Скорость коррозии металла на воздухе

Обновлено: 05.10.2024

1.1. Настоящая инструкция предназначена для определения фактической скорости коррозии металла стенок корпусов сосудов и трубопроводов, эксплуатирующихся на предприятиях Миннефтехимпрома СССР, с целью установления периодичности их технического освидетельствования в соответствии с требованиями действующих правил и нормативных документов.

1.3. В случае невозможности или затруднения применения методов, изложенных в п. 1.2, скорость коррозии определяется приближенно по образцам-свидетелям или оценкой коррозионности среды по отношению к данному металлу с помощью коррозионных зондов.

1.4. Определение скорости коррозии производится по каждому сосуду и трубопроводу технологической установки, линии, цеху. Для группы сосудов или трубопроводов, работающих на данной технологической установке, линии, цехе в одной к той же среде при одинаковых рабочих условиях и материальном исполнении, определение скорости коррозии производится по выбранному объекту-представителю.

1.5. Скорость коррозии металла стенок корпуса сосудов и трубопроводов подлежит уточнению в каждом случае существенного изменения условий их эксплуатации (рабочей среды, температуры, давления), влияющих на коррозионную активность рабочей среды, либо в случае замены материального оформления.

1.6. На каждом предприятии, владельце сосудов, составляется и утверждается главным инженером перечень сосудов с указанием скорости коррозии металла корпуса. Сведения по скорости коррозии трубопроводов заносятся в паспорт трубопровода.

При выявлении специальных видов коррозионных повреждений типа коррозионное растрескивание, межкристаллитная коррозия или расслоение по толщине стенки сведения об этом также заносятся в паспорт сосуда или трубопровода, а вопросы дальнейшей эксплуатации или ремонта сосудов и трубопроводов с такими повреждениями должны быть согласованы со специализированной организацией.

1.7. Контроль скорости коррозии металла стенок сосудов производится в каждый капитальный ремонт, но не реже установленной периодичности технических освидетельствований сосудов. По трубопроводам скорость коррозии контролируется в каждую ревизию.

2. ОПРЕДЕЛЕНИЕ СКОРОСТИ КОРРОЗИИ ПО ДАННЫМ ФАКТИЧЕСКИХ ИЗМЕРЕНИЙ ТОЛЩИНЫ СТЕНОК

2.1. Результаты периодических измерений толщины стенок сосуда или трубопровода служат основанием для определения скорости коррозии металла в условиях эксплуатации.

2.2. Замеры толщины стенок производятся неразрушающими методами контроля или путем засверловки и измерения толщины стенки мерительным инструментом. Предпочтение следует отдавать ультразвуковой толщинометрии.

2.3. Если результаты измерений толщины стенок неразрушающими методами контроля вызывают сомнение, то измерение следует производить сквозной засверловкой.

2.4. На сосудах и трубопроводах, работающих в средах, вызывающих межкристаллитную коррозию или коррозионное растрескивание под напряжением, сквозные засверловки, с последующей их заделкой методами дуговой сварки, не допускаются.

2.5. Место и способ измерения толщины стенок сосуда или трубопровода определяется по результатам их технического освидетельствования службами технического надзора с учетом особенностей коррозионных поражений в различных частях сосудов и трубопроводов.

2.6. Места расположения точек замеров, способ измерения и результаты измерений должны быть оформлены в коррозионной карте на сосуд или трубопровод и храниться в паспорте (см. карты СЗК-2 и СЗК-3).

Атмосферная коррозия

Атмосферная коррозия – коррозионное разрушение конструкций, оборудования, сооружений, эксплуатируемых в приземной части атмосферы. Атмосферная коррозия носит менее разрушительный характер, чем почвенная и морская.

Скорость атмосферной коррозии зависит от некоторых факторов: природы металла, окружающей его атмосферы, влажности воздуха.

Виды атмосферной коррозии

Атмосферную коррозию по степени увлажненности поверхности принято разделять на сухую, влажную и мокрую. Влажная и мокрая протекают по электрохимическому механизму, а сухая – химическому.

Сухая атмосферная коррозия наблюдается при отсутствии на поверхности металла пленки влаги. Если относительная влажность воздуха составляет 60% и меньше – протекает сухая атмосферная коррозия. Механизм коррозионного разрушения – химический. На поверхности образуются защитные оксидные пленки, которые тормозят процесс коррозии.

Сначала процесс протекает быстро (образование тонкой окисной пленки), потом – сильно замедляется и устанавливается постоянная, очень маленькая скорость коррозии. Такое явление обусловлено невысокой температурой окружающей среды. На металле почти сразу (может пару часов) образуется тонкая окисная пленка, которая приводит к потускнению поверхности. Толщина окисной пленки на поверхности нержавеющей стали может составлять 10 – 20 Å, железе – 30 – 40 Å. Предельная толщина слоя влаги при протекании сухой атмосферной коррозии может составлять 100 Å. Если в атмосфере присутствуют примеси агрессивных газов (например, сернистые газы) – скорость коррозии значительно возрастает.

Влажная атмосферная коррозия наблюдается при наличии на поверхности тончайшей пленки влаги. Толщина такой пленки составляет от 100 Å до 1 мкм. Относительная влажность воздуха, при которой начинается образование влажной пленки, составляет около 60 – 70%. Значение, при котором начинается конденсация на поверхности влаги, называется критической влажностью. Критическая влажность зависит от загрязнения воздуха и состояния металла. Конденсация влаги при этом происходит по капиллярному, химическому либо адсорбционному механизму.

Капиллярная конденсация влаги. Наблюдается в щелях, зазорах, трещинах на поверхности металла, порах в пленке продуктов коррозии, под загрязнениями и т.п.

Адсорбционная конденсация влаги. Возникает в результате проявления на поверхности металла адсорбционных сил.

Химическая конденсация влаги проявляется во взаимодействии продуктов коррозии с атмосферной влагой. При этом образуется ржавчина, которая и удерживает эту влагу.

Мокрая атмосферная коррозия протекает при относительной влажности воздуха около 100%, когда на поверхности влага собирается в виде хорошо видных капель, либо при прямом воздействии на конструкцию дождя, тумана. Мокрая атмосферная коррозия также наблюдается на конструкциях, которые обливаются водой либо полностью погружаются. При мокрой коррозии пленка влаги в толщину составляет более 1 мм.

Факторы атмосферной коррозии

Влажность воздуха при атмосферной коррозии

Наличие на поверхности металлоконструкции влаги усиливает атмосферную коррозию. Влага чаще всего поступает в качестве атмосферных осадков (дождь, туман). С повышение температуры значение относительной влажности уменьшается.

Существует критическое значение атмосферной влажности. Для каждого сплава или металла это свое определенное число. Для никеля, цинка, стали, меди значение критической влажности составляет около 50 – 70%. Если относительная влажность воздуха укладывается в рамки вышеназванных – то коррозионное разрушение перечисленных металлов незначительно. Если же выше – начинается усиленное разрушение. При сильно загрязненной атмосфере (например, технологическая среда) понятие критической влажности не всегда применяется и играет важную роль, т.к. коррозионный процесс значительно усиливается за счет вредных примесей в атмосфере.

Примеси в атмосфере (газы)

Загрязнение атмосферы газами резко увеличивает скорость коррозии.

Очень агрессивной средой является технологическая, вблизи больших промышленных предприятий, которые ежеминутно выбрасывают в воздух вредные примеси. Присутствие SO2, SO3, HCl, H2S, Cl2, NH3 и других соединений значительно увеличивает скорость атмосферной коррозии.

Интересное и самое сильное влияние оказывает SO2 (диоксид серы). Малая его концентрация (15 – 35 мкг/м 3 ) очень сильно увеличивает скорость коррозии (десятки и сотни раз). В больших же концентрациях скорость атмосферной коррозии увеличивается не так сильно (всего в 5 – 7 раз). Этот компонент образуется при сгорании угля, газолина, нефти.

Газы, попадая на пленку влаги на поверхности металлоконструкции, увеличивают электропроводность этой пленки. SO2 и Cl2 воздействуют как катодные деполяризаторы, SO3 и HCl увеличивают поглощательную способность продуктов коррозии, NH3 действует как комплексообразователь, SO2 и HCl – депассиваторы.

Очень сильно увеличивает скорость коррозии содержание в атмосфере серной кислоты. Особенно это относится к неустойчивым в ней металлам – железо, никель, цинк, кадмий. Медь в таких случаях белее устойчива, т.к. на ее поверхности образуется защитная пленка из ее основного сульфата зеленого цвета (патина).

Твердые частицы в атмосфере

Из атмосферы на поверхность попадают твердые активные либо пассивные частицы. Они могут действовать как депассиваторы, комплексообразователи, увеличивать электропроводность пленки влаги и поглощательную способность (гигроскопичность) продуктов коррозии, облегчать капиллярную конденсацию влаги (такой инертный материал как песок). В атмосфере встречаются такие твердые частицы, как Na2SO4, NaCl, (NH4)2SO4, частицы угля, различные соединения углерода, оксиды металлов и другие. Эти вещества в виде твердых частиц или пыли контактируют с влажной поверхностью металлоконструкции, образуют гальванические элементы, интенсифицируя процесс коррозии. Поэтому незапыленный воздух гораздо менее активен, чем загрязненная различными частицами атмосфера.

Катодные включения в атмосфере

Включения меди, палладия, платины, а также некоторых других металлов несколько повышают сопротивляемость железоуглеродистых сплавов коррозионному разрушению. Медь, которая может входить в состав таких сплавов замедляет коррозию, т.к. способствует пассивированию поверхности железа. При атмосферной коррозии палладий воздействует аналогично даже при очень маленьких его добавках в сплав.

Географический фактор

В различных географических местностях влажность, загрязнение атмосферы, температура различаются. Наибольшее влияние на атмосферную коррозию оказывает влажность воздуха. Установлено, что в регионах с постоянно повышенной влажностью коррозионные процессы протекают интенсивнее. Основное влияние оказывает не количество дождливых дней, а время нахождения на поверхности металла пленки влаги.

В пустынях, где влажность воздуха очень маленькая, на поверхности стальных изделий оксидная пленка появляется через достаточно большой промежуток времени, изделия долго остаются блестящими.

Температура окружающей среды

С повышением температуры окружающей среды процесс атмосферной коррозии замедляется. Влага, покрывающая поверхность металлоизделия, испаряется, уменьшается абсолютная влажность воздуха. С понижением температуры все происходит наоборот. Повышается относительная влажность среды, что способствует конденсации влаги. Скорость атмосферной коррозии увеличивается.

Особенности протекания атмосферной коррозии металлов

Поверхность металла покрыта тонкой пленкой электролита. В качестве электролита может выступать как сама влага, так и продукты коррозии, впитавшие влагу.

Особенностью атмосферной коррозии является возможность свободного подхода кислорода к корродирующей поверхности. Это обусловлено малой толщиной пленки и за счет конвекции перемешивания электролита. Именно поэтому даже в подкисленных электролитах атмосферная коррозия протекает с кислородной деполяризацией.

Также из-за тонкого слоя влаги на поверхности корродирующего металла анодный процесс идет с затруднением, а протекание катодного, наоборот, облегчается.

При работе гальванопар небольшая толщина пленки влаги тоже играет свою роль - увеличивается омическое сопротивление электролита.

Атмосферная коррозия сплавов, в основу которых входит железо (например, сталь), протекает с анодно-такодно-омическим контролем. Но в зависимости от некоторых условий (толщина, электропроводность пленки влаги, ее состав, природа металла) анодно-такодно-омический контроль может переходить в преимущественно анодный, преимущественно катодный или омический.

Уравнение атмосферной коррозии:

Анод: ионы металла переходят в раствор:

Катод: проходит реакция восстановления:

O2 + 2H2O + 4e → 4OH - (щелочные, нейтральные среды)

O2 + 4H + + 4e → 2H2O (подкисленная среда)

Во многом стойкость металлов и сплавов, в условиях атмосферной коррозии, зависит от природы металла и состояния его поверхности.

Защита металлов и сплавов (стали) от атмосферной коррозии

Для защиты от атмосферной коррозии применяют множество различных методов.

Нанесение металлических или неметаллических покрытий. Неметаллическими защитными покрытиями могут выступать различные смазки, пасты, лакокрасочные материалы. Часто в их состав дополнительно вводят ингибиторы, пигменты, пассивирующие поверхность (например, цинк-хроматный пигмент для стали). Иногда поверхность превращают в труднорастворимый оксид или фосфат, обладающий защитными свойствами. Металлическими покрытиями служат цинковые, никелевые, многослойные.

Снижение относительной влажности воздуха. Очень эффективный способ защиты металла от коррозии. Удаление влаги осуществляют подогревом помещения (отопление) либо осушкой воздуха. Очень часто достаточно поддерживать влажность атмосферы до 50 %. Если воздух содержит пиль, другие примеси, то 50% влажность очень велика.

При осушке воздуха или повышении температуры затрудняется конденсация влаги на металле, что приводит к значительному уменьшению скорости коррозии.

Применение контактных и летучих (парофазных) ингибиторов. Контактные замедлители коррозии наносятся на поверхность изделия в виде водных растворов. Примером контактного ингибитора атмосферной коррозии может служить NaNO2.

Летучие ингибиторы обладают высокой упругостью паров, применяются при длительном хранении стальных либо других металлических изделий, транспортировке. Летучими ингибиторами коррозии заполняют герметичное пространство (защита внутренней части трубы, на концах которой стоят специальные заглушки) либо ими пропитывают оберточные материалы (бумага). Летучими ингибиторами могут пропитываться специальные гранулы, которыми заполняют объем упаковки защищаемого изделия. Примеры летучих ингибиторов: карбонаты, нитриты, бензоаты моноэтаноламина и дициклогексиламина.

Легирование металлов. Добавление в сталь небольшого количества никеля, хрома, алюминия, титана (переводят поверхность стали в пассивное состояние), меди (катодная добавка), фосфора тормозят анодную реакцию.

Скорость коррозии металлов. Методы оценки коррозионных процессов

Скорость коррозии – многофакторный параметр, который зависит как от внешних условий среды, так и от внутренних свойств материала. В нормативно-технической документации существуют определенные ограничения по допустимым значениям разрушения металла при эксплуатации оборудования и строительных конструкций для обеспечения их безаварийной работы. В проектировании не существует универсального метода определения скорости коррозии. Это связано со сложностью учета всех факторов. Наиболее надежным методом является изучение истории эксплуатации объекта.

Критерии

Вам будет интересно: Процессы изобарный, изохорный, изотермический и адиабатный для идеального газа

Скорость коррозии - критерии

В настоящее время в проектировании техники используют несколько показателей скорости коррозии:

  • По прямому способу оценки: уменьшение массы металлической детали на единицу поверхности – весовой показатель (измеряется в граммах на 1 м2 за 1 час); глубина повреждений (или проницаемость коррозионного процесса), мм/год; количество выделяющейся газовой фазы продуктов коррозии; продолжительность времени, в течение которого появляется первое коррозионное повреждение; число центров коррозии на единицу площади поверхности, появившихся за определенный срок.
  • По косвенной оценке: сила тока электрохимической коррозии; электрическое сопротивление; изменение физико-механических характеристик.

Вам будет интересно: Такие обычные люди, или значение «почему бы и нет»

Первый показатель по прямому методу оценки является наиболее распространенным.

Расчетные формулы

В общем случае весовые потери, определяющие скорость коррозии металла, находят по следующей формуле:

где q – уменьшение массы металла, г;

S – площадь поверхности, с которой произошел перенос материала, м2;

t – период времени, ч.

Для листового проката и изготовленных из него обечаек определяют глубинный показатель (мм/год):

m – глубина проникновения коррозии в металл.

Между первым и вторым показателями, описанными выше, существует следующая зависимость:

где ρ – плотность материала.

Основные факторы, влияющие на скорость коррозии

Вам будет интересно: Шуточные номинации для учителей на выпускной

На скорость разрушения металла влияют следующие группы факторов:

  • внутренние, связанные с физико-химической природой материала (фазовая структура, химический состав, шероховатость поверхности детали, остаточные и рабочие напряжения в материале и другие);
  • внешние (окружающие условия, скорость движения коррозионно-активной среды, температура, состав атмосферы, наличие ингибиторов или стимуляторов и другие);
  • механические (развитие коррозионных трещин, разрушение металла под действием циклических нагрузок, кавитационная и фреттинг-коррозия);
  • конструктивные особенности (выбор марки металла, наличие зазоров между деталями, требования к шероховатости).

Физико-химические свойства

Скорость коррозии - влияние физико-химических свойств

Наибольшее значение среди внутренних факторов коррозии имеют следующие:

  • Термодинамическая устойчивость. Для ее определения в водных растворах применяют справочные диаграммы Пурбе, по оси абсцисс которых откладывается pH среды, а по оси ординат – окислительно-восстановительный потенциал. Сдвиг потенциала в положительную сторону означает большую устойчивость материала. Ориентировочно она определяется как нормальный равновесный потенциал металла. В реальности материалы корродируют с различной скоростью.
  • Положение атома в периодической таблице химических элементов. Металлы, наиболее подверженные коррозии, – это щелочные и щелочноземельные. Скорость коррозии снижается при увеличении атомного номера.
  • Кристаллическая структура. Она оказывает неоднозначное влияние на разрушение. Крупнозернистая структура сама по себе не приводит к росту коррозии, но благоприятна для развития межкристаллитного избирательного разрушения границ зерна. Металлы и сплавы с однородным распределением фаз корродируют равномерно, а с неоднородным – по очаговому механизму. Взаимное расположение фаз выполняет функцию анода и катода в агрессивной среде.
  • Энергетическая неоднородность атомов в кристаллической решетке. Атомы с наибольшей энергией расположены в углах граней микронеровностей и являются активными центрами растворения при химической коррозии. Поэтому тщательная механическая обработка металлических деталей (шлифовка, полировка, доводка) повышает коррозионностойкость. Данный эффект объясняется также формированием более плотных и сплошных оксидных пленок на гладких поверхностях.

Влияние кислотности среды

Вам будет интересно: Копать или капать? Как правильно написать?

Скорость коррозии - влияние кислотности среды

В процессе химической коррозии концентрация ионов водорода оказывает влияние на следующие моменты:

  • растворимость продуктов коррозии;
  • формирование защитных оксидных пленок;
  • скорость разрушения металла.

При рН в интервале значений 4-10 единиц (кислый раствор) коррозия железа зависит от интенсивности проникновения кислорода к поверхности объекта. В щелочных растворах скорость коррозии сначала уменьшается из-за пассивации поверхности, а затем, при рН>13 увеличивается в результате растворения защитной оксидной пленки.

Для каждого вида металла существует своя зависимость интенсивности разрушения от кислотности раствора. Благородные металлы (Pt, Ag, Au) устойчивы к коррозии в кислой среде. Zn, Al быстро разрушаются как в кислотах, так и в щелочах. Ni и Cd устойчивы к щелочам, но легко корродируют в кислотах.

Состав и концентрация нейтральных растворов

Скорость коррозии в растворах солей

Скорость коррозии в нейтральных растворах зависит в большей степени от свойств соли и ее концентрации:

  • При гидролизе солей в коррозионной среде образуются ионы, которые действуют как активаторы или замедлители (ингибиторы) разрушения металла.
  • Те соединения, которые увеличивают pH, повышают также скорость деструктивного процесса (например, кальцинированная сода), а те, которые снижают кислотность, – уменьшают ее (хлористый аммоний).
  • При наличии хлоридов и сульфатов в растворе разрушение активизируется до достижения некоторой концентрации солей (что объясняется усилением анодного процесса под влиянием ионов хлора и серы), а затем постепенно снижается из-за уменьшения растворимости кислорода.

Некоторые виды солей способны образовывать труднорастворимую пленку (например, фосфорнокислое железо). Это способствует защите металла от дальнейшего разрушения. Данное свойство используется при применении нейтрализаторов ржавчины.

Замедлители коррозии

Замедлители (или ингибиторы) коррозии различаются по механизму действия на окислительно-восстановительный процесс:

  • Анодные. Благодаря им образуется пассивная пленка. К данной группе относятся соединения на основе хроматов и бихроматов, нитратов и нитритов. Последний тип ингибиторов применяется для межоперационной защиты деталей. При использовании анодных замедлителей коррозии необходимо предварительно определить их минимальную защитную концентрацию, так как добавление в небольших количествах может привести к увеличению скорости разрушения.
  • Катодные. Механизм их действия основан на снижении концентрации кислорода и соответственно, замедлении катодного процесса.
  • Экранирующие. Данные ингибиторы изолируют поверхность металла с помощью образования нерастворимых соединений, отлагающихся в виде защитного слоя.

К последней группе относятся нейтрализаторы ржавчины, которые используются также для очистки от окислов. В их состав, как правило, входит ортофосфорная кислота. Под ее влиянием происходит фосфатирование металла – образование прочного защитного слоя нерастворимых фосфатов. Нейтрализаторы наносят пульверизатором или валиком. Через 25-30 минут поверхность приобретает бело-серый цвет. После высыхания состава наносят лакокрасочные материалы.

Механическое воздействие

Скорость коррозии - механические факторы

Повышению коррозии в агрессивной среде способствуют такие типы механического воздействия, как:

  • Внутренние (при формовании или термообработке) и внешние (под воздействием приложенной извне нагрузки) напряжения. В результате возникает электрохимическая неоднородность, происходит снижение термодинамической устойчивости материала и формируется коррозионное растрескивание. Особенно быстро происходит разрушение при растягивающих нагрузках (трещины образуются в перпендикулярных плоскостях) в присутствии анионов окислителей, например, NaCl. Типичным примером устройств, подверженных такому типу разрушения, являются детали паровых котлов.
  • Знакопеременное динамическое воздействие, вибрации (коррозионная усталость). Происходит интенсивное снижение предела усталости, образуются множественные микротрещины, которые затем сливаются в одну крупную. Число циклов до разрушения в большей степени зависит от химического и фазового состава металлов и сплавов. Такой коррозии подвержены оси насосов, рессоры, лопатки турбин и другие элементы оборудования.
  • Трение деталей. Быстрое корродирование обусловлено механическим износом защитных пленок на поверхности детали и химическим взаимодействием со средой. В жидкости скорость разрушения ниже, чем на воздухе.
  • Кавитационное ударное воздействие. Кавитация возникает при нарушении сплошности потока жидкости в результате образования вакуумных пузырей, которые схлопываются и создают пульсирующее воздействие. В результате возникают глубокие повреждения локального характера. Данный тип коррозии часто наблюдается в химических аппаратах.

Конструктивные факторы

Скорость коррозии - конструктивные факторы

При конструировании элементов, работающих в агрессивных условиях, необходимо учитывать, что скорость коррозии возрастает в следующих случаях:

  • при контакте разнородных металлов (чем больше разница электродного потенциала между ними, тем выше сила тока электрохимического процесса разрушения);
  • при наличии концентраторов механических напряжений (канавки, пазы, отверстия и другие);
  • при низкой чистоте обработанной поверхности, так как при этом возникают локальные короткозамкнутые гальванические пары;
  • при значительной разнице температуры отдельных частей аппарата (образуются термогальванические элементы);
  • при наличии застойных зон (щели, зазоры);
  • при формировании остаточных напряжений, особенно в сварных соединениях (для их устранения необходимо предусмотреть термическую обработку – отжиг).

Методы оценки

Скорость коррозии - методы оценки

Существует несколько способов оценки скорости разрушения металлов в агрессивных средах:

1. НАЗНАЧЕНИЕ И ОБЩИЕ ПОЛОЖЕНИЯ

Читайте также: