Содержание металлов в древесине

Обновлено: 06.07.2024

На основании «Справочника по древесине» А. М. Боровикова и Б. Н. Уголева составлен определитель пород.

1. Группы древесных пород:

1) годичные слои хорошо заметны на всех разрезах древесины. Сердцевинные лучи не видны. Сосудов нет. Древесина некоторых пород имеет смоляные ходы (хвойные породы);

2) хорошо заметны годичные слои из—за разницы в строении ранней и поздней древесины. В ранней зоне годичных слоев крупные сосуды образуют сплошное кольцо отверстий, хорошо видимое простым глазом. Поздняя зона годичных слоев – плотного строения, имеются только мелкие сосуды. Мелкие сосуды и паренхимные клетки образуют рисунок в виде радиальных полосок, волнистых линий, идущих вдоль границы годичных слоев, отдельных черточек или точек. У большинства пород видны сердцевинные лучи;

3) у большинства пород годичные слои видны плохо. Сосуды на поперечном разрезе совсем не видны простым глазом или если видны, то не образуют сплошного кольца, а равномерно разбросаны по всему годичному слою Поздняя зона годичного слоя не имеет рисунка. У некоторых пород видны сердцевинные лучи – рассеянно—сосудистые лиственные породы;

2. Древесные породы:

1) хвойные породы:

а) смоляные ходы довольно крупные и многочисленные. Годичные слои хорошо видны на всех разрезах. Ядро имеет цвет от розового до буровато—красного. Заболонь широкая, имеет окраску от желтоватого до бледно—розового цвета (сосна обыкновенная). Далее аналогично по остальным хвойным породам;

2) кольцесосудистые лиственные породы:

а) сердцевинные лучи широкие и хорошо видны на всех разрезах. Древесина ядра имеет окраску темно—бурую или желтовато—коричневую. Заболонь узкая, окраска – светло—желтая. На всех разрезах хорошо заметны годичные слои. На поперечном разрезе в поздней древесине видны светлые радиальные пламевидные полоски из мелких сосудов. Древесина твердая. Далее аналогично по другим породам;

3) рассеяно—сосудистые лиственные породы:

а) годичные слои плохо заметны на всех разрезах. Древесина белого цвета с желтоватым или розоватым оттенком. На радиальном разрезе видны сердцевинные лучи в виде узких коротких блестящих темных пятнышек. Часто встречаются сердцевинные повторения, имеющие вид точек или черточек красновато—бурого цвета. Древесина довольно твердая и тяжелая (береза);

б) древесина белая с легким розовым оттенком. Годичные слои слабо заметны. Древесина легкая, мягкая (липа мелколистная);

в) высота сердцевинных лучей на радиальном разрезе около 0,5 мм. Годичные слои видны нечетко на всех разрезах, но лучше всего – на поперечном. Сердцевинные лучи на радиальном разрезе создают характерную рябоватость и сильный блеск. Древесина белая с желтоватым или розоватым оттенком, твердая, тяжелая (клен остролистный);

г) ядра нет. Древесина белая со слабым зеленоватым оттенком. Иногда встречается порок – ложное ядро буроватого цвета. Годичные слои заметны на всех разрезах. Встречаются сердцевинные повторения в виде желтых полосок. Древесина легкая и мягкая (осина).

Используя определитель древесных пород, можно установить вид древесины.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Древесные породы

Древесные породы Разнообразие пород деревьев огромно, и каждая из них имеет свою неповторимую специфику, которую необходимо знать и обязательно учитывать при работе с древесиной.Поэтому прежде, чем начать рассказ о приемах работы с древесиной, стоит дать характеристику

Хвойные породы

Хвойные породы Хвойные породы обладают резким смолянистым запахом из-за смоляных ходов в древесине. Но есть исключения: у ели и тиса нет смоляных ходов.Что касается текстуры древесины хвойных пород, то она сильноволокнистая, что одновременно является и ее недостатком, и

Лиственные породы

Лиственные породы Лиственные породы древесины делятся на твердолиственные и мягколиственные. Древесина таких пород практически не пахнет, запах усиливается только при свежем срезе древесины и ее обработке. Древесина лиственных пород не имеет смоляных ходов. Вместо них

Импортные породы деревьев

Импортные породы деревьев Выше были рассмотрены породы деревьев, которые произрастают у нас. Но в России большой популярностью пользуются и импортные породы, которые чаще всего идут на изготовление мебели и украшений.Красное деревоКрасное дерево произрастает только в

2. Основные хвойные породы

2. Основные хвойные породы К хвойным породам относятся ель, сосна, лиственница, пихта, кедр, тис, а также можжевельник, но он растет в виде кустарников.Ель – безъядровая порода, древесина ее белая со слабым желтоватым или розовым оттенком. Имеет смоляные ходы, но

3. Основные лиственные породы

3. Основные лиственные породы Береза имеет большее распространение в лесах России по сравнению с другими видами. Береза – рассеяно—сосудистая безъядровая порода древесины с желтоватым оттенком. Годичные слои видны плохо. Сердцевинные лучи видны лишь на строго

4. Породы ограниченного применения

4. Породы ограниченного применения С давних пор в степной зоне России, в сельской местности для изготовления простой мебели (стулья, табуреты, детские кроватки), а также различных поделок (скалки, толкушки, пахталки и т. д.) использовались такие древесные породы, как вишня,

5. Экзотические породы

5. Экзотические породы Древесные породы, произрастающие в странах тропического или субтропического климата, относятся к экзотическим породам ограниченного применения. Еще в XVIII в. начали завозить в Россию, в Петербург заготовки этих пород для изготовления мебели,

ЛЕКЦИЯ № 5. Сплавы

ЛЕКЦИЯ № 5. Сплавы 1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот.

ЛЕКЦИЯ № 15. Клеи

ЛЕКЦИЯ № 15. Клеи 1. Классификация клеев и требования к ним В различных отраслях хозяйства широко применяются различные клеевые материалы, которые изготавливаются на основе природных (натуральных) или синтетических клеящих веществ.Природные клеи подразделяются на клеи

ЛЕКЦИЯ № 16. Отделочные материалы

ЛЕКЦИЯ № 16. Отделочные материалы 1. Назначение отделочных материалов. Материалы для подготовки поверхности к отделке Назначение отделочных материалов заключается в защите зданий, различных сооружений и мебели от воздействий внешней среды или для улучшения внешнего

ЛЕКЦИЯ № 17. Полы

ЛЕКЦИЯ № 17. Полы 1. Виды полов Устройство и вид полов при строительстве различных зданий и сооружений определяются строительными нормами и правилами (СНиП). В зависимости от назначения зданий и сооружений полы внутри них – в помещениях могут быть самыми разнообразными:

ЛЕКЦИЯ № 18. Строительные материалы

ЛЕКЦИЯ № 18. Строительные материалы 1. Материалы из природного камня Материалы из природного камня в строительстве применяются с незапамятных времен. Основными и широко используемыми материалами из природного камня являются песок (горный и речной), гравий, мел, каолин,

ЛЕКЦИЯ № 1. Метрология

ЛЕКЦИЯ № 1. Метрология 1. Предмет и задачи метрологии С течением мировой истории человеку приходилось измерять различные вещи, взвешивать продукты, отсчитывать время. Для этой цели понадобилось создать целую систему различных измерений, необходимую для вычисления

ЛЕКЦИЯ № 2. Техническое регулирование

ЛЕКЦИЯ № 2. Техническое регулирование 1. Основные понятия технического регулирования Основным нормативным документом, дающим определение и толкование технического регулирования, является Закон «О техническом регулировании». Исходя из определения, данного в этом

Как и чем разрушают горные породы

Как и чем разрушают горные породы Мы показали, что есть ударный способ бурения и есть вращательный. Они существуют испокон веков и будут преобладать в обозримом будущем. Правда, в последнее время уже появились принципиально новые методы бурения скважин, такие как

Химический состав древесины

водорода — 6,3%. Из этих химических элементов образованы сложные органические вещества, входящие в состав клеточной ткани древесины, целлюлоза, лигнин, гемицеллюлоза, которые составляют 90-95% массы абсолютно сухой древесины. Остальные 5-10% составляют экстрактивные вещества, т.е. извлекаемые из древесины различными растворителями. Главные из них — дубильные вещества и смолы. Кроме того, в древесине содержится 0,2-1,7% массы неорганических веществ, получаемых из золы после сжигания древесины. Это соли кальция, калия, натрия, магния. Кора и листья дают больше золы, чем стволовая древесина .

Целлюлозу из древесины можно получить, отделив ее от лигнина и гемицеллюлозы. Отделение целлюлозы от этих веществ основано на ее высокой стойкости к химическим соединениям и в частности к растворам кислот и щелочей, в которых менее стойкие лигнин и гемицеллюлоза переходят в раствор. Древесную щепу варят в котлах в кислотной (сульфитный способ) или щелочной (сульфатный способ) среде при высокой (135-175°С) температуре и высоком (0,5МПа) давлении. После нескольких часов варки целлюлозу промывают, очищают, отбеливают. Целлюлоза исходный материал для производства бумаги, ваты, искусственных волокон (вискозный шелк, штапель), искусственных мехов и кожи, фотои кинопленок, лаков, целлофана, пластмасс, пороха и других материалов.

Гемицеллюлозу и лигнин, перешедшие в раствор при варке, после дальнейшей химической и гидролизной переработки используют для получения этилового спирта, кормовых дрожжей, углекислоты, сухого льда, ванилина, фурфурола. Этиловый спирт является основным сырьем для получения искусственного каучука, уксуса, эфира.

Смола находится в стволе хвойных пород, имеет слабую связь с тканью древесины и сравнительно легко извлекается. Извлечение смолы выполняют либо подсочкой растущего дерева, либо экстракцией сильно осмоленной древесины. При подсочке делают поверхностные раны на стволе живого дерева, из которых вытекает смола живица. В результате переработки живицы получают канифоль и скипидар. При экстракционной переработке древесины смолистые вещества сначала растворяют в бензине, а затем полученный экстракт разгоняют на канифоль и скипидар.

Канифоль используется для получения мыла, изготовления лаков, красок, линолеума, эфиров, а также применяют во многих отраслях (кабельной, кожевенной, нефтяной, резиновой) промышленности. Скипидар используют в медицине, применяют как растворитель для лаков и красок, а также как сырье для производства других продуктов.

Дубильные вещества танниды получают из измельченной древесины и коры экстрагированием горячей водой. Их используют в кожевенной промышленности для дубления кож, придавая ей гибкость, мягкость стойкость к гниению и набуханию. Танниды растворяются в спирте и воде; при соединении с солями различных металлов они могут образовывать красители различных оттенков от светло-желтых до иссиня-черных, применяемых для глубокого крашения древесины.

Свойства древесины

К свойствам, характеризующим внешний вид древесины, относят цвет, блеск, текстуру и запах.

Цвem древесины как определенное зрительное ощущение зависит спектрального состава отраженного светового потока. Цвет различных древесных пород изменяется от белого до черного со всевозможными оттенками и определяется многими факторами, среди которых особое значение имеет область произрастания дерева. Чем ближе к экватору, тем ярче и интенсивнее окраска даже у деревьев одной породы. Например, заболонь становится светлее, а ядро темнее.

Окраску древесине придают экстрактивные, дубильные вещества и смолы. Молодые деревья имеют более светлую окраску, чем спелые. Это свойство существенно изменяют развивающиеся в материале грибы. Цвет древесины особо важное значение имеет при изготовлении мебели и отделке интерьеров.

Блеск древесины —- способность направленно отражать световой поток. Лучшим блеском обладают гладкие плотные материалы, древесина же характеризуется пористым строением и поэтому слабым матовым блеском. Более выраженный блеск имеют сердцевинные луч"и на радиальных разрезах, так как их клетки плотно прилегают друг к другу. Выраженным блеском обладают бархат амурский и осина.

Текстура — рисунок, образующийся на поверхности древесины при перерезании анатомических элементов. Текстуру формируют годичные слои с разной окраской, сердцевинные лучи, сосуды, капы или наросты. Капы — это почки, по разным причинам не давшие веток, а заросшие древесиной. Высоко ценится как отделочный материал древесина клена с капами, при перерезании которых образуется рисунок «птичий глаз». Текстура древесины, как и цвет, имеет большое значение при выборе материалов для производства мебели, отделки интерьеров и изготовления художественных поделок.

Более или менее выраженный специфический запах древесине придают находящиеся в ней эфирные масла и смолы. Часто запах служит признаком определения породы. Так, характерным запахом обладают сандаловое, розовое, земляничное дерево, хвойные породы и др. Некоторые деревья выделяют ядовитые вещества с неприятным запахом, раздражающие слизистые оболочки и кожу. Эфирное масло кедра отпугивает моль, поэтому шерстяную одежду хорошо хранить в шкафах из массива кедра.

Влажность — показатель содержания воды в древесине. В древесине может содержаться три вида влаги: химически связанная, связанная (гигроскопическая) и свободная.

Свободная влага содержится в полостях клеток и межклеточных пространствах, она не оказывает влияния на прочность и изменение размеров древесины.

Связанная влага заполняет субмикрокапилляры в клеточных стенках. Максимальное содержание связанной влаги в клеточных стенках называется пределом гигроскопичности или пределом насыщения. Влажность древесины, соответствующая пределу гигроскопичности, мало зависит от породы и в среднем принимается при температуре 20 °С равной 30%. При отклонении от температуры 20 °С величина влажности, соответствующая пределу гигроскопичности, изменяется. Например, в мерзлой древесине (температура —20 °С) или нагретой до температуры 100 °С предел гигроскопичности W соответствует 20%.

Изменение содержания связанной влаги ведет к изменению практически всех свойств древесины (прочности, усушки, разбухания).

Химически связанная влага входит в состав лигноцеллюлозно-го комплекса и выделяется только при химической переработке древесины.

Связанная влага удаляется из древесины труднее, чем свободная. Например, 50%-ная влажность означает, что 30% влаги — связанная вода, 20% — свободная. В пределах от 0 до 30% влажности происходит увеличение объема древесины, дальнейшее увеличение содержания влаги на размеры не влияет.

При длительной выдержке материала в воде, когда влага заполняет в нем практически все пустоты, древесина будет иметь максимальную влажность (у каждой породы она своя). Так, максимальная влажность лиственницы — 123%, сосны — 178, ели — 203, кедра — 208, пихты — 250, граба — 96, дуба — 119, березы — 131, осины — 180, тополя — 198%.

Влажность древесины измеряют прямыми и косвенными методами. Прямые методы основаны на удалении воды из древесины, в частности, путем высушивания материала в сушильных шкафах. Этот метод длителен (6—8 ч), но дает высокую точность — до 0,1%. Распространенным экспресс-методом определения влажности служит измерение электропроводности древесины, зависящей от ее влажности, электровлагомером. Таким образом определяют влажность в пределах 7—60%.

Определяют абсолютную и относительную влажность древесины в процентах по формулам

Абсолютная влажность может быть более 100%, ее значение принимается во всех расчетах, связанных с характеристикой древесины. Относительная влажность всегда меньше 100%, она имеет значение при продаже дров.

Под усушкой древесины понимается уменьшение линейных размеров и объема древесины в результате удаления связанной влаги, заполняющей субмикрокапилляры. Поэтому при распиловке круглых лесоматериалов на пиломатериалы обязательно делают прибавку размеров на усушку. Усушка зависит от следующих факторов:

породы древесины (у разных пород она различна в связи с неодинаковым строением древесины);

плотности древесины (при большей плотности усушка больше);

количества удаленной влаги; при испарении максимального количества связанной влаги (от 30% до 0) происходит полная усушка, части влаги — частичная;

структурного направления; усушка по разным направлениям неодинакова; любая клетка в поперечном направлении усыхает больше, чем вдоль оси; это связано с тем, что размеры клетки в радиальном и тангентальном направлениях изменяются больше, чем вдоль волокон.

Усушка в тангентальном направлении в 1,5—2 раза больше, чем в радиальном. В среднем полная линейная усушка в тангентальном направлении составляет 6—10%, в радиальном — 3—5%, вдоль волокон — 0,1—0,3% и объемная — 12—15%. Рассчитывают усушку (Y) по формуле

Аналогично рассчитываются усушка радиальная и объемная.

Существует коэффициент усушки, который показывает величину усушки древесины при изменении влажности на 1%. Вследствие неравномерности усушки в разных структурных направлениях при резком изменении влажности древесины (несоблюдении режимов сушки) появляются трещины и коробление.

Разбухание древесины — явление, обратное усушке.

В любом деревообрабатывающем производстве и строительстве древесина подвергается сушке, в результате которой резко улучшаются многие свойства этого материала. С физической стороны процесс сушки выражается в воздействии на сырую древесину пара, нагретого сухого и влажного воздуха, токов высокой частоты и других факторов, приводящих в конечном результате к снижению содержания свободной и связанной влаги.

Существует несколько способов сушки. Наиболее распространены атмосферная (когда древесина высыхает в штабелях на открытом воздухе) и камерная сушка (когда древесина с целью ускорения процесса удаления влаги высушивается в особых камерах при температуре более высокой, чем температура окружающего воздуха). Правильно (при соответствующих режимах) проведенная камерная сушка дает древесину, вполне равноценную материалу, получаемому в результате атмосферной сушки, происходящей при наиболее благоприятных условиях. Однако если высушивать древесину в камере слишком быстро и при высокой температуре, это может привести не только к сильному растрескиванию и значительному внутреннему напряжениею, но и к нарушению строения и химическому изменению клеточных оболочек, а также механических свойств древесины.

Сушка древесины в поле токов высокой частоты не оказывает заметного влияния на физико-механические свойства материала.

Одна из основных характеристик древесины — плотность, она учитывается при выборе инструмента для обработки древесины, а также выборе грузоподъемности транспортных средств для перевозки лесо- и пиломатериалов. Характеризуется плотность массой в единице объема и обозначается буквой р, имеет размерность кг/м 3 или г/см 3 (1 кг/м 3 = 1000 г/см 3 ). Химический состав органических веществ, образующих клеточные стенки древесины разных пород, практически одинаков, поэтому плотность древесинного вещества (или плотность клеточных стенок) у всех пород равняется 1530 кг/м 3 . Вследствие пористого строения плотность древесины меньше плотности древесинного вещества.

По плотности древесины при 12%-ной влажности породы делят на три группы: малой плотности — до 540 кг/м 3 (сосна, ель, кедр, пихта, ольха, осина, липа, тополь, ива), средней плотности — 550—740 кг/м 3 (груша, дуб, клен, ясень, бук, вяз, береза, орех) и высокой плотности — 750 кг/м 3 и более (граб, белая акация).

Среди иноземных пород встречаются древесные породы, плотность древесины которых около 100 кг/м 3 , например бальза, и с очень высокой плотностью — до 1300 кг/м 3 (бакаут).

Между плотностью и влажностью существует прямая связь. С увеличением влажности древесины от 0 до 30% (связанная влага) плотность повышается незначительно, так как увеличиваются масса и объем (происходит разбухание), а может и несколько понижаться, если плотность больше 1000 кг/м 3 . При повышении влажности более чем на 30% плотность увеличивается значительнее.

На плотность древесины хвойных и лиственных кольцесосуди-стых пород оказывает влияние содержание поздней древесины в годичном слое. Так как плотность поздней древесины в 2,5 раза больше, чем ранней, следовательно, чем ее больше, тем выше плотность материала.

Плотность древесины может оцениваться несколькими показателями: плотностью в абсолютно сухом состоянии (р0), во влажном (pw), при стандартной (нормированной) влажности (р!2) и базисной плотностью (рбаз). Рассчитывают значение плотности с точностью до 5 кг/м 3 .

Плотность влажной древесины (pw) характеризуется отношением массы влажной древесины (mw) к объему при той же влажности (Vw) и рассчитывается по формуле

Плотность древесины в абсолютно сухом состоянии (ро) характеризуется отношением массы абсолютно сухой древесины (то) к ее объему в абсолютно сухом состоянии (Ко) и находится по формуле

Увеличение содержания воды в древесине ведет к увеличению плотности материала. Поэтому для возможности сравнения показателей плотности принято определять их при стандартной влажности (W= 12%).

Прочность древесины характеризуется пределом прочности при растяжении, сжатии и изгибе, который определяют на образцах стандартной формы и размеров на специальных машинах. Наиболее прочная древесина сухая, здоровая, без дефектов, с большой объемной массой, у одной и той же породы прочность выше вдоль волокон.

Прочность древесины при изгибе уступает прочности при растяжении вдоль волокон, но выше прочности при сжатии вдоль волокон и находится в пределах от 56 до 113,5 МПа. Поэтому древесину широко используют в мебельном производстве в качестве опорных

элементов столов, стульев, шкафов и других видов изделий. Для хвойных пород прочность при изгибе в тангентальном направлении на 10—12% выше, чем в радиальном.

Прочность при скалывании вдоль волокон невелика и составляет примерно 20% прочности при сжатии вдоль волокон.

Прочность на скалывание поперек волокон в 2 раза ниже прочности вдоль волокон, что учитывают при изготовления шкантов и шпунтов, необходимых для соединения отдельных деталей мебели.

Способность древесины к загибу учитывают при изготовлении гнутой мебели, когда заготовке необходимо придать форму шаблона без разрушения волокон древесины и снижения механической прочности.

Прочность древесины при статическом изгибе по величине занимает промежуточное положение между прочностью при растяжении и сжатии вдоль волокон и может быть для разных пород принята в среднем около 1000 кг/см 2 . Если прочность при сжатии вдоль волокон принять за единицу, прочность при статическом изгибе будет выше примерно в 2 раза, а при растяжении вдоль волокон — в 2,6 раза. Предел пропорциональности при статическом изгибе составляет в среднем 0,7 предела прочности.

Древесина — гигроскопичный материал, что приводит к изменению линейных размеров, повышению массы, уменьшению прочности изделий.

Она легко отдает влагу, поэтому ей присущи усушка и коробление. Из-за неравномерного удаления влаги возникают напряжения, которые вызывают растрескивание материала.

Каждому сочетанию температуры и относительной влажности воздуха соответствует так называемая устойчивая влажность древесины, практически одинаковая для всех пород.

Способность древесины к деформированию значительно выше, если она находится в нагретом и влажном состоянии. Технологическая операция гнутья древесины основана на ее способности сравнительно легко деформироваться при действии изгибающих усилий.

Лучшей способностью к загибу характеризуются кольцесосу-дистые (дуб, ясень) и некоторые рассеяно-сосудистые породы с повышенной пластичностью (бук). Способность древесины к загибу повышается по мере увеличения ее влажности до точки насыщения, а также температуры. С повышением температуры происходит размягчение веществ, склеивающих волокна древесины, повышается ее пластичность, поэтому древесину перед изгибанием пропаривают. После высыхания пропаренный материал хорошо сохраняет свою форму. Древесина ели, сосны и других пород непригодна для изготовления гнутых изделий.

Твердость древесины характеризует ее способность сопротивляться внедрению тела определенной формы. В зависимости от скорости нагружения древесины при испытаниях различают статическую и ударную твердость.

Статическая твердость торцевой поверхности выше, чем боковых: для хвойной пород в среднем на 40%, а для лиственных на 30%. У большинства пород различия между твердостью радиальной и тангенциальной поверхности практически нет. Исключение составляют породы с хорошо развитыми сердцевинными лучами (дуб, бук, ильм), у которых твердость радиальной поверхности на 5—10% выше твердости тангенциальной поверхности.

Древесину отечественных пород по твердости торцевой поверхности при 12%-ной влажности можно подразделить на три группы:

мягкую (твердость — 400 кгс/см 2 и менее) — сосна, ель, пихта сибирская, кедр, осина, тополь, липа, ольха;

твердую (401—800 кгс/см 2 ) — лиственница, груша, клен, дуб, бук, вяз, береза, ясень;

очень твердую (более 800 кгс/см 2 ) — граб, акация белая, кизил, самшит, железное дерево, тис, фисташка, береза железная.

Износостойкость древесины характеризует способность ее поверхностных слоев противостоять износу, т.е. постепенному разрушению под действием механических факторов в процессе трения.

Истирание зависит от направления по отношению к волокнам (износ с боковой поверхности значительно больше, чем с торца), плотности и твердости (с повышением этих показателей износ уменьшается), а также от влажности, с увеличением которой износ возрастает.

Сопротивление древесины выдергиванию гвоздей зависит прежде всего от направления. Усилие, необходимое для выдергивания гвоздя, забитого в торец образцов из древесины дуба, сосны, осины, ольхи и ели, на 10—50% меньше усилия, прилагаемого к гвоздю, забитому поперек волокон; сопротивление выдергиванию гвоздей, забитых в радиальном и тангенциальном направлениях, практически одинаково.

Способность удерживать гвозди и шурупы зависит также от породы, плотности и влажности древесины. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается; так, вдавливание и выдергивание гвоздей из древесины граба (плотность — 730 кг/м 3 ) требует усилий примерно в 4 раза больших, чем для древесины сосны (440 кг/м 3 ).

Чем выше влажность древесины, тем легче вбивать гвозди. При высыхании способность древесины удерживать гвозди снижается, так как упругие деформации переходят в остаточные, и трение, удерживающее гвоздь, становится меньше. Во влажной древесине железные гвозди ржавеют, и по мере их коррозии сила, удерживающая их, также ослабевает.

Усилия, необходимые для выдергивания шурупов, при прочих равных условиях больше, чем гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву. Для шурупов одинакового с гвоздями диаметра, но вдвое меньшей длины, это усилие оказывается в 2 раза больше.

Химическая стойкость древесины. Древесина под действием кислот и щелочей постепенно разрушается. Она обладает большей стойкостью по отношению к щелочам и меньшей — к кислотам. С увеличением концентрации щелочей и кислот химическая стойкость древесины снижается. Большей стойкостью характеризуется древесина хвойных пород, и прежде всего ее ядровая часть, меньшей — заболонная. Древесина лиственных пород отличается от хвойных меньшей стойкостью к кислотам, в первую очередь к минеральным. Их воздействие на древесину сопровождается изменением ее цвета — побурением, иногда происходит полное обугливание.

Свойства древесины, длительно находившейся в воде, практически не изменяются. Однако цвет древесины дуба вследствие взаимодействия солей железа с танидами изменяется от серовато-бурого до светло-коричневого и черного.

Биологическую стойкость древесины повышают путем обработки ее специальными химическими веществами — антисептиками. К ним относятся органические и минеральные вещества, которые имеют высокую токсичность к грибам и насекомым и сохраняют ее в течение длительного времени, безвредны для древесины, человека и животных, легко проникают в кору, недороги и просты в применении.

Антисептики подразделяются на водорастворимые и нерастворимые в воде (маслянистые). К водорастворимым относятся фтористый натрий, кремнефтористый натрий, хлористый цинк, кремнефтористый алюминий, препарат ГР-48 и др. Маслянистые антисептики представляют собой продукты сухой перегонки каменного угля, торфа и древесины, а также креозотовое, антраценовое, сланцевое масла и др.

4. Химический состав древесины

Химический состав древесины зависит частично от ее состояния. Древесина свежесрубленных деревьев содержит много воды. Но в абсолютно сухом состоянии древесина состоит из органических веществ, а неорганическая часть составляет всего лишь от 0,2 до 1,7 %. При сгорании древесины неорганическая часть остается в виде золы, которая содержит калий, натрий, магний, кальций и в небольших количествах – фосфор и другие элементы.

Органическая часть древесины всех пород имеет примерно одинаковый элементный состав. Абсолютно сухая древесина содержит в среднем 49–50 % углерода, 43–44 % кислорода, около 6 % водорода и 0,1–0,3 % азота. Лигнин, целлюлоза, ге—мицеллюлоза, экстрактивные вещества – смола, камедь, жиры, танниды, пектины и другие – составляют органическую часть древесины. Гемицеллюлоза имеет в своем составе пен—тозаны и генксозаны. У хвойных пород в органической части больше целлюлозы, а у лиственных – пентозанов. Целлюлоза является главной составляющей клеточных стенок растений, причем она же обеспечивает механическую прочность и эластичность растительных тканей. Как химическое соединение целлюлоза представляет собой полиатомный спирт. При обработке целлюлозы кислотами происходит ее гидролиз с образованием простых и сложных эфиров, которые используют для производства пленок, лаков, пластмасс и др. Кроме того, при гидролизе целлюлозы образуются сахара, из которых получают этиловый спирт путем их сбраживания. Древесная целлюлоза является ценным сырьем для выработки бумаги Другой компонент органической части древесины – геми—целлюлоза – представляет собой полисахариды высших растений, которые входят в состав клеточной стенки. В процессе переработки целлюлозы получается лигнин – аморфное полимерное вещество желто—коричневого цвета. Наибольшее количество лигнина – до 50 % – образуется при переработке древесины хвойных пород, а из древесины лиственных пород выход его составляет 20–30 %.

Очень ценные продукты получают при пиролизе древесины – сухой перегонке без доступа воздуха при температуре до 550 °C – древесный уголь, жижку и газообразные продукты. Древесный уголь используют при выплавке цветных металлов, в производстве электродов, медицине, в качестве сорбента для очистки сточных вод, промышленных отходов и для других целей. Из жижки получают такие ценные продукты, как антиокислитель бензина, антисептики – креозот, фенолы для производства пластмасс и пр.

В органической части древесины хвойных пород имеются смолы, которые содержат терпены и смоляные кислоты. Терпены являются основным сырьем для получения скипидара. Живица, выделяемая хвойным деревом, служит в качестве сырья для получения канифоли.

В процессе переработки древесины получают экстрактивные вещества, в том числе дубильные, применяемые для выделки кож – дубления. Основную часть дубильных веществ составляют танниды – производные многоатомных фенолов, которые при обработке кож взаимодействуют с их белковыми веществами и образуют нерастворимые соединения. В результате кожи приобретают эластичность, стойкость к загниванию и не набухают в воде.

Химический снаряд

Химический снаряд «С утра этого ясного весеннего дня было тепло, – легкий юго-западный ветер чуть шевелил ветки деревьев.Прикрытая спереди лесом, в мелкой поросли притаилась батарея. Замаскированные орудия сами казались кустами.Ровно в шесть часов на батарее услышали

3. Плотность древесины. Тепловые свойства древесины

3. Плотность древесины. Тепловые свойства древесины Плотность древесины – это масса единицы объема материала, выражающаяся в г/см 3 или кг/м 3. Существует несколько показателей плотности древесины, которые зависят от влажности. Плотность древесного вещества – это масса

45. Химический потенциал

45. Химический потенциал Химической энергией называется такая энергия, которая образуется в результате химических взаимодействий и входит в состав внутренней энергии вещества. Химические реакции делятся на экзотермические (проходящие с выделением энергии) и

НЕПОКОРНЫЙ СОСТАВ

НЕПОКОРНЫЙ СОСТАВ Получилось нечаянно взрывчатое вещество.В такую тесную смесь перемешалось горючее с кислородом, что сгорела она в один миг — какое там! — в одну тридцатитысячную мига. В тридцать тысяч раз быстрее, чем успеет мигнуть человек. В одну стотысячную секунды

Химический шифр наследственности

Химический шифр наследственности Если вам когда-нибудь скажут, что у кошки вместо котят родились щенята, а у лошади — слоненок, вы улыбнетесь и, конечно, не поверите такому чуду. И будете правы. Жизнь приучила нас к тому, что орел — от орла, а не от страуса. Ио не часто мы

14. ПОДВИЖНЫЙ СОСТАВ АВТОМОБИЛЬНОГО ТРАНСПОРТА

14. ПОДВИЖНЫЙ СОСТАВ АВТОМОБИЛЬНОГО ТРАНСПОРТА В соответствии с действующими нормами амортизационных отчислений для подвижного состава автомобильного транспорта (далее – автомобилей) установлены следующие сроки полезного использования:от 3 до 5 лет: грузовым

§ 3.8 Состав и масса элементарных частиц

§ 3.8 Состав и масса элементарных частиц Последовательная теория элементарных частиц, которая предсказывала бы возможные значения масс элементарных частиц и другие их внутренние характеристики, ещё не создана. Советский Энциклопедический Словарь В настоящее время

12. ВОДОПОДГОТОВКА И ВОДНО-ХИМИЧЕСКИЙ РЕЖИМ ТЕПЛОВЫХ ЭНЕРГОУСТАНОВОК И СЕТЕЙ

12. ВОДОПОДГОТОВКА И ВОДНО-ХИМИЧЕСКИЙ РЕЖИМ ТЕПЛОВЫХ ЭНЕРГОУСТАНОВОК И СЕТЕЙ Вопрос 413. Какой персонал осуществляет организацию водно-химического режима работы оборудования и его контроль?Ответ. Осуществляет подготовленный персонал химической лаборатории или

Состав оборудования

Состав оборудования В составе систем дистанционного запуска (рис. 4.2) обязательно присутствуют силовые реле, коммутирующие токи силой в 30–40 А. Эти реле могут быть встроены в корпус центрального блока системы или быть внешними, скомпонованными в единую группу. С их

12. ВОДОПОДГОТОВКА И ВОДНО-ХИМИЧЕСКИЙ РЕЖИМ ТЕПЛОВЫХ ЭНЕРГОУСТАНОВОК И СЕТЕЙ 12.1. Организовать водно-химический режим с целью обеспечения надежной работы тепловых энергоустановок, трубопроводов и другого оборудования без повреждения и снижения экономичности, вызванных

1.3. Состав документа

1.3. Состав документа 1.3.1. Документ (часть документа) включает:титульный лист;заглавный лист;содержание;основной текст;приложения;список литературы;лист регистрации изменений.1.3.2. Необходимость выполнения титульного листа зависит от уровня согласования (утверждения)

49. Химический состав, методы получения порошков, свойства и методы их контроля

49. Химический состав, методы получения порошков, свойства и методы их контроля Порошковые материалы – материалы, получаемые в результате прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме

5 СОСТАВ И КЛАССИФИКАЦИЯ СТАНДАРТОВ ЕСКД

5 СОСТАВ И КЛАССИФИКАЦИЯ СТАНДАРТОВ ЕСКД 5.1 Межгосударственные стандарты ЕСКД распределяются по классификационным группировкам, приведенным в таблице 1. Номер группы Наименование классификационной группы стандартов 0 Общие положения 1 Основные положения 2

Химический состав древесины

Строение древесины

Строение древесины можно рассматривать как с физической, так и с химической точки зрения.

Основными составляющими древесины являются целлюлоза, гемицеллюлоза и лигнин, которые в свою очередь состоят из химических элементов:

  • углерода — C
  • кислорода — O
  • водорода — H
  • азота — N

Взаимодействуя между собой целлюлоза, гемицеллюлоза и лигнин, являются цементирующими веществами клеточных стенок, и определяют емкость стенок, их механическую прочность и эластичность. Что в конечном итоге создает конкретные свойства древесины. К дополнительным компонентам древесины относят эфирные масла, смолы, крахмал, жиры, дубильные вещества и даже минеральные вещества.

Состав древесины

Химический состав.

Целлюлоза: вещество клеточной стенки, придающее дереву прочность на растяжение.нитевидные, длинно цепочечные макромолекулы в древесине содержится около 40-55%
Гемицеллюлоза: вещество являющееся пластификатором в древесине, придает дереву пластичность, прочность при скреплении клеток. В зимний период времени является питательным веществом для дерева.короткая цепь разветвленных макромолекул в древесине содержится около 15-35%
Лигнин: Вещество являющееся наполнителем в древесине. Придает цвет древесине, создает герметичность клеточных стенок. Придает древесине прочность на сжатие и на разрыв.При повышении давления и температуры, происходит химическая реакция лигнина и он выступает в качестве природного клея (так делают пеллеты)трехмерная макромолекула, содержание около 20-30%
Пектин цементирующее вещество, находящееся между стенками клетоктрехмерная макромолекула
Другие ингредиенты: эфирные масла и смолы, крахмал и жиры, танины и фенольные вещества, минералыНеорганические и органические ингредиенты, которые влияют на биологические, физические и химические свойства древесины содержание около 1-7%

Целлюлоза представляет собой полисахарид с длинной цепью молекул глюкозы. Целлюлоза образуется на основе водородных связей в элементарные волокна. Около 1000 — 10000 молекул глюкозы образуют длинную нитевидную, неразветвленную молекулу (поз. 5).

Такую молекулу часто называют полимером или макромолекулой (поз. 5). Параллельные, соседние молекулы цепи называют мицеллы (поз. 4). От 5 до 20 фибрил образуют микрофибриллу (поз. 2). В свою очередь микрофибриллы (поз. 2) образуют макрофибриллы (поз. 1). Между волокнами может храниться вода, лигнин и гемицеллюлоза.

Строение целлюлозы

Лигнин представляет собой трехмерное, ароматическое соединение углеводорода. Он в основоном расположен в стенках древесных растений.

Читайте также: