя очень стойко не только в стандартных условиях, но также и в вакууме, соперничая по прочности со многими самыми твердыми металлами.

Пирофорными называются металлы, способные в тонкораздробленном состоянии воспламеняться на воздухе самопроизвольно. Такую способность проявляет, например, мелкодисперсное железо, окисленное с помощью лимонной кислоты. Соприкасаясь с воздухом, его мелкие частицы образуют особые минералы, повышающие температуру вещества настолько, что оно самовозгорается. Впрочем, пирофорность свойственна не только железу, но и алюминию, магнию, ванадию, кобальту, никелю, хрому и даже твердейшему из металлов – титану.

Наша планета удивительна и богата не только необычными веществами. Ее населяют такие животные и насекомые, которые наверняка смогли бы пережить апокалипсис и построить новый мир на руинах человеческой цивилизации. Подробнее об этих удивительных существах мы рассказываем тут.

В разделе «Фоторепортажи», мы размещаем интересные фотографии, а также видеоролики со всего света. Раздел «Комментарии» - мнения известных людей по актуальным вопросам. Особый взгляд на факты и события в разделе «В цифрах». Мы проводим еженедельные «Опросы» среди наших читателей.

Удобная навигация, ежедневное обновление информации, ссылки на фото и видеорепортажи.

Жидкий металл: структура, свойства

Сегодня уже поколебалось привычное представление о том, что металл в обычном состоянии – вещество твердое. Долгое время считалось, что единственное исключение из этого утверждения – ртуть, которая в жидком состоянии остается до -39° C. Ответ на вопрос о том, какой металл жидкий, не так однозначен.

Жидкие металлы в природе

На самом деле ртуть не является единственным в мире жидким металлом. Известны еще галлий, цезий и франций, которые находятся в жидком состоянии до +30° C.

Жидкий металл

Галлий очень широко применяется, например, в электронике. Кроме того, что он плавится при низких температурах, галлий, и это главное его достоинство, закипает при температуре не ниже 2230° C. Необычайно широкий интервал расплава дает возможность использовать этот элемент в работе атомных реакторов.

Не менее востребованным элементом является цезий, несмотря на то что его в земной коре крайне мало и добыча его затруднена.

А вот радиоактивный элемент франций, период полураспада которого составляет чуть больше 22 минут, образуется при распаде актиния, и до сих пор неизвестно, как он выглядит. Даже ученые о нем знают очень мало, и знания эти накапливаются по крупицам. Научные лаборатории проводят исследования этого элемента на образцах массой в одну десятимиллионную долю грамма, которая каждые двадцать две с небольшим минуты уменьшается вдвое.

То есть при температурах, немногим отличающихся от комнатной, жидкими металлами можно назвать четыре элемента периодической таблицы Менделеева, включая ртуть.

Строение металлов

В металлах атомы располагаются в строгом геометрическом порядке и образуют кристаллическую решетку. Их виды в разных металлах и сплавах различаются в зависимости от количества и расположения атомов.

В расплавленных металлах атомы находятся в хаотическом движении, и связи между ними нарушаются.

Обычный расплавленный жидкий металл из мартена – это всего лишь материал с кристаллической решеткой и обычными свойствами твердого тела при нормальной температуре.

Жидкий металл из мартена

При охлаждении жидкого металла начинается процесс кристаллизации, скорость которого возрастает с понижением температуры. Связи между атомами восстанавливаются, и образовывается кристаллическая решетка. Нарушение целостности металла, например, образование ржавчины или трещин, происходит именно на границах между кристаллами. То есть если не существует четких границ между кристаллами, меняются не только механические, но и электрические, и магнитные свойства металла.

Свойства жидких металлов

Ученые утверждают, что аморфные материалы могут быть прочнее кристаллических аналогов в десять раз, а их электрическое сопротивление выше в пять раз. Причем при нормальной температуре они способны сохранять свойства более ста лет, но высокую температуру переносят плохо.

Если жидкий металл из мартена охладить настолько быстро, что связи между атомами и кристаллами не успеют восстановиться, то получится вещество в аморфном состоянии, соединяющее в себе свойства металлов и жидкостей.

Оно обладает поверхностным натяжением и вязкостью жидкостей, а сжимается и отражает электромагнитные волны, как всякий металл. Структура жидких металлов – это хаотическое скопление атомов без жестких связей между ними.

Структура жидких металлов

Поскольку отсутствует кристаллическая структура, такие вещества обладают замечательными магнитными свойствами, высокими показателями прочности на растяжение и ударной вязкости.

Жидкий металл прочнее титана более чем в два раза, не ржавеет и может отливаться в форму, даже самую сложную, как любой пластический материал. При этом после отливки дополнительно обрабатывать изделие не нужно – у него четкие очертания и идеально гладкая поверхность.

Жидкие металлы на основе галлия

Сплавы на основе легкоплавких металлов, а их в мировой промышленности используется около тридцати, имеют температуру плавления меньше 70° С. Большинство из них химически активны и токсичны. Сплавы на основе галлия, в которые в разных пропорциях входят индий, олово и цинк, плавятся при низких температурах, меньше 40° С, и не являются ни токсичными, ни химически активными. В промышленности их используется всего восемь, но вариаций может быть значительно больше, в зависимости от процентного соотношения компонентов.

Температура плавления, °С

Эти сплавы жидкими металлами и являются. Они не токсичны, но специалисты рекомендуют при работе с ними соблюдать меры предосторожности и работать в резиновых или хлопчатобумажных перчатках.

Способы получения жидких металлов

Если не говорить о жидких металлах на основе галлия, то в первую очередь ученые искали возможность быстрого охлаждения расплавленного металла. Существует способ распыления металла с помощью устройства, напоминающего пульверизатор, тонким слоем на очень холодную поверхность. Метод носит название "ионно-плазменное распыление". Используется и нанесение жидкого металла на вращающийся диск. В любом случае такими способами можно было получить узкие полоски металла, которые нельзя соединить между собой горячими методами, обычными для кристаллических веществ.

Следующим этапом было создание сплавов из металлов, которые друг с другом сочетаются плохо. Специалисты Калифорнийского технологического института разработали сплав с названием Liquidmetal. В состав жидкого металла входят титан, медь, никель, цирконий и бериллий. При остывании такого сплава кристаллизация происходит очень медленно, так как атомы металлов очень отличаются по размерам.

Применение жидких металлов

Жидкие металлы на основе галлия используются в системах пожарной сигнализации, в качестве теплоносителя в системах охлаждения с высокими рабочими температурами.

В период, когда сплав "жидкий металл" получали в виде узких ленточек, применение ему нашли при создании кодовой маркировки, предназначенной для борьбы с хищениями и использования в покрытии буровых труб для увеличения срока их службы.

Когда был создан Liquidmetal, его начали применять при изготовлении клюшек для гольфа. Расчеты показали, что такая клюшка передает мячу более мощное энергетическое усилие, чем обычная.

Специалисты Liquidmetal Technologies участвуют в разработках ведущих производителей лыж и бейсбольных бит.

В оборонной промышленности Liquidmetal может заменить обедненный уран в снарядах, пробивающих броню.

В России из жидкого металла, полученного из расплава, охлажденного на вращающемся диске, стали изготавливать элементы и микропровода для особо чувствительной и точной аппаратуры, в медицинском приборостроении и электронной технике, фильтры для защиты ценных бумаг и банкнот от подделок и многое другое.

Жидкие металлы в качестве термоинтерфейса

В измерительной технике, радиоэлектронных устройствах и бытовых компьютерах широко используется термоинтерфейс.

Термоинтерфейс – это термопроводящее вещество, которое наносится тонким слоем между поверхностью, которую необходимо охлаждать, и устройством, предназначенным для отвода тепла.

К нему предъявляются высокие требования:

- постоянная консистенция, которая не изменяется при работе или хранении;

- стабильность характеристик в рабочем диапазоне температур;

- нетоксичность и негорючесть;

- легкость нанесения и удаления с поверхности;

- минимальное тепловое сопротивление.

Наиболее распространенным видом термоинтерфейса является теплопроводная паста, или, проще говоря, термопаста. Жидкий металл с высоким коэффициентом теплопроводности и другими свойствами как нельзя лучше соответствует предъявляемым к термопастам требованиям.

В компьютерах на печатных платах процессоров выделяется большое количество тепла. Поверх процессора устанавливается охлаждающий механизм (радиатор). Чтобы повысить эффективность отвода тепла и убрать воздушную прослойку между кулером и процессором, используются термопасты.

Продукты компании Coollaboratory

Компанией Coollaboratory был разработан продукт, полностью состоящий из жидких металлов, без твердых частиц и неметаллических добавок.

Жидкий металл Coollaboratory Liquid Pro - теплопроводящий материал с высокой теплопроводностью, внешне напоминающий ртуть, но нетоксичный, характеризуется высокой способностью к смачиванию многих материалов.

Coollaboratory Liquid Ultra в виде пасты легко наносится кисточкой на теплораспределительную крышку процессора.

Термопаста жидкий металл

Coollaboratory Liquid Metal Pad представляет собой теплопроводящую прокладку, которая легко наносится на поверхность и плавится только при нагреве процессора.

Все эти жидкие металлы не могут работать при контакте с алюминием - радиатор должен быть выполнен из меди с никелевым покрытием. Производитель заявляет об уникальных показателях теплопроводности Coollaboratory Liquid Metal. Правда, на этот жидкий металл отзывы неоднозначны, и многие пользователи выказывают сомнения в заявленных характеристиках.

Применение жидкого металла производителями смартфонов

В настоящее время в американской версии iPhone комплектуется инструментом для извлечения SIM-карты, говоря иначе, i-Скрепкой из жидкого металла.

Сплав жидкий металл

Но такое уникальное вещество с возможностью принимать при незначительной массе любые формы, антикоррозионными свойствами и особенно высокой прочностью, повышенной износостойкостью, высоким коэффициентом восстановления можно использовать и для изготовления корпусов смартфонов, флешек и часов. В планах Apple – изготовление клавиши Home и сенсорной поверхности из жидкого металла.

Компания HTC тоже планирует использовать LiquidMetal при изготовлении корпусов смартфонов. Но эти данные являются неофициальными.

Зато компания Turing Robotics Industries (TRI) при создании уникального Android-смартфона Turing Phone использует для каркаса корпуса и рамки-окантовки дисплея сверхпрочный сплав из циркония, меди, алюминия, никеля и серебра, который в описаниях компонентов смартфона носит название liquidmorphium. Этот сплав значительно прочнее титана и эффективно выдерживает удары и особым образом отражает свет.

Трехмерная печать с применением жидкого металла

Специалисты Университета Северной Каролины подобрали такой сплав галлия и индия, который держит форму после печати. Тонкая пленка оксида удерживает напечатанную структуру из шариков и нитей, которая внутри остается жидкой. Используя технологию трехмерной печати, можно изготавливать эластичные гибкие провода, выдерживающие многократные растяжения и сжатия.

Ранее австралийские ученые для создания металлических объектов, которые должны восстанавливать форму, использовали сплав галлистан на основе галлия, олова и индия с температурой плавления 19 °С и специальное порошковое покрытие.

Свойства жидких металлов

Краски "жидкий металл"

Краски с таким названием, строго говоря, жидким металлом не являются.

Жидкий металл - краска из металлических пигментов, тонкоизмельченных порошков цветных металлов и сплавов алюминия, меди, цинка, бронзы. К металлическим пигментам относятся золотистая бронза, медный порошок, алюминиевая и цинковая пудра. Такие краски отличаются хорошим сцеплением с любыми поверхностями: пластиками, металлами, тканями, стеклом, гипсом, керамикой, деревом. Равномерно распыляются соплом от 0,2 мм и закрепляются лаками на водной основе.

Краска жидкий металл

Краска "жидкий металл" марки Maimeri ("Маймери") на основе смолы разбавляется спиртом и служит для декорирования тонких поверхностей – бумаги, картона, дерева. Характеризуется дополнительной устойчивостью к износу и окислению.

Жидкий металл Viva ("Вива") разбавляется водой и предназначен для росписи фарфора, фаянса, керамики, гончарных изделий.

Специальная краска была разработана специалистами Mercedes Benz для купе CL 65 AMG на основе тончайших алюминиевых пигментов. Такое покрытие хорошо отражает свет и интенсивно блестит.

В заключение можно сделать вывод, что понятие «жидкий металл из мартена» не является всеобъемлющим. Что еще можно отнести к данной категории материалов? «Жидкий металл» - название такое носят также искусственные сплавы и вещества в аморфном состоянии, обладающие свойствами металлов, в том числе цветом и блеском.

Читайте также: