Щелочноземельные металлы почему так называются

Обновлено: 19.05.2024

Металлы второй группы Периодической системы, а именно: бериллий, магний, кальций, стронций, барий и радий — называются так потому, что оксиды кальция, стронция и бария ранее были найдены химиками в земле и давали щелочную реакцию.

(Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.)

Смотреть что такое "Щелочноземельные металлы" в других словарях:

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ — ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ, двухвалентные металлы, составляющие вторую группу периодической таблицы: БЕРИЛЛИЙ, МАГНИЙ, КАЛЬЦИЙ, СТРОНЦИЙ, БАРИЙ и РАДИЙ. Все они отличаются легкостью, мягкостью и сильной реактивностью. Все эти металлы, кроме… … Научно-технический энциклопедический словарь

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ — ПОДГРУППА IIA БЕРИЛЛИЙ, МАГНИЙ И ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ КАЛЬЦИЙ, СТРОНЦИЙ, БАРИЙ, РАДИЙ Строго говоря, эта подгруппа состоит из двух типов элементов. Бериллий и магний элементы коротких периодов более сходны между собой, чем с другими четырьмя… … Энциклопедия Кольера

щелочноземельные металлы — [alkali earth metals] группа, включающая Са, Sr, Ba и Ra; первые три применяются в металлургии в качестве раскислителей; Смотри также: Металлы щелочные металлы чистые металлы ультрачистые металлы … Энциклопедический словарь по металлургии

Щелочноземельные металлы — Щёлочноземельные металлы химические элементы: кальций Ca, стронций Sr, барий Ba, радий Ra (иногда к щёлочноземельным металлам ошибочно относят также бериллий Be и магний Mg). Названы так потому, что их оксиды «земли» (по терминологии алхимиков)… … Википедия

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ — хим. элементы II гр. периодич. системы Менделеева: кальций, стронций, барий и радий. Назв. связано с тем, что их оксиды ( земли по терминологии алхимиков) сообщают воде щелочную реакцию. Химически Щ. м. весьма активны, причём их активность… … Большой энциклопедический политехнический словарь

МЕТАЛЛЫ — МЕТАЛЛЫ, химические элементы, обладающие высокой тепло и электропроводностью, атомы которых связаны в кристаллические решетки единственным в своем роде способом. Смеси таких элементов (СПЛАВЫ) также являются металлами. Около трех четвертей всех… … Научно-технический энциклопедический словарь

Щелочные и щелочноземельные металлы — (хим.), или металлы щелочей и щелочных земель. Нерастворимые в воде окислы металлов, а также и некоторых неметаллов прежде называли землями за их порошковый вид. Среди этих земель легко отличить такие, которые хотя и мало растворимы, но образуют… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Металлы как горючие — Металлы как ракетное горючие, используемые в ракетных топливах, относятся в основном ко второму периоду периодической системы элементов, и только некоторые из них к третьему. Добавка циркония приводит к большой плотности топлива, но уменьшает… … Википедия

Металлы как горючее — Металлы как ракетное горючее, используемые в ракетных топливах, относятся в основном ко второму периоду периодической системы элементов, и только некоторые из них к третьему. Добавка циркония приводит к большой плотности топлива, но… … Википедия

Щелочноземельные металлы

К щелочноземельным металлам относятся металлы IIa группы: бериллий, магний, кальций, стронций, барий и радий. Отличаются легкостью, мягкостью и сильной реакционной способностью.

Общая характеристика

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционная способность. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Щелочноземельные металлы

  • Be - 2s 2
  • Mg - 3s 2
  • Ca - 4s 2
  • Sr - 5s 2
  • Ba - 6s 2
  • Ra - 7s 2
Природные соединения
  • Be - BeO*Al2O3*6SiO2 - берилл
  • Mg - MgCO3 - магнезит, MgO*Al2O3 - шпинель, 2MgO*SiO2 - оливин
  • Ca - CaCO3 - мел, мрамор, известняк, кальцит, CaSO4*2H2O - гипс, CaF2 - флюорит

Кальцит, берилл, магнезит

Получение

Это активные металлы, которые нельзя получить электролизом раствора. С целью их получения применяют электролиз расплавов, алюминотермию и вытеснением их из солей другими более активными металлами.

MgCl2 → (t) Mg + Cl2 (электролиз расплава)

CaO + Al → Al2O3 + Ca (алюминотермия - способ получения металлов путем восстановления их оксидов алюминием)

Алюминотермия

Химические свойства

Все щелочноземельные металлы (кроме бериллия и магния) реагируют с холодной водой с образованием соответствующих гидроксидов. Магний реагирует с водой только при нагревании.

Гашение извести

Щелочноземельные металлы - активные металлы, стоящие в ряду активности левее водорода, и, следовательно, способные вытеснить водород из кислот:

Хорошо реагируют с неметаллами: кислородом, образуя оксиды состава RO, с галогенами (F, Cl, Br, I). Степень окисления у щелочноземельных металлов постоянная +2.

Mg + O2 → MgO (оксид магния)

При нагревании реагируют с серой, азотом, водородом и углеродом.

Mg + S → (t) MgS (сульфид магния)

Ca + H2 → (t) CaH2 (гидрид кальция)

Ba + C → (t) BaC2 (карбид бария)

Барий

Ba + TiO2 → BaO + Ti (барий, как более активный металл, вытесняет титан)

Оксиды щелочноземельных металлов

Имеют общую формулу RO, например: MgO, CaO, BaO.

Оксиды щелочноземельных металлов можно получить путем разложения карбонатов и нитратов:

Рекомендую взять на вооружение общую схему разложения нитратов:

Разложение нитратов

Проявляют преимущественно основные свойства, все кроме BeO - амфотерного оксида.

    Реакции с кислотами и кислотными оксидами

В нее вступают все, кроме оксида бериллия.

Амфотерные свойства оксида бериллия требуют особого внимания. Этот оксид проявляет двойственные свойства: реагирует с кислотами с образованием солей, и с основаниями с образованием комплексных солей.

BeO + NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)

Если реакция проходит при высоких температурах (в расплаве) комплексная соль не образуется, так как происходит испарение воды:

BeO + NaOH → Na2BeO2 + H2O (бериллат натрия)

Бериллий

Гидроксиды щелочноземельных металлов

Проявляют основные свойства, за исключением гидроксида бериллия - амфотерного гидроксида.

Получают гидроксиды в реакции соответствующего оксида металла и воды (все кроме Be(OH)2)

Основные свойства большинства гидроксидов располагают к реакциям с кислотами и кислотными оксидами.

Известковое молоко

Реакции с солями (и не только) идут в том случае, если соль растворимы и по итогам реакции выделяется газ, выпадает осадок или образуется слабый электролит (вода).

Гидроксид бериллия относится к амфотерным: проявляет двойственные свойства, реагируя и с кислотами, и с основаниями.

Жесткость воды

Жесткостью воды называют совокупность свойств воды, зависящую от присутствия в ней преимущественно солей кальция и магния: гидрокарбонатов, сульфатов и хлоридов.

Различают временную (карбонатную) и постоянную (некарбонатную) жесткость.

Жесткость воды

Вероятно, вы часто устраняете жесткость воды у себя дома, осмелюсь предположить - каждый день. Временная жесткость воды устраняется обычным кипячением воды в чайнике, и известь на его стенках - CaCO3 - бесспорное доказательство устранения жесткости:

Также временную жесткость можно устранить, добавив Na2CO3 в воду:

С постоянной жесткостью бороться кипячением бесполезно: сульфаты и хлориды не выпадут в осадок при кипячении. Постоянную жесткость воды устраняют добавлением в воду Na2CO3:

Жесткость воды можно определить с помощью различных тестов. Чрезмерно высокая жесткость воды приводит к быстрому образованию накипи на стенках котлов, труб, чайника.

Карбонат кальция - накипь в чайнике

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

§ 3. Щелочноземельные металлы

Элементы подгруппы кальция носят название щелочноземельных металлов. Происхождение этого названия связано с тем, что их окислы («земли» алхимиков) сообщают воде щелочную реакцию.

На долю кальция приходится 1,5% от общего числа атомов земной коры, тогда как содержание в ней радия очень мало (8·10 –12 %). Промежуточные элементы – стронций (0,008%) и барий (0,005%) стоят ближе к кальцию.

Помимо различных силикатных пород, Са, Sr и Ва встречаются главным образом в виде своих труднорастворимых углекислых и сернокислых солей, каковы минералы:

BaSO4 – тяжелый шппат

Углекислый кальций в виде известняка и мела иногда разует целые горные хребты. Значительно реже встречается кристаллизованная форма СаСО3 – мрамор. Для сернокислого кальция наиболее типично нахождение в виде гипса (CaSO4 ·2H2 O), месторождения которого нередко обладают громадной мощностью. Кроме перечисленных выше, важным минералом кальция является флюорит (СаF2 ).

Для стронция и бария сернокислые минералы более распространены, чем углекислые. Радий в природе связан с урановыми рудами (причем на 1000 кг урана руда содержит лишь 0,3 г радия).

Промышленное применение находят почти исключительно соединения рассматриваемых элементов, характерные свойства которых и определяют области их использования. Химия радия и его соединений изучена еще очень неполно. В общем, по химическим свойствам он похож на барий.

В свободном состоянии элементы подгруппы кальция могут быть получены электролизом их расплавленных солей. Они представляют собой серебристо–белые металлы. Кальций довольно тверд, стронций и особенно барий значительно мягче. Некоторые константы щелочноземельных металлов сопоставлены в приводимой таблице.

Летучие соединения щелочноземельных металлов окрашивают пламя в характерные цвета: Са – в оранжево–красный, Sr (и Ra)–в карминово–красный, Ва – в желтовато–зеленый. Этим пользуются при химических анализах для открытия рассматриваемых элементов.

На воздухе кальций и его аналоги тотчас покрываются желтоватой пленкой, в которой наряду с нормальными окислами (ЭО) частично содержатся также перекиси (ЭО2 ) и нитриды (Э3 N2 ). В ряду напряжений щелочноземельные металлы располагаются левее магния и поэтому легко вытесняют водород не только из разбавленных кислот, но и из воды. При переходе от Са к Ra энергичность взаимодействия усиливается. Во всех своих устойчивых соединениях рассматриваемые элементы двухвалентны.

С металлоидами щелочноземельные металлы соединяются весьма энергично и с значительным выделением тепла, как это видно из рис. 178. Особенно интересны гидриды ЭН2 , образующиеся при нагревании кальция и его аналогов з токе сухого водорода.

Соединения эти имеют типичный ионный характер, причем анио­ном является отрицательно заряженный водород (Н – ). Водой они энергично разлагаются по схеме:

С таким химически инертным в свободном состоянии элементом, как азот, щелочноземельные металлы соединяются уже при срав­нительно слабом нагревании. При накаливании они соединяются также с углеродом, образуя карбиды типа ЭС2 .

Окиси кальция и его аналогов (ЭО) представляют собой белые туго­плавкие вещества, энергично присо­единяющие воду с образованием бе­лых гидроокисей [Э(ОН)2 ]. Последние являются сильными основания­ми, довольно хорошо растворимыми в воде. По ряду Са—Sr—Ва основной характер гидроокисей усиливается.

Параллельно с этим и весьма быстро растет их растворимость.

1) Свойства окисей и их гидратов изменяются довольно закономерно не только для самих щелочноземельных металлов, но и по всему ряду Be–Ва. Обусловлено это последовательным увеличением радиусов ионов Э 2+ при сохранении ими однотипной электронной структуры (инертного газа).

Для вторых констант диссоциации Mg(OH)2 , Ca(OH)2 и Ва(ОН)2 были получены значения, равные соответственно 0,003, 0,03 и 0,23.

Окись кальция (негашеная известь, или «кипелка») и продукт ее взаимодействия с водой –Са(ОН)2 (гашеная известь, или «пушонка») находят широкое применение в строительном деле. С химической стороны «гашение» извести заключается в протекающем выделением тепла присоединении к СаО воды по схеме:

Гидроокись кальция является наиболее дешевым и поэтому чаще всего используемым в технике сильным основанием. Раствор Ва(ОН)2 («баритовая вода») применяется для открытия СО2 .

Наряду с нормальными окислами для элементов подгруппы Са известны белые перекиси типа ЭО2 . Практическое значение из них имеет только перекись б а р и я. (ВаО2 ), применяемая, в частности, как исходный продукт для получения перекиси водорода. Последнее основано на обратимости реакции:

Так как сама Н2 О2 является кислотой очень слабой, равновесие этой реакции практически полностью смещается влево под действием даже таких кислот, как угольная [вследствие нейтрализации Ва(ОН)2 ].

Технически ВаО2 получают нагреванием ВаО в токе воздуха до 600 °С При этом происходит присоединение кислорода по реакции:

Дальнейшее нагревание выше 800°С ведет, наоборот, к распаду ВаО2 на окись бария и кислород. Поэтому сжигание металлического бария сопровождается образованием только его окиси.

При взаимодействии с кислотами окислы и гидроокиси щелочноземельных металлов легко образуют соответствующие соли. Последние, как правило, бесцветны. Из производных обычных минеральных кислот соли с анионами Cl – , Br – , J – и NO3 – хорошо растворимы; напротив, с анионами F – , SO4 2– , CO3 2– и PO4 3– малорастворимы в воде. В противоположность ионам Са 2+ и Sr 2+ ион Ba 2+ сильно ядовит. Многие соли рассматриваемых элементов находят разнообразное практическое использование.

2) Растворимость важнейших солей (а также гидроокисей) Са, Sr и Ва при обычных условиях сопоставлена на рис. 179, из которого видно, что для отдельных анионов по ряду Са–Sr–Ва она изменяется различно.Это обстоятельство важно для аналитической химии. В частности, резкое различие растворимости хромовокислых солей дает возможность отделять Ва от Sr и Са. Крайне малой растворимостью щавелевокислого кальция пользуются для открытия следов этого элемента (например, в обычной питьевой воде).

Галогениды щелочноземельных металлов по своим свойствам делятся на две довольно резко обособленные группы. К одной относятся фториды, к другой – производные остальных галоидов,

Фториды почти нерастворимы не только в воде, но и в разбавленных кислотах. Кристаллогидраты для них неизвестны. Хлориды, бромиды и иодиды хорошо растворимы в воде и из растворов выделяются в виде кристаллогидратов.

Азотнокислый барий кристаллизуется при обычных условиях без воды. Напротив, нитраты Са и Sr выделяются в виде; кристаллогидратов. Последние легко растворимы в воде, тогда как растворимость Ва(NO3 )3 и Ra(NO3 )2 значительно меньше. Нитрат кальция широко применяется в качестве азотсодержащего минерального удобрения. Нитраты стронция и бария служат в пиротехнике для изготовления составов, сгорающих красным (Sr)j или зеленым (Ва) пламенем.

Сернокислые соли Sr и Ва кристаллизуются без воды выше 66°С в безводном состоянии выделяется из раствора и сульфат кальция, ниже указанной температуры осаждается гипс – CaSO4 ·2H2 O. В воде рассматриваемые сульфаты труднорастворимы, причем по ряду Са–Ra растворимость быстро уменьшается.

Нагревание до 150°С обусловливает переход гипса в более бедный водой гидрат 2CaSO4 ·H2 O. При замешивании теста из порошка этого гидрата с водой (60–80% от его веса) происходит обратное присоединение последней, сопровождающееся отвердеванием всей массы вследствие ее закристаллизовывания. На этом основано применение гипса для изготовления слепков с различных предметов, а также в качестве вяжущего строительного материала.

3) Обжиг гипса для получения вяжущего материала проводят обычно при температурах не выше 180 °С. Полученный продукт поступает в продажу под названием жженого (штукатурного) гипса, или алебастра. Обжиг выше 350°С ведет к образованию растворимой формы безводного CaSO4 , а выше; 500 °С – его нерастворимой формы, которая вновь воду уже не присоединяет и поэтому в качестве вяжущего материала использована быть не может («мертвый гипс»).

Образующиеся при еще более сильном обжиге (900–1200 °С) основные соли состава xCaSO4 ·yCaO (гидравлический гипс), будучи замешаны с водой, вновь дают затвердевающую массу. Ее твердение вызывается присоединением воды и кристаллизацией материала, причем образующиеся кристаллы тесна переплетаются и срастаются друг с другом, что обусловливает большую мехамическую прочность затвердевшей массы. Последняя вместе с тем весьма стойка по отношению к действию воды, изменениям температуры и т. д. Гидравлический гипс применяется для изготовления ступенек, подоконников и т. п. и в качестве вяжущего материала. Он был известен египтянам еще за 2000 лет до н. э. и широко использовался ими при возведении различных построек.

Углекислые соли щелочноземельных металлов практически нерастворимы в воде. При накаливании они отщепляют СО2 и переходят в соответствующие окиси. По ряду Са–Sr––Ва термическая устойчивость карбонатов быстро возрастает. Наиболее практически важным из 'них является карбонат кальция.

Применение отдельных природных разновидностей СаСО3 весьма различно. Известняк служит исходным сырьем для получения важнейших строительных материалов – извести и цемента.

Мел используется в качестве минеральной краски, как основа составов для полировки и т. д. Мрамор является прекрасным материалом для скульптурных работ, изготовления электрических распределительных щитов и т. д.

Ежегодная мировая выработка извести из известняка исчисляется десятками миллионов тонн. Термическая диссоциация СаСОз идет со значительным поглощением тепла:

СаСОз + 43 ккал = > СаО + СО2

Зависимость равновесия этой реакции от температуры видна из следующих данных:

Технически обжиг известняка чаще всего осуществляется в шахтных печах (рис. 180). Важным побочным продуктом производства является углекислый газ.

Известь находит широкое применение в ряде отраслей промышленности. Значительные ее количества потребляются также сельским хозяйством. Важнейшей и с наиболее давних времен известной человечеству областью применения извести является, однако, использование ее (под названием «известкового раствора») в качестве вяжущего строительного материала для скрепления друг с другом камней, кирпичей и т. п. Обычно приготовляют смесь извести с песком (1 часть на 3–4 части песка) и водой вколичестведостаточном для получения тестообразной массы. Последняя постепенно твердеет вследствие кристаллизации гидроокиси кальция и образования кристаллического СаСОз (за счет углекислоты воздуха) по реакции:

Одновременно идет образование также силикатов кальция (за счет SiO2 песка). Ввиду выделения воды при твердении известкового раствора в построенных с его помощью зданиях долгое время сохраняется сырость.

Значительные преимущества перед известью имеет другой вяжущий строительный материал – цемент. Помимо того, что его применением устраняется долговременная сырость зданий, цемент характеризуется способностью затвердевать не только на воздухе, но и под водой. Затвердевание его идет, кроме того, значительно быстрее, чем в случае известкового раствора. Выработка цемента по СССР составила в 1962 г. 57,3 млн. т (против 5,7 млн. г в 1940 г. и 1,5 млн. т в 1913 г.).

Цемент представляет собой зеленовато–серый порошок, состоящий в основном из смеси различных силикатов и алюминатов кальция, преимущественно Ca3 SiO5 , Ca2 SiO4 и Са3 (АlO3 )2 . Будучи замешан с водой, он дает отвердевающую массу. Переход последней из тестообразного в твердое состояние носит название «схватывания» и осуществляется обычно в течение нескольких часов. С химической стороны процесс схватывания цемента обусловлен главным образом гидратацией его составных частей.

4) При производстве цемента смесь тонко измельченных известняка и богатой SiO2 глины обжигают до начала спекания (1400–1600 °С) в специальных вращающихся печах (рис. 181). Последние представляют собой слегка наклонные, выложенные внутри огнеупорным кирпичом стальные трубы диаметром 2–3 м и длиной в несколько десятков метров. Печь лежит на роликах и приводится мотором в медленное вращение. В ее верхнюю часть непрерывновводится исходная смесь, которая при постепенном продвижении вниз все более разогревается за счет тепла сгорающих в печи газов (или каменноугольной пыли). Обожженный продукт (цементный клинкер) после остывания тщательно перемалывается.

5) Состав цементов выражают обычно в виде весового процентного содержания входящих в них окислов (в основном CaO, SiO2 , Al2 O3 и Fe2 O3 ). Первый из них играет в цементе роль основания, остальные – роль кислотных ангидридов, весовое отношение СаО / (SiO2 + Al2 O3 +Fe2 O3 ) носит название гидромодуля цемента и хорошо характеризует его качества. Числовая величина гидромодуля обычного (силикатного) цемента колеблется около двух. Приблизительные типичные результаты его анализа приводятся ниже (% по весу):

6) Схватывание цемента обусловлено в основном реакциями по схемам:

После первоначального схватывания твердость цемента в течение длительного времени продолжает возрастать. Основной причиной этого является, по–видимому, распространение процессов гидратации в глубь цементных зерен.

Наряду с рассмотренными выше солями для химии Са, Sr и Ва весьма важны их известные только в растворе кислые карбонаты Э(НСО3 )2 . Они образуются при взаимодействии растворенного в воде углекислого газа с нормальными карбонатами по схеме:

Реакция эта обратима, причем нагревание смещает ее равновесие в сторону распада бикарбоната. Довольно часто из бикарбонатов щелочноземельных металлов в природных водах содержится только Са(НСО3 )2 . Наличие его придает воде приятный освежающий вкус (который отсутствует у дистиллированной воды).

Содержание в природной воде солей двухвалентных металлов часто оценивают, говоря о той или иной ее «жесткости». При этом различают жесткость временную и постоянную. Первая обусловлена присутствием в воде бикарбонатов – Са(НСО3 )2 , реже Mg(HCO3 )2 и иногда также Fe(HCO3 )2 . Временной она названа потому, что может быть устранена простым кипячением воды: бикарбонаты при этом разрушаются и нерастворимые продукты их распада (карбонаты Са и Mg, гидроокись железа) оседают на стенках сосуда в виде накипи. По цвету последней можно оценить содержание Fe(HCO3 )2 в потребляемой воде: если его вовсе нет, накипь имеет белый цвет, при значительном его количестве – красно–бурый.

Постоянная жесткость воды обусловлена присутствием в ней солей двухвалентных металлов, не дающих осадка при кипячении. Наиболее обычны сульфаты и хлориды Са и Mg. Из них особое значение имеет малорастворимый CaSO4 , который оседает в виде очень плотной накипи.

При работе парового котла на жесткой воде его нагреваемая поверхность покрывается накипью. Так как последняя плохо проводит тепло; прежде всего становится неэкономичной сама работа котла: уже слой накипи толщиной в 1 мм повышает расход топлива приблизительно на 5%. С другой стороны, изолированные от воды слоем накипи стенки котла могут нагреться до весьма высоких температур. При этом железо постепенно окисляется и стенки теряют прочность, что может повести к взрыву котла. Так как паросиловое хозяйство существует во многих промышленных предприятиях и на транспорте, вопрос о жесткости воды практически весьма важен.

Жесткая вода оказывается также непригодной для проведения технологических процессов ряда отраслей промышленности. Пользование ею затрудняет стирку белья, мытье волос и другие операции, связанные с потреблением мыла. Обусловлено это нерастворимостью солей двухвалентных металлов и входящих в состаз мыла органических кислот, из–за чего, с одной стороны, загрязняются отмываемые предметы, с другой – непроизводительно расходуется мыло.

7) И постоянную и временную жесткость воды в СССР принято оценивать числом содержащихся в одном литре миллиграмм–эквивалентов двухвалентных металлов (мг–экв/л). За рубежом пользуются условными «градусами жесткости», величины которых в отдельных странах различны (1 мг–экв/л соответствует 2,8 немецким, 3,5 английским, 5 французским или 50 американским градусам). До 1952 г. в СССР обычно применялись немецкие градусы.

Сумма временной и постоянной жесткости определяет общую жесткость воды. Последняя характеризуется по этому признаку следующими наименованиями: очень мягкая (до 1,5), мягкая (1,5–3), среднежесткая (3–6), жесткая (6–9), очень жесткая (>9 мг–экв/л). Жесткость отдельных естественных вол . колеблется в весьма широких пределах. Для открытых водоемов она часто зависит от времени года и даже погоды. Наиболее «мягкой» природной водой является атмосферная (дождь, снег), почти не содержащая растворенных солей.

Так как очистка воды от растворенных солей при помощи перегонки слишком дорога, в местностях с жесткой водой для ее «умягчения» пользуются химическими методами. Временную (иначе – карбонатную) жесткость обычно устраняют, прибавляя к воде Са(ОН)2 в количестве, строго отвечающем найденному по анализу содержанию бикарбонатов. При этом по реакции

весь бикарбонат переходит в нормальный карбонат и осаждается. От постоянной (иначе, некарбонатной) жесткости чаще всего освобождаются добавлением к воде соды, которая вызывает образование осадка по реакции:

Воде дают затем отстояться и лишь после этого пользуются ею для питания котлов или в производстве. Для умягчения небольших количеств жесткой воды (в прачечных и т. п.) обычно добавляют к ней немного соды и дают отстояться. При этом двухвалентные металлы полностью осаждаются в виде карбонатов, а остающиеся в растворе соли натрия употреблению мыла не мешают.

Из изложенного следует, что содой можно пользоваться для Устранения и временной и постоянной жесткости, а гидроокисью кальция – только для устранения временной. Тем не менее в технике стараются применять именно Са (ОН)2 , что обусловлено гораздо большей дешевизной этого продукта сравнительно с содой.

Щелочноземельными эти металлы называют, т.к. они содержатся во всех минералах земли — поэтому «земельные», а «щелочные» — т.к. они придают воде щелочную реакцию.

Строение электронных оболочек

Электронное строение внешнего слоя у всех этих элементов одинаково – на нем всего 2 электрона на s-подуровне:

n S 2

электронное строение металлов 2-й группы главной подгруппы


Что это означает?

  1. Валентности элементов = 2, т.е. каждый атом может образовывать 2 связи.
  2. Степень окисления элементов = +2 – металлические свойства – это способность отдавать электроны
  3. Сверху вниз в подгруппе радиус атома увеличивается, следовательно, электроны все слабее притягиваются к ядру атома, следовательно, сверху вниз металлические свойства увеличиваются – Ba более сильный металл, чем Be.
  4. Как следствие этого сверху вниз в подгруппе усиливаются восстановительные свойства.

Физические свойства щелочно-земельных металлов

Mg


Общие характеристики:

  • все металлы сероватого цвета,
  • твердые, ножом, как щелочные металлы, их уже, конечно, не порежешь 🙂
  • плотность больше 1,
  • на воздухе элементы достаточно устойчивы, но покрываются оксидной пленкой,
  • окрашивают пламя в разный цвет (это используют для получения разных цветов пламени в пиротехнике):


Ca — в кирпично-красный

Химические свойства металлов

Имеет смысл рассмотреть химические свойства по таблице классификации неорганических соединений.

неорганические соединения


1. Идем по синим стрелочкам — взаимодействие металлов:

Металлы традиционно проявляют металлические — восстановительные свойства.

свойства металлов 2-й группы


2. Идем по зеленым стрелочкам — реакции для оксидов

оксиды металлов 2-й группы


3. Идем по оранжевым стрелочкам

гидроксиды 2-й группы главной подгруппы

Обратите внимание, что гидроксиды щелочноземельных металлов либо малорастворимы, либо нерастворимые, поэтому их образование может служить качественной реакцией.

Be(OH)2 — амфотерный гидроксид, он может реагировать как с основаниями, так и с кислотами!

3. Щелочноземельные металлы с водородом также образуют гидриды.

Как мы уже говорили, сверху вниз в подгруппе металлические свойства элементов возрастают. Водород, хоть и находится в первой группе при реакции с щелочноземельными металлами будет проявлять отрицательную степень окисления.

Как определить качественные реакции? Загляните в таблицу растворимости!


Be(OH)2 — гелеобразный белый осадок;

Сa(OH)2 — белый осадок;

Mg(OH)2 — белесый осадок;

Фториды — белесо-бесцветные осадки;

Сульфиты и сульфаты — белые осадки.

Как видите, цвета осадков не отличаются цветовым разнообразием 🙂

Получение щелочно-земельных металлов


Обычно щелочноземельные металлы получают электролизом расплавов их солей:

Щёлочноземельные металлы

Erdalkali.jpg

Щё́лочноземе́льные мета́ллы — химические элементы 2-й группы [1] периодической таблицы элементов: бериллий, магний, кальций, стронций, барий и радий [2] [3] . Названы так потому, что их оксиды — «земли» (по терминологии алхимиков) — сообщают в воде щелочную реакцию. Соли щёлочноземельных металлов, кроме радия, широко распространены в природе в виде минералов. Происхождение этого названия связано с тем, что их гидроксиды являются щелочами, а оксиды по тугоплавкости сходны с оксидами алюминия и железа, носившими ранее общее название "земли

Содержание

Физические свойства

Все щёлочноземельные металлы — серые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение — стронций). Плотность щёлочноземельных металлов с порядковым номером растёт, хотя явно рост наблюдается только начиная с кальция, который имеет минимальную среди них плотность (ρ = 1,55 г/см³), самый тяжёлый — радий, плотность которого примерно равна плотности железа.

Химические свойства

Щёлочноземельные металлы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами, наряду с щелочными металлами. Имея два валентных электрона, щёлочноземельные металлы легко их отдают, и во всех соединениях имеют степень окисления +2 (очень редко +1).

Химическая активность щёлочноземельных металлов растёт с ростом порядкового номера. Бериллий в компактном виде не реагирует ни с кислородом, ни с галогенами даже при температуре красного каления (до 600 °C, для реакции с кислородом и другими халькогенами нужна ещё более высокая температура, фтор — исключение). Магний защищён оксидной плёнкой при комнатной температуре и более высоких (до 650 °C) температурах и не окисляется дальше. Кальций медленно окисляется и при комнатной температуре вглубь (в присутствии водяных паров), и сгорает при небольшом нагревании в кислороде, но устойчив в сухом воздухе при комнатной температуре. Стронций, барий и радий быстро окисляются на воздухе, давая смесь оксидов и нитридов, поэтому их, так же и как щелочные металлы (и кальций), хранят под слоем керосина.

Оксиды и гидроксиды щёлочноземельных металлов имеют тенденцию к усилению основных свойств с ростом порядкового номера: Be(OH)2 — амфотерный, нерастворимый в воде гидроксид, но растворим в кислотах (а также проявляет кислотные свойства в присутствии сильных щелочей), Mg(OH)2 — слабое основание, нерастворимое в воде, Ca(OH)2 — сильное, но малорастворимое в воде основание, Sr(OH)2 — лучше растворимо в воде, чем гидроксид кальция, сильное основание (щёлочь) при высоких температурах, близких к точке кипения воды (100 °C), Ba(OH)2 — сильное основание (щёлочь), по силе не уступающее KOH или NaOH, и Ra(OH)2 — одна из сильнейших щелочей, очень коррозионное вещество.

Нахождение в природе

Все щёлочноземельные металлы имеются (в разных количествах) в природе. Ввиду своей высокой химической активности все они в свободном состоянии не встречаются. Самым распространённым щёлочноземельным металлом является кальций, количество которого равно 3,38 % (от массы земной коры). Немногим ему уступает магний, количество которого равно 2,35 % (от массы земной коры). Распространены в природе также барий и стронций, которых соответственно 0,05 и 0,034 % от массы земной коры. Бериллий является редким элементом, количество которого составляет 6·10 −4 % от массы земной коры. Что касается радия, который радиоактивен, то это самый редкий из всех щёлочноземельных металлов, но он в небольшом количестве всегда содержится в урановых рудах. В частности, он может быть выделен оттуда химическим путём. Его содержание равно 1·10 −10 % (от массы земной коры) [4] .

Читайте также: