Щелочноземельные металлы доклад 9 класс

Обновлено: 12.06.2024

Знакомство с основными видами щелочноземельных металлов: магний, кальций. Стронций как элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов, характеристика свойств. Особенности щелочноземельных металлов.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 01.10.2013
Размер файла 64,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Щёлочноземельные металлы -- химические элементы 2-й группы главной подгруппы, кроме бериллия и магния: кальций, стронций, барий и радий. Относятся ко 2-й группе элементов по новой классификации ИЮПАК. Названы так потому, что ихоксиды -- «земли» (по терминологии алхимиков) -- сообщают воде щелочную реакцию. Соли щёлочноземельных металлов, кроме радия, широко распространены в природе в виде минералов.

Все щёлочноземельные металлы -- серые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение -- стронций). Плотность щелочноземельных металлов с порядковым номером растёт, хотя явно рост наблюдается только начиная с кальция, который самый лёгкий из них (с = 1,55 г/см?), самый тяжёлый -- радий, плотность которого примерно равна плотности железа.

Щелочноземельные металлы имеют электронную конфигурацию внешнего энергетического уровня ns?, и являются s-элементами, наряду с щелочными металлами. Имея два валентных электрона, щелочноземельные металлы легко их отдают, и во всех соединениях имеют степень окисления +2 (очень редко +1). Химическая активность щелочноземельных металлов растёт с ростом порядкового номера.

Все щелочноземельные металлы имеются (в разных количествах) в природе. Ввиду своей высокой химической активности все они в свободном состоянии не встречаются. Самым распространённым щелочноземельным металлом являетсякальций, количество которого равно 3,38 % (от массы земной коры). Немногим ему уступает магний, количество которого равно 2,35 % (от массы земной коры). Распространены в природе также барий и стронций, которых соответственно 0,05 и 0,034 % от массы земной коры. Бериллий является редким элементом, количество которого составляет 6?10?4% от массы земной коры. Что касается радия, который радиоактивен, то это самый редкий из всех щелочноземельных металлов, но он в небольшом количестве всегда содержится в урановых рудах. В частности, он может быть выделен оттуда химическим путём. Его содержание равно 1?10?10% (от массы земной коры). [1]

БЕРИЛЛИЙ (лат. Вeryllium), Ве, химический элемент с атомным номером 4 и атомной массой 9,01218. Химический символ элемента Be читается «бериллий». В природе встречается только один стабильный нуклид 9 Be. В периодической системе элементов Д. И. Менделеева бериллий расположен в группе IIА во втором периоде. Электронная конфигурация атома бериллия 1s 2 2s 2 . Атомный радиус 0,113 нм, радиус иона Ве 2+ 0,034 нм. В соединениях проявляет только степень окисления +2 (валентность II). Энергии последовательной ионизации атома Ве 9,3227 и 18,211 эВ. Значение электроотрицательности по Полингу 1,57. В свободном виде -- серебристо-серый легкий металл.

Нахождение в природе

Бериллий относится к редким элементам, его содержание в земной коре 2,6·10- 4 % по массе. В морской воде содержится до 6·10 -7 мг/л бериллия. Основные природные минералы, содержащие бериллий: берилл Be3Al2(SiO3)6, фенакит Be2SiO4, бертрандит Be4Si2O8·H2O и гельвин (Mn, Fe, Zn)4[BeSiO4]3S. Окрашенные примесями катионов других металлов прозрачные разновидности берилла -- драгоценные камни, например, зеленый изумруд, голубой аквамарин, гелиодер, воробьевит. Их научились синтезировать искусственно

Физические свойства. Металлический бериллий характеризуется высокой хрупкостью. Температура плавления 1278 °C, температура кипения около 2470 °C, плотность 1,816 кг/м 3 .

Химические свойства бериллия во многом похожи на свойства магния и, особенно, алюминия. Близость свойств бериллия и алюминия объясняется почти одинаковым отношением заряда катиона к его радиусу для ионов Be 2+ и Al 3+ . На воздухе бериллий, как и алюминий, покрыт оксидной пленкой, придающей бериллию матовый цвет.

Наличие оксидной пленки предохраняет металл от дальнейшего разрушения и обусловливает его невысокую химическую активность при комнатной температуре. При нагревании бериллий сгорает на воздухе с образованием оксида BeO, реагирует с серой и азотом. С галогенами бериллий реагирует при обычной температуре или при слабом нагревании, например:

Все эти реакции сопровождаются выделением большого количества теплоты, так как прочность кристаллических решеток возникающих соединений (BeO, BeS, Be3N2, ВеСl2) довольно велика. Благодаря образованию на поверхности прочной пленки оксида бериллий не реагирует с водой. Как и алюминий, бериллий реагирует с кислотами и растворами щелочей:

щелочноземельный металл химический

Гидроксид бериллия Be(OH)2-- полимерное соединение, нерастворимое в воде. Оно проявляет амфотерные свойства:

В большинстве соединений бериллий проявляет координационное число 4. Например, в структуре твердого BeCl2 имеются цепочки с мостиковыми атомами хлора. За счет образования прочных тетраэдрических анионов многие соединения бериллия вступают в реакции с солями других металлов:

С водородом бериллий непосредственно не взаимодействует. Гидрид бериллия BeH2 -- полимерное вещество, его получают реакцией

проводимой в эфирном растворе. Действием на гидроксид бериллия Be(OH)2растворами карбоновых кислот или при упаривании растворов их бериллиевых солей получают оксисоли бериллия, например, оксиацетат Be4O(CH3COO)6. Эти соединения содержат тетраэдрическую группировку Be4O, по шести ребрам этого тетраэдра располагаются ацетатные группы. Такие соединения играют большую роль в процессах очистки бериллия, так как они не растворяются в воде, но хорошо растворяются в органических растворителях и легко возгоняются в вакууме.

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твердость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу). В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов. В смесях с некоторыми ?-радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и ?-частиц возникают нейтроны: 9 Ве(?, n) 12 C.

Извлечение бериллия из его природных минералов (в основном берилла) включает в себя несколько стадий, при этом особенно важно отделить бериллий от сходного по свойствам и сопутствующего бериллию в минералах алюминия. Можно, например, сплавить берилл с гексафторосиликатом натрия Na2SiF6:

В результате сплавления образуются криолит Na3AlF6 -- плохо растворимое в воде соединение, а также растворимый в воде фторобериллат натрия Na2[BeF4]. Его далее выщелачивают водой. Для более глубокой очистки бериллия от алюминия применяют обработку полученного раствора карбонатом аммония (NH4)2CO3. При этом алюминий оседает в виде гидроксида Al(OH)3, а бериллий остается в растворе в виде растворимого комплекса (NH4)2[Be(CO3)2]. Этот комплекс затем разлагают до оксида бериллия ВеО при прокаливании:

Другой метод очистки бериллия от алюминия основан на том, что оксиацетат бериллия Be4O(CH3COO)6, в отличие от оксиацатата алюминия [Al3O(CH3COO] + CH3COO-, имеет молекулярное строение и легко возгоняется при нагревании. Известен также способ переработки берилла, в котором сначала берилл обрабатывают концентрированной серной кислотой при температуре 300°C, а затем спек выщелачивают водой. Сульфаты алюминия и бериллия при этом переходят в раствор. После добавления к раствору сульфата калия K2SO4удается осадить алюминий из раствора в виде алюмокалиевых квасцов KAl(SO4)2·12H2O. Дальнейшую очистку бериллия от алюминия проводят так же, как и в предыдущем методе.

Наконец, известен и такой способ переработки берилла. Исходный минерал сначала сплавляют с поташем K2CO3. При этом образуются бериллат K2BeO2 и алюминат калия KAlO2:

После выщелачивания водой полученный раствор подкисляют серной кислотой. В результате в осадок выпадает кремниевая кислота. Из фильтрата далее осаждают алюмокалиевые квасцы, после чего в растворе из катионов остаются только ионы Ве 2+ . Из полученного тем или иным способом оксида бериллия ВеО затем получают фторид, из которого магнийтермическим методом восстанавливают металлический бериллий:

Металлический бериллий можно приготовить также электролизом расплава смеси BeCl2 и NaCl при температурах около 300 °C. Раньше бериллий получали электролизом расплава фторобериллата бария Ba[BeF4]:

Магний -- элемент главной подгруппы второй группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 12. Обозначается символом Mg (лат. Magnesium). Простое вещество магний (CAS-номер: 7439-95-4) -- лёгкий, ковкий металл серебристо-белого цвета. Средне распространён в природе. При горении выделяется большое количество света и тепла.

Кларк магния 19 кг/т. Это распространённый элемент земной коры. Большие количества магния находятся в морской воде. Главными видами нахождения магнезиального сырья являются:

· морская вода -- (Mg 0,12-0,13 %),

· карналлит -- MgCl2 * KCl * 6H2O (Mg 8,7 %),

· бишофит -- MgCl2 * 6H2O (Mg 11,9 %),

· кизерит -- MgSO4 * H2O (Mg 17,6 %),

· эпсомит -- MgSO4 * 7H2O (Mg 16,3 %),

· каинит -- KCl * MgSO4 * 3H2O (Mg 9,8 %),

· магнезит -- MgCO3 (Mg 28,7 %),

· доломит -- CaCO3·MgCO3 (Mg 13,1 %),

· брусит -- Mg(OH)2 (Mg 41,6 %).

Магнезиальные соли встречаются в больших количествах в солевых отложениях самосадочных озёр. Месторождения ископаемых солей карналлита осадочного происхождения известны во многих странах.

Магнезит образуется преимущественно в гидротермальных условиях и относится к среднетемпературным гидротермальным месторождениям. Доломит также является важным магниевым сырьём. Месторождения доломита широко распространены, запасы их огромны. Они ассоциируют с карбонатными толщами и большинство из них имеет докембрийский или пермский возраст. Доломитовые залежи образуются осадочным путём, но могут возникать также при воздействии на известняки гидротермальных растворов, подземных или поверхностных вод.

Обычный промышленный метод получения металлического магния -- это электролиз расплава смеси безводных хлоридов магния MgCl2 (бишофит), натрия NaCl и калия KCl. В расплаве электрохимическому восстановлению подвергается хлорид магния:

MgCl2 (электролиз) = Mg + Cl2

Расплавленный металл периодически отбирают из электролизной ванны, а в нее добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много (около 0,1 %) примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок -- флюсов, которые «отнимают» примеси от магния или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999 % и выше. Разработан и другой способ получения магния -- термический. В этом случае для восстановления оксида магния при высокой температуре используют кремний или кокс:

Применение кремния позволяет получать магний из такого сырья, как доломит CaCO3·MgCO3, не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции:

CaCO3·MgCO3 = CaO + MgO + 2CO2,

2MgO + CaO + Si = CaSiO3 + 2Mg.

Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырьё, но и морскую воду.

Магний -- металл серебристо-белого цвета. При обычных условиях поверхность магния покрыта прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2. Плотность магния при 20 °C -- 1,737 г/см?, температура плавления металла tпл = 651 °C, температура кипения -- tкип = 1103 °C, теплопроводность при 20 °C -- 156 Вт/(м·К). Магний высокой чистоты пластичен, хорошо прессуется, прокатывается и поддаётся обработке резанием.

Химические свойства магния определяются наличием двух электронов на наружной электронной оболочке его атома. Поэтому наиболее характерны для магния реакции восстановления, в которых он окисляется, переходя в ион Mg+2. Магний почти не реагирует с чистой холодной водой, но из кипящей воды он энергично вытесняет водород. С увеличением количества примесей в воде резко повышается способность магния образовывать растворимые соединения. Поэтому он довольно быстро растворяется как в морской, так и в минеральной воде. Раскаленный магний реагирует с водой: Mg (раск.) + Н2О = MgO + H2^; Щелочи на магний не действуют, в кислотах он растворяется легко с выделением водорода: Mg + 2HCl = MgCl2 + H2; При нагревании на воздухе магний сгорает, с образованием оксида, также с азотом может образовываться небольшое количество нитрида: 2Mg + О2 = 2MgO; 3Mg + N2 = Mg3N2

Щёлочноземельные металлы - основные свойства, характеристика и список элементов

Щёлочноземельные металлы получили свое название за счет своих оксидов, которые сообщают воде щелочные реакции. Изучая химию, очень часто приходится взаимодействовать со сложными и непонятными названиями. Но если разобраться и понять что к чему, то изучать предмет легко и интересно.

Однако при написании формул стоит быть внимательным, не забывая про коэффициенты и признаки реакций.

Положение в периодической системе Менделеева

Щелочноземельные металлы

Щелочноземельные металлы – это химические элементы второй группы периодической системы химических элементов таблицы Менделеева:

Электронное строение и закономерности изменения свойств

Атомы данных металлов на внешнем энергетическом уровне имеют 2 s-электрона. Отсюда следует, что максимальная степень окисления +2.

Также могут иметь нулевую степень окисления, но не отрицательную, так как металлы не могут иметь данную степень.

Общая конфигурация внешнего энергетического уровня nS 2 :

3000

В периоде от Be до Ra металлические свойства, восстановительные, электроотрицательные увеличиваются, а неметаллические, окислительные свойства и радиус атома уменьшается.

Физические свойства щелочноземельных металлов

Физические свойства данной группы имеют следующие характеристики: светло-серый — темно-серый цвет, твердые вещества, не растворимые и нелетучие, без запаха, тепло-электропроводимые, имеют характерный металлический блеск.

Показатели плотности и температуры плавления представлены в таблице:

3001

Химические свойства

Оксиды и гидроксиды щёлочноземельных металлов усиливают основные свойства при движении вниз по второй группе. Следовательно, бериллий имеет меньшие основные свойства, чем радий.

Эти вещества взаимодействуют с любыми растворами кислот от сильной до слабой, а также с образованием солей, образуя белый осадок.

С кислородом образуют реакцию горения и оксид:

Металлы, стоящие в главной подгруппе второй группы (кроме бериллия) реагируют с водой. При проведении данных реакций выделяется водород (H2):

Также реагируют с неметаллами:

Bа + Cl2 = BаCl2 — хлорид бериллия;

Ca + Br2 = CaBr2 — бромид кальция;

Sr + H2 = SrH2 — гидрид стронция.

Химические свойства щелочноземельных металлов показаны на картинке:

3003

Нахождение в природе

Все металлы данного типа встречаются на земле, но не в чистом виде. Часто они представлены в виде минеральных солей. Самый распространённый считается кальций, магний немного уступает, затем идет барий и стронций.

Бериллий и радий являются самыми редкими, однако последний металл в больших количествах находится в урановых рудах.

3004

Способ получения

Магний, кальций и стронций получают электролизом расплавов солей.

Барий получают с помощью восстановления оксида.

При нагревании фторида бария получают сам металл.

Качественные реакции

Одна из качественных реакций-окрашивание пламени.

Список возможных цветов пламени при нагревании данных элементов:

Sr — насыщенный красный;

Ba - светло-зеленый или классический зеленый.

3005

Металлы данного типа при взаимодействии с щелочами, оксидами или растворами солей выпадают в белый осадок.

Применение щелочноземельных металлов

D2R

Бериллий из-за своей прочности добавляют в различные сплавы металлов, также препятствует коррозии. Используется в изготовлении рентгеновских аппаратов.

Магний и кальций активно использует для лекарственных средств, поскольку данные металлы играют большую роль в жизнедеятельности организма. Также в медицине используют радий, но для облучения кожи и злокачественных образований.

Стронций и барий добавляют в различный сплавы, которые работают в агрессивной среде и имеют сверхсильную проводимость.

Данные металлы играют огромную роль в жизни человека, выполняют различные функции и имеют ряд определенных свойств. Они содержатся в земной коре, поэтому довольно широко используются. Однако это не говорит о том, что их нужно расходовать безгранично.


Щелочноземельные металлы

К понятию щелочноземельных металлов относится часть элементов II группы системы Менделеева: бериллий, магний, кальций, стронций, барий, радий. Четыре последних металла имеют наиболее ярко выраженные признаки щелочноземельной классификации, поэтому в некоторых источниках бериллий и магний не включают в список, ограничиваясь четырьмя элементами.


Свое название металла получили благодаря тому, что при взаимодействии их оксидов с водой образуется щелочная среда. Физические свойства щелочноземельных металлов: все элементы имеют серый металлический цвет, при нормальных условиях имеют твердую структуру, с ростом порядкового номера увеличивается их плотность, имеют очень высокую температуру плавления. В отличие от щелочных металлов, элементы данной группы не режутся ножом (за исключением стронция). Химические свойства щелочноземельных металлов: имеют два валентных электрона, активность растет с повышением порядкового номера, в реакциях выступают в качестве восстановителя.

Щелочноземельные металлы

Характеристика щелочноземельных металлов свидетельствует об их высокой активности. В особенности это относится к элементам с большим порядковым номером. Например, бериллий в нормальных условиях не ступает во взаимодействие с кислородом и галогенами. Для запуска механизма реагирования его необходимо нагреть до температуры свыше 600 градусов по Цельсию. Магний в нормальных условиях имеет на поверхности оксидную пленку и также не реагирует с кислородом. Кальций окисляется, но достаточно медленно. А вот стронций, барий и радий окисляются практически мгновенно, поэтому их хранят в безкислородной среде под керосиновым слоем.


Все оксиды усиливают основные свойства с ростом порядкового номера металла. Гидроксид бериллия представляет собой амфотерное соединение, которое не реагирует с водой, но хорошо растворяется в кислотах. Гидроксид магния является слабой щелочью, нерастворимой в воде, но реагирующей с сильными кислотами. Гидроксид кальция - сильное, малорастворимое в воде основание, реагирующее с кислотами. Гидроксиды бария и стронция относятся к сильным основаниям, хорошо растворимым в воде. А гидроксид радия - это одна из сильнейших щелочей, которая хорошо реагирует с водой и практически всеми видами кислот.

Способы получения

Получают гидроксиды щелочноземельных металлов путем воздействия воды на чистый элемент. Реакция протекает при комнатных условиях (кроме бериллия, для которого требуется повышение температуры) с выделением водорода. При нагревании все щелочноземельные металлы реагируют с галогенами. Полученные соединения используются в производстве большого ассортимента продукции от химических удобрений до сверхточных деталей микропроцессора. Соединения щелочноземельных металлов проявляют такую же высокую активность, как и чистые элементы, поэтому их используют во многих химических реакциях.

Магний

Чаще всего это происходит при реакциях обмена, когда необходимо вытеснить из вещества менее активный металл. В окислительно-восстановительных реакциях принимают участие в качестве сильного восстановителя. Двухвалентные катионы кальция и магния придает воде так называемую жесткость. Преодоление этого явления происходит путем осаждения ионов при помощи физического воздействия или добавления в воду специальных смягчающих веществ. Соли щелочноземельных металлов образуются путем растворения элементов в кислоте либо в результате реакций обмена. Полученные соединения имеют прочную ковалентную связь, поэтому обладают невысокой электропроводностью.


В природе щелочноземельные металлы не могут находиться в чистом виде, так как быстро вступают во взаимодействие с окружающей средой, образую химические соединения. Они входят в состав минералов и горных пород, содержащихся в толще земной коры. Наиболее распространен кальций, немного уступает ему магний, довольно часто встречаются барий и стронций. Бериллий относится к редким металлам, а радий - к очень редким. За все время, которое прошло с момента открытия радия, во всем мире было добыто всего полтора килограмма чистого металла. Как и большинство радиоактивных элементов, радий имеет изотопы, коих у него насчитывается четыре штуки.

Кальций

Получают щелочноземельные металлы путем разложения сложных веществ и выделения из них чистого вещества. Бериллий добывают путем восстановления его из фторида при воздействии высокой температуры. Барий восстанавливает из его оксида. Кальций, магний и стронций получают путем электролиза их хлоридного расплава. Сложнее всего синтезировать чистый радий. Его добывают путем воздействия на урановую руду. По подсчетам ученых в среднем на одну тонну руды приходится 3 грамма чистого радия, хотя встречаются и богатые месторождения, в которых содержится целых 25 грамм на тонну. Для выделения металла используются методы осаждения, дробной кристаллизации и ионного обмена.

Спектр применения щелочноземельных металлов очень обширен и охватывает многие отрасли. Бериллий в большинстве случаев используется в качестве легирующей добавки в различные сплавы. Он повышает твердость и прочность материалов, хорошо защищает поверхность от воздействия коррозии. Также благодаря слабому поглощению радиоактивного излучения бериллий используется при изготовлении рентгеновских аппаратов и в ядерной энергетике.

Магний используют как один из восстановителей при получении титана. Его сплавы отличаются высокой прочностью и легкостью, поэтому используются при производстве самолетов, автомобилей, ракет. Оксид магния горит ярким ослепительным пламенем, что нашло отражение в военном деле, где он используется для изготовления зажигательных и трассирующих снарядов, сигнальных ракет и светошумовых гранат. Является одним из важнейших элементов для регуляции нормального процесса жизнедеятельности организма, поэтому входит в состав некоторых лекарств.

Бериллий

Кальций в чистом виде практически не применяют. Он нужен для восстановления других металлов из их соединений, а также в производстве препаратов для укрепления костной ткани. Стронций используют для восстановления других металлов и в качестве основного компонента для производства сверхпроводящих материалов. Барий добавляют во многие сплавы, которые предназначены для работы в агрессивной среде, так как он обладает отличными защитными свойствами. Радий используется в медицине для кратковременного облучения кожи при лечении злокачественных образований.

Обзор щелочноземельных металлов

Общая характеристика щелочноземельных металлов, их распространенность в природе, получение и применение. Их общие физические и химические свойства. Изучение истории открытия и биологической роли кальция, стронция, бария, радия, их радиоактивные свойства.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 12.06.2014
Размер файла 40,6 K

Известняк, мрамор и гипс уже в глубокой древности (5000 лет назад) применялись египтянами в строительном деле. Вплоть до конца 18 века химики считали известь простым веществом. В 1746 г. И. Потт получил и описал довольно чистую окись кальция. В 1789 году Лавуазье предположил, что известь, магнезия, барит - вещества сложные. Еще задолго до открытия стронция и бария их “нерасшифрованные” соединения применяли в пиротехнике для получения соответственно красных и зеленых огней. До середины 40-х годов прошлого века стронций был прежде всего металлом “потешных огней”. В 1787 г. в свинцовом руднике близ шотландской деревни Стронциан был найден новый минерал, который назвали стронцианитом SrCO3. А. Крофорд предположил существование еще неизвестной «земли». В 1792 г. Т. Хоп доказал что в состав найденного минерала входит новый элемент - стронций. В то время что с помощью Sr(OH)2 выделяли нерастворимый дисахарат стронция (С12Н22О4 . 2SrO ), при получения сахара из мелассы. Добыча Sr возрастала. Однако скоро было замечено, что аналогичный сахарат кальция тоже не растворим, а окись кальция была несомненно дешевле. Интерес к стронцию сразу же пропал и вновь возрос к нему лишь в 40-х годах прошлого века. Тяжелый шпат был первым известным соединением бария. Его открыл в начале XVII в. итальянский алхимик Касциароло. Он же установил, что этот минерал после сильного нагревания с углем светится в темноте красным светом и дал ему название «lapis solaris» (солнечный камень). В 1808 году Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с окисью ртути, приготовил амальгаму кальция, а отогнав из неё ртуть, получил металл, названный «кальций» (от лат. Calх, род. падеж calcis - известь). Тем же способом Дэви были получены Ва и Sr. Промышленный способ получения кальция разработан Зутером и Редлихом в 1896 г. на заводе Ратенау (Германия). В 1904 г. начал работать первый завод по получению кальция. щелочноземельный металл химический радиоактивный

Радий был предсказан Менделеевым в 1871 г. и открыт в 1898 г. супругами Марией и Пьером Кюри. Они обнаружили, что урановые руды обладают большей радиоактивностью чем сам уран. Причиной были соединения радия. Остатки урановой руды они обрабатывали щелочью, а что не растворялось - соляной кислотой. Остаток после второй процедуры обладали большей радиоактивностью, чем руда. В этой фракции и был обнаружен радий. О своем открытии супруги Кюри сообщили в докладе за 1898 г.

1. Общая характеристика щелочноземельных металлов

Щелочноземельные металлы - это химические элементы, относящиеся к главной подгруппе II группы Периодической системы Менделеева. Название связано с тем, что их окислы - «земли» (по терминологии алхимиков) - сообщают воде щелочную реакцию. Химически щелочные металлы очень активны, причем их активность возрастает от кальция к радию. Следует обязательно заметить, что к щелочноземельным металлам относятся элементы IIA группы, но не все, а только начиная с кальция и вниз: Ca, Sr, Ba, Ra. Оксиды этих элементов взаимодействуют с водой, образуя щелочи.

Если характеризовать всю IIA группу, то можно отметить что и здесь соблюдаются общие закономерности в изменении физических и химических свойств, связанных с увеличением размера атомов и образуемых ими ионов при движении по группе сверху вниз.

Как и у щелочных металлов у щелочноземельных металлов с увеличением размеров атомов ослабевает химическая связь между ними и кристалл разрушается при более низкой температуре. Но в то же время на примере магния можно видеть, что не только расстоянием между ядрами атомов в кристалле определяется прочность связи. Существуют и более сложные факторы, обуславливающие это.

С увеличением размеров ионов проявляется та же закономерность в изменении свойств соответствующих оксидов и гидроксидов, с увеличением размера иона ослабевают кислотные и усиливаются основные свойства оксидов и гидроксидов.

BeO и Be(OH)2 - амфотерные соединения , MgO и Mg(OH)2 проявляют только основные свойства. Водный раствор гидроксида магния (малорастворим) проявляет отчетливые свойства основания (окрашивает раствор фенолфталеина в малиновый цвет). Реагирующие с водой оксиды щелочноземельных металлов образуют более или менее хорошо растворимые в воде щелочи.

Важнейшими для практики соединениями щелочноземельных металлов являются соединения кальция.

CaO - оксид кальция (негашеная известь). Получают разложением известняка при высокой температуре (около 1000єС):

С солями кальция связано широко распространенное явление жесткости воды. Перед использованием воды ее умягчают, т. е. удаляют из нее соли кальция, магния и др.

1.1 Распространенность щелочноземельных металлов

Са играет важную роль в процессах жизнедеятельности. Человеческий организм содержит 0,7-1,4 вес.% кальция, 99% которого приходится на костную и зубную ткань. Растения тоже содержат большие количества кальция. Соединения кальция содержатся в природных водах и почве. Барий, стронций и радий содержатся в человеческом организме в ничтожных количествах.

Получение щелочноземельных металлов.

Сначала получают окиси или хлориды Э. ЭО получают прокаливанием ЭСО3, а ЭС12 действием соляной кислоты на ЭСО3. Все щелочноземельные металлы можно получить алюмотермическим восстановлением их окисей при температуре 1200 о С по примерной схеме: 3ЭО + 2Al = Al2O3 + 3Э. Процесс при этом ведут в вакууме во избежании окисления Э. Кальций (как и все остальные Э) можно получить электролизом расплава СаСl2 с последующей перегонкой в вакууме или термической диссоциацией СаС2. Ва и Sr можно получить пиролизом Э2N3, Э(NH3)6, ЭН2. Радий добывают попутно из урановых руд.

1.2 Физические свойства

Са и его аналоги представляют собой серебристо-белые металлы. Кальций из них самый твердый. Стронций и особенно барий значительно мягче кальция. Все щелочноземельные металлы пластичные, хорошо поддаются ковке, резанью и прокатке. Кальций при обычных условиях кристаллизуется в ГЦК-структуре с периодом а=0,556 нм (КЧ=12), а при температуре выше 464 о С в ОЦК-стуктуре. Са образует сплавы с Li, Mg, Pb, Cu, Cd, Al, Ag, Hg. Стронций имеет ГЦК - структуру; при температуре 488 о С стронций претерпевает полиморфное превращение и кристаллизуется в гексагональной структуре. Он парамагнитен. Барий кристаллизуется в ОЦК структуре. Са и Sr способны образовывать между собой непрерывный ряд твердых растворов, а в системах Са-Ва и Sr-Ba появляются области расслаивания. В жидком состоянии стронций смешивается с Ве, Hg, Ga, In, Sb, Bi, Tl, Al, Mg, Zn, Sn, Pb. С последними четырьмя Sr образует интерметаллиды. Электропроводность щелочноземельных металлов с повышением давления падает, вопреки обратному процессу у остальных типичных металлов. Ниже приведены некоторые константы для щелочноземельных металлов:

Щелочноземельные металлы доклад 9 класс

Ключевые слова конспекта: щелочноземельные металлы, элементы IIA-группы, земли, получение щелочноземельных металлов.

ХАРАКТЕРИСТИКА ЭЛЕМЕНТОВ IIA ГРУППЫ

К щёлочноземельным металлам относят кальций Са, стронций Sr, барий Ва, радий Ra – металлы IIА-группы. Название «щёлочноземельные» обусловлено тем, что гидроксиды этих металлов относятся к щелочам – растворимым в воде основаниям, а оксиды этих металлов с древних времён называли землями. Бериллий и магний к щёлочноземельным металлам не относятся.

Важнейшие параметры элементов IIA группы приведены в таблице:

Щелочноземельные металлы. Элементы IIA-группы

Электронная конфигурация валентного слоя атомов щёлочноземельных металлов в стационарном состоянии ns 2 . Щёлочноземельные металлы являются s-элементами. Во всех своих соединениях они имеют степень окисления +2.

Высшие оксиды щёлочноземельных металлов имеют состав МеО и проявляют основный характер. Высшие гидроксиды этих элементов Ме(ОН)2 являются типичными основаниями, их относят к щелочам, хотя их растворимость намного ниже, чем гидроксидов щелочных металлов. Водородные соединения щёлочноземельных металлов представляют собой твёрдые гидриды состава МеH2.

ЩЁЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ – ПРОСТЫЕ ВЕЩЕСТВА

При обычных условиях щёлочноземельные металлы – твёрдые вещества, имеют металлический блеск на свежем срезе (быстро покрываются желтоватой плёнкой на воздухе), лёгкие (кроме радия), при этом более твёрдые, чем щелочные металлы. Кальций не режется ножом, он довольно твёрдый, стронций и барий мягче. Барий похож по твёрдости на свинец, но в отличие от него при разрезании крошится на отдельные кристаллы.

При внесении щёлочноземельных металлов или их соединений в бесцветное пламя появляется его характерная окраска:

Щёлочноземельные металлы являются активными восстановителями. Реакции с галогенами протекают легко даже при обычных условиях: При сгорании щёлочноземельных металлов на воздухе или в кислороде образуются оксиды:

При нагревании на воздухе или в кислороде кальций загорается, пламя при этом имеет красноватый цвет.

Щёлочноземельные металлы взаимодействуют с серой при нагревании. Образуются сульфиды: При нагревании щёлочноземельные металлы реагируют с азотом с образованием нитридов (Са – при температуре красного каления): При нагревании щёлочноземельные металлы взаимодействуют с водородом с образованием твёрдых гидридов: Щёлочноземельные металлы легко взаимодействуют с водой с образованием щёлочи и водорода:

Кальций с холодной водой реагирует сравнительно медленно, но с горячей водой реакция идёт бурно.

Щёлочноземельные металлы активно взаимодействуют с растворами солей, но происходит, как и в случае щелочных металлов, не замещение металла, входящего в состав соли, а реакция щёлочноземельных металлов с водой раствора.

Кальций и стронций получают электролизом расплавов хлоридов:

Конспект урока по химии «Щелочноземельные металлы. Элементы IIA-группы». Выберите дальнейшее действие:

Читайте также: