Содержание металлов в угле

Обновлено: 18.05.2024

Доктор геолого-минералогических наук Л. КИЗИЛЬШТЕЙН (г. Ростов-на-Дону).

Уголь — один из древнейших видов топлива, вплоть до середины XX века был основным источником энергии. И сейчас, несмотря на активное использование нефти, газа, урана, доля угля в мировом производстве электроэнергии составляет около 40% (в Китае — 78%, в США — 50%, в России — 19%). Однако уголь не сгорает бесследно. В процессе его сжигания образуется не только энергия, но и отходы.

Внесём ясность: речь пойдёт о том, что остаётся на земле после того, как уголь использован по своему главному назначению — для генерации тепловой и электрической энергии. Угольная энергетика оставляет очень заметный след и в атмосфере, но это отдельная тема.

Уголь состоит из органического и минерального вещества. Богатая углеродом органическая составляющая — носитель тех полезных свойств, благодаря которым уголь относится к полезным ископаемым. А вот минеральные компоненты только ухудшают качество угля как топлива. Ведь чем больше минерального вещества, тем, естественно, меньше органического и, следовательно, тем меньше теплотворная способность. Если зольность — масса минерального остатка после сжигания угля, выраженная в процентах к массе сожжённого, — больше определённого предела, уголь становится уже «бесполезным ископаемым», непригодным для промышленного использования. Пределы зольности для разных направлений использования углей и для углей разных угольных месторождений различны. Для энергетики это обычно не более 40—45%.

Некоторые минеральные компоненты снижают качество угля даже при допустимой зольности. Примеров можно привести много. Содержащийся в углях минерал пирит (FeS2), разлагаясь при высоких температурах, образует газообразный оксид серы, при взаимодействии которого с парами воды возникает сернистая кислота, разрушаю2щая оборудование тепловых электростанций. Та часть оксидов серы, которая с дымовыми газами выбрасывается в атмосферу, становится одним из самых серьёзных загрязнителей природной среды. Карбонаты кальция влияют на температуру плавления золы и шлака, что приходится учитывать при конструировании котлов. Всё это далеко не полный перечень «негативных» свойств минеральных компонентов углей. Остановимся на одном из них.

При сжигании углей минеральные компоненты преобразуются в золу и шлак, которые складируются как отходы энергетического производства в золоотвалах. Накопленная к настоящему времени масса золоотвалов огромна. По оценкам на конец 1990-х годов, на золоотвалах угольных теплоэлектростанций страны было складировано более 1,5 млрд т золы и шлака, а общая площадь земель, занятых золоотвалами, составляла многие десятки тысяч гектаров. По приблизительным подсчетам, на российских теплоэлектростанциях ежегодно образуется около 30 млн т золы и шлака. Если посмотреть на эти рукотворные горы минерального материала с позиций экологии, то картина представится весьма тревожная. Несмотря на обычно принимаемые меры, золоотвалы пылят со всеми вытекающими из этого последствиями для населения и природной среды. Просачивающиеся сквозь них атмосферные осадки и технические воды растворяют минеральные соединения, загрязняя подземные воды.

Золоотвалы угольных теплоэлектростанций — классический пример того, что геологи называют техногенным месторождением. Это скопления минерального вещества на поверхности земли, образовавшиеся в результате переработки полезных ископаемых (в нашем случае — сжигания угля) и пригодные по количеству и качеству для экономически эффективного промышленного применения. Жизнь сделала необходимым использование ископаемого угля как источника энергии, в результате образовались техногенные месторождения на основе отходов. Посмотрим теперь, как наука рекомендует использовать эти отходы.

Процесс сжигания угля на теплоэлектростанциях идёт при высоких температурах — от 1500 до 1800°С в зависимости от качества угля и способа сжигания. При этих температурах минеральные компоненты углей распадаются или плавятся. В состав золы и шлака входят зёрна кварца и глинистых минералов, частицы стекловидного материала, сходного с вулканическим стеклом, частицы новообразованных минералов — муллита, магнетита, ферросилиция и других. Присутствуют и частицы несгоревшего угля; их особенно много при сжигании антрацита.

С точки зрения химического состава главный компонент золы и шлака — оксид кремния SiO (45—60%), далее идут оксид алюминия Al2O3 (15—25%), оксиды железа Fe2O3 (5—15%), оксид кальция СаО (1,5—4,5%), оксид калия К2О (2,0—4,5%) и некоторые другие оксиды, содержание которых обычно не превышает одного процента.

Зола — мелкозернистый материал. Примерно треть зёрен имеет размеры от 1 до 5 мм, остальные — десятые доли миллиметра, в том числе примерно 20% — сотые доли. Значительная часть зёрен имеет форму шариков, которые образуются при остывании капель расплава во взвешенном состоянии в дымовых газах. Характеристики золы различны на разных теплоэлектростанциях, поскольку зависят от особенностей состава минеральных компонентов углей, способа подготовки топлива к сжиганию, технологии сжигания, системы очистки дымовых газов от золы и способа транспортировки золы в золоотвалы.

Золоотвалы угольных теплоэлектростанций могут считаться месторождениями в том случае, если они или содержащиеся в них компоненты пригодны для экономически целесообразного и экологически безопасного промышленного использования. Материал золоотвалов («полезное ископаемое») по всем этим характеристикам должен не уступать традиционно используемому сырью, а его разработка — оправдывать капиталовложения на организацию добычи. Для изготовления каких материалов и изделий может, при выполнении указанных условий, использоваться золошлаковый материал?

Прежде всего, золошлаковые материалы служат заменой песка, применяемого в качестве заполнителя бетонов и строительных растворов. При достаточно высоком содержании извести их можно использовать вместо цемента. По масштабам возможного применения бетоны — главное направление, которое может решить проблему ликвидации золоотвалов путем их полной утилизации. Это подтверждает зарубежный опыт.

Золу и шлак можно использовать как минеральные добавки к глине при производстве кирпича, керамической плитки, черепицы, дренажных труб.

Из шлака можно получать пористые заполнители. Для этого шлаковый материал подвергают обжигу при температурах 1050—1250°С, при которых гранулы шлака вспучиваются. Пористые заполнители являются обязательными компонентами при производстве «легких» бетонов (то есть обладающих меньшей плотностью), а также используются для тепло- и звукоизоляции.

Строительные материалы — наиболее очевидное, но далеко не единственное направление в утилизации золоотвалов. Зола и шлак могут стать ценным источником металлов. Металлы находятся в угле в составе различных минералов и металлоорганических соединений. При сжигании углей значительная их часть переходит в золу. Разработаны технологии извлечения из золошлаковых материалов оксидов алюминия как сырья для последующего получения металлического алюминия.

Железо в углях содержится главным образом в составе минералов пирита (FeS2) и сидерита (FeCO3). Значительное его количество находится в форме железоорганических соединений. При сжигании углей происходит термохимическое преобразование всех этих соединений в минерал магнетит (Fe3O4). Находясь в расплавленном, распылённом и взвешенном в струе дымовых газов состоянии, капли магнетита приобретают форму шариков. Размеры магнетитовых шариков колеблются от 20 до 100 мкм. Они магнитны (магнетит — ферромагнетик). Их содержание в золе от 3 до 16%, а ежегодное «производство», по ориентировочным подсчетам, для теплоэлектростанций Российской Федерации составляет десятки тысяч тонн. На технологии извлечения магнетитовых микрошариков из золы угольных электростанций выданы патенты. Возможные направления использования магнетитовых микрошариков — так называемое тяжёлосредное обогащение полезных ископаемых, производство красителей, наполнитель «тяжёлых» бетонов, способных экранировать электромагнитные излучения, порошковая металлургия, природно-легированные концентраты железной руды.

При дефиците воздуха и наличии несгоревших частиц угля в расплавленном шлаке образуется ферросилиций — сплав железа с кремнием. Соотношение между Fe и Si непостоянно, и поэтому химическая формула соединения записывается обычно FenSim. Гранулы ферросилиция имеют округлую оплавленную неправильную форму; размеры — от единиц до десятков миллиметров. В заnmвисимости от соотношения железа и кремния плотность ферросилиция колеблется от 5500 до 7000 кг/м 3 (в два раза выше, чем у магнетита). Это сильный ферромагнетик. «Производство» ферросилиция в составе золошлаковых материалов, например, на Новочеркасской ГРЭС составляет более 2 тыс. т/год.

Ферросилиций применяют при выплавке чугуна и стали. Его специально производят для этих целей, однако технологический процесс (электротермическая плавка железа и кремния) весьма энергоёмок. Поэтому разработаны технологии, позволяющие заменить промышленный ферросилиций извлекаемым из золошлаковых материалов. Ферросилиций обладает очень высокой коррозионной стойкостью в среде кислот и щелочей, поэтому применяется при изготовлении деталей аппаратуры, работающей в агрессивных средах. Обладая высокой плотностью, ферросилиций, как и магнетит, может использоваться при обогащении полезных ископаемых, в составе «тяжелых» бетонов, защищающих от электромагнитного и радиоактивного излучений, а также в порошковой металлургии.

Из золы углей в промышленных масштабах извлекаются германий и уран. Считается перспективным извлечение галлия, свинца, цинка, молибдена, селена, золота, серебра, рения, редких земель.

Самые оригинальные и, пожалуй, самые ценные компоненты золы — алюмосиликатные полые микросферы (АСПМ). Представляют собой полые, почти идеальной формы силикатные шарики с гладкой поверхностью, диаметром от 10 до нескольких сотен микрометров, в среднем около 100 мкм. Толщина стенок от 2 до 10 мкм, температура плавления 1400—1500°С, плотность 580— 690 кг/м 3 .

Образование микросфер происходит следующим образом. При высоких температурах силикатный минеральный материал углей плавится и в газовом потоке продуктов сгорания дробится на мельчайшие капли. Газовые включения в минеральных частицах при нагреве расширяются и раздувают отдельные капли расплава. Те капли, в которых внутреннее давление газа уравновешивается силами поверхностного натяжения, образуют полые шарики. В остальных происходит разрыв капель (внутреннее давление больше сил поверхностного натяжения), либо они остаются просто силикатными шариками, сплошными или пористыми (поверхностное натяжение больше внутреннего давления). Содержание АСПМ в золошлаковых материалах составляет обычно десятые доли процента, тем не менее их «производство» на крупных теплоэлектростанциях Россиии может достигать нескольких тысяч тонн в год.

Ценность АСПМ определяется тем, что они — идеальные наполнители. Поясним: для придания многим изделиям из пластмасс и керамики необходимых свойств, например для снижения плотности (веса) изделий, повышения тепло-, электро- и звукоизоляционных характеристик, в их состав вводятся изготавливаемые промышленными способами стеклянные микросферы. Это довольно сложный процесс. Так почему бы не использовать для этих целей уже готовые микросферы — АСПМ из золы угольных теплоэлектростанций? По приблизительным подсчетам, стоимость таких микросфер в десять и более раз ниже, чем микросфер, получаемых промышленными методами.

Полимерные материалы с микросферами (так называемые сферопластики) используются при изготовлении разных плавсредств (лодок, сигнальных буёв, блоков плавучести, спасательных жилетов и др.), мебели, радиопрозрачных теплоизоляционных экранов для радиотехнической аппаратуры, изоляции теплотрасс, дорожно-разметочных термопластиков и пр. АСПМ успешно применяют в составе цементных растворов при изготовлении «лёгких» бетонов и теплоизоляционных жаростойких бетонов. Получены патенты на использование АСПМ при бурении геологоразведочных и эксплуатационных скважин. Это далеко не полный перечень возможностей применения АСПМ.

Важно отметить, что в отличие от других компонентов полые микросферы сравнительно просто выделяются из золы. Благодаря низкой плотности они всплывают на поверхность воды гидротехнических сооружений (прудов-отстойников, каналов оборотной воды) и могут быть собраны любыми, в том числе самыми простыми, средствами.

АСПМ пользуются большим спросом за рубежом. Однако готовые приобретать их фирмы требуют высокой степени очистки материала от посторонних примесей. Кроме того, во многих технологиях используются только микросферы определённого размера (диаметра). Всё это требует соответствующей производственной базы. Высокая стоимость подготовленных подобным образом АСПМ на мировых рынках минерального сырья гарантирует экономическую эффективность предприятий по их «производству».

Возвратимся, однако, к проблеме золоотвалов в целом. Понятно, что проблема, особенно в экологическом аспекте, может считаться решённой только при полной утилизации всего золоотвала теплоэлектростанции. Кажется, этому нет никаких препятствий. Огромная масса измельчённого, близкого по составу к природному песку, находящегося на поверхности земли материала в условиях ограничений и запретов на разработку естественных месторождений должна привлекать интерес по крайней мере строительных предприятий. А в этой отрасли промышленности потребность в сырье сопоставима с «запасами» золоотвалов. Использование золы не только расширяет минерально-сырьевую базу строительной индустрии, но и позволяет сберечь дефицитное природное сырьё и улучшить экологическую обстановку в районах размещения предприятий угольной энергетики. Если добавить к этому извлечение ценных компонентов: магнетитовых микрошариков, ферросилиция, АСПМ, — то есть комплексное их освоение, то перспективы кажутся такими привлекательными, что возражать трудно.

В действительности использование золошлаковых материалов в промышленности сопряжено со значительными организационными и техническими трудностями. Представить дело так, что достаточно поставить экскаватор и подгонять самосвалы, было бы большим упрощением. Зола неоднородна по составу и размеру частиц. Между тем промышленность, даже строительная, предъявляет жёсткие требования к тому и другому. Далее: в составе золы всегда присутствуют компоненты, нежелательные для тех или иных технологий. Отечественный и зарубежный производственный опыт показывает, например, что использование золошлаковых материалов для производства пористых заполнителей ограничивается содержанием серы, углерода, а также оксидов железа, кальция и магния. В производстве кирпича лимитируют оксиды кальция, серы, алюминия и др. И это лишь некоторые нормативные показатели. Во многих случаях промышленность требует, чтобы материал был сухим, а в золоотвале он всегда влажный. Добавим к этому принципиально важное замечание: золошлаки, образующиеся при сжигании углей разных месторождений, имеют существенно разный минералогический и химический состав и, следовательно, требуют индивидуального выбора рациональных направлений использования и технологий переработки. Это достигается в трудоёмких лабораторных и заводских испытаниях. Что же касается отдельных компонентов, то здесь требования потребителей ещё более специфичны и индивидуальны. Цель, однако, оправдывает средства. Убедительный пример являет Германия, страна, как известно, небогатая природным сырьём, у которой долгое время основой энергетики был каменный уголь, но на территории которой нет золоотвалов.

Многие десятилетия потребности в электроэнергии и тепле были так велики и в такой степени не удовлетворялись, что думать об экологии, неуёмном росте золоотвалов, утрате занимаемых ими земель казалось неактуальным и несвоевременным. Кроме того, геологи позаботились о том, чтобы месторождений природного сырья было в достатке, нужного качества и там, где надо. И только сравнительно недавно стали замечать, что разработка месторождений песка, глины, известняка, уродует ландшафт.

В последние годы появляются признаки изменения ситуации к лучшему. Автор много лет занимается изучением качества угля и золошлаковых материалов на одной крупной теплоэлектростанции. Станция начала работать в начале 1960-х годов. За это время образовались два гигантских золоотвала, причём последний уже достиг критического размера, и требуется площадка для следующего. Однако районная администрация категорически отказывается выделить новые площади, поскольку это плодородные земли, занятые садами и огородами. Так появился стимул к переработке золоотвалов! Несколько проектных институтов получили заказ на разработку рецептур и технологий изготовления из золошлаков строительного кирпича, и есть основания надеяться, что этим дело не ограничится.

Кизильштейн Л. Я. Экогеохимия элементов-примесей в углях. — Ростов н/Д: Изд.-во Сев.-Кавказск. научн. центра высш. школы, 2002.

Кизильштейн Л. Я., Дубов Н. В., Шпицглуз А. Л. и др. Компоненты зол и шлаков ТЭС. — М.: Энерго-атомиздат, 1993.

Шпирт М. Я. Безотходная технология. Утилизация отходов добычи и переработки твёрдых горючих ископаемых. — М.: Недра, 1986.

Состав и свойства золы и шлака ТЭС: Справочное пособие / В. Г. Пантелеев, Э. А. Ларина, В. А. Мелентьев и др.; Под. ред. В. А. Мелентьева. — Л.: Энергоатомиздат, 1985.

Юдович Я. Э., Кетрис М. П. Неорганическое вещество углей. — Екатеринбург: Уро. РАН, 2002.

Угольные примеси — ценные и коварные

Любой, у кого спросят, какой элемент составляет основу ископаемых углей, ответит: углерод. И действительно его содержание от 50 до 97%. В углях присутствуют также кислород, водород, азот и сера, хотя и в значительно меньших количествах. Но есть ещё элементы-примеси, о которых мало кто знает. Чем они опасны? И какая от них польза?

Каа-Хемский угольный разрез в Туве. Для каменных углей Каа-Хемского месторождения характерны низкая зольность и малосернистость, относительная чистота по тяжёлым металлам и токсичным элементам. Фото Игоря Константинова.

Собственные минералы германия встречаются исключительно редко. Обычно он внедряется в кристаллические решётки других минералов.

Одна из ТЭС в Перми. По данным экологического мониторинга, ТЭС — один из основных стационарных источников загрязнения окружающей среды.

Выбросы некоторых элементов-примесей двумя крупными ГРЭС, работающими на углях Донбасса и Кузбасса, г/с.

Химические элементы, составляющие от единиц до тысячных долей процента от общей массы углей, называют элементами-примесями. В углях на их долю в сумме обычно приходится не более 1% неорганического вещества, если не считать серу. Всего в углях обнаружено более 50 элементов-примесей с различными химическими свойствами.

Основатель угольной геохимиии — выдающийся норвежский учёный Виктор Мориц Гольдшмидт (1888—1947). Он известен и как автор геохимической классификации элементов, закона замещения одних элементов другими в кристаллической решётке минералов (закона изоморфизма, названного его именем), и как автор гипотезы о строении и составе внутренних сфер земли.

Российские геологи-геохимики профессор Яков Эльевич Юдович и Марина Петровна Кетрис (Институт геологии Коми научного центра Уральского отделения РАН) собрали, проанализировали и обобщили данные по элементам-примесям основных угольных бассейнов и месторождений мира. По результатам этой огромной работы были рассчитаны средние (кларковые) содержания в углях 25 элементов-примесей, на которые опираются при оценке информации о концентрациях этих элементов в углях.

Напомним: уголь — горючее полезное ископаемое, образующееся из торфа. Преобразование торфа в уголь происходит под действием повышенной температуры и давления недр земли при тектоническом опускании территории и перекрытии пластов торфа нарастающей массой осадочного материала. В зависимости от глубины погружения органическое вещество торфа находится на разной степени преобразования. В результате образуются угли бурые, каменные или антрациты. Геологи называют соответствующие стадии изменения органического вещества углей стадиями метаморфизма (от греч. metamorphoomai — преобразование). Вспомним также, что торф — это разложившиеся в водной среде торфяных болот ткани растений, изменённые в результате биохимических и микробиологических процессов.

Растения при жизни содержат не только углерод, водород, кислород, азот и серу, но и многие другие элементы — в низких или очень низких концентрациях. Они получили название «микроэлементы». Многие из них, несмотря на ничтожные концентрации, играют исключительно важную роль в жизненных процессах растений — ускоряют ферментативные окислительно-восстановительные реакции, фотосинтез и синтез белков. Это железо, марганец, кобальт, медь, никель, цинк, молибден, бор и некоторые другие. Всего подобных элементов около двадцати. В тех случаях, когда растения произрастают в районах с повышенной концентрацией элементов-примесей в почвах, например в районе рудных месторождений, их содержание в углях может увеличиваться в десятки и даже сотни раз. Геологи используют этот факт для эффективного поиска рудных залежей — так называемый биогеохимический метод поиска.

Интересно заметить, что В. М. Гольдшмидт, обнаруживший высокие концентрации германия и некоторых других химических элементов в саже угольного камина, в поисках ответа на вопрос, как он там оказался, высказал предположение, что этот элемент первично накапливался в листьях торфообразующих растений в результате испарения влаги, поступающей из почвы. Однако эта привлекательная своей простотой гипотеза впоследствии не нашла подтверждения. Учитывая современные данные, можно заключить, что прижизненное накопление элементов-примесей в растениях не может привести к существенному их концентрированию в угле. Если так, то откуда в торфе и углях берутся элементы-примеси в концентрациях, порой во много раз превышающих кларковые? Источниками могут быть породы, обрамляющие область торфонакопления. Торфоведы называют их областью «минерального питания торфяника». Поверхностные и грунтовые воды, размывая эти породы, вносят в торфяник растворённые соединения элементов-примесей. Другой источник элементов-примесей — глубинные (гидротермальные) воды. В этих случаях концентрация растворённых элементов-примесей в торфяной воде может быть очень высокой и угли, которые сформировались в подобных условиях, образуют наиболее ценные (с точки зрения содержания элементов-примесей) промышленные месторождения.

По мнению большинства исследователей, накопление элементов-примесей в углях происходит на торфяной или буроугольной стадии их образования. Как именно взаимодействуют элементы с ископаемым органическим веществом в процессе торфообразования и метаморфизма — до конца ещё не решённая проблема геохимии. Её трудность связана со сложным составом органических соединений, разнообразием физико-химических условий в природных средах. Отсюда большое число гипотез, описывающих природные химические реакции между элементами-примесями и органическим веществом. Суммируя и упрощая, можно выделить главные. Органическое вещество торфа сорбирует растворённые в природных водах элементы-примеси, восстанавливает их до низших валентностей, изменяя при этом растворимость, что может привести к выпадению их в осадок. Наконец, главные компоненты торфа и бурого угля — гуминовые кислоты — концентрируют элементы-примеси, образуя комплексные соединения. Мы упомянули стадию образования бурого угля не случайно. С увеличением степени метаморфизма происходит изменение молекулярного строения угольного органического вещества, главный комплексообра-
зователь — гуминовая кислота — утрачивает способность концентрировать элементы-примеси. На стадии каменных углей и антрацитов гуминовые кислоты исчезают вовсе, преобразуясь в химически малоактивные гуминовые вещества. Однако при выветривании (окислении) углей может происходить так называемая регенерация гуминовых кислот: их молекулярная структура в значительной степени восстанавливается и вместе с этим восстанавливается их способность к взаимодействиям с элементами-примесями. Именно в результате подобного развития геохимических событий образовались крупнейшие месторождения урана, германия и многих других элементов-примесей, связанные с угольными пластами.

Элементы-примеси бывают ценными и токсичными. К ценным относят элементы, которые используются в промышленном производстве и которые экономически целесообразно извлекать из угля или угольной золы. В настоящее время это германий, уран и галлий.

Все российские промышленные запасы германия сосредоточены именно в углях. Отметим, что в мире главный источник этого ценного материала — полиметаллические сульфидные руды. В нашей стране месторождения германиеносных углей находятся в Приморье (Павловское месторождение), на острове Сахалин (Новиковское месторождение) и в Бурятии (Тарбагатайское месторождение). Среднее содержание германия около 200 граммов на тонну угля, но часто значительно выше. Добывают его из «летучей» золы, образующейся при сжигании угля и скапливающейся на электрофильтрах и в рукавных фильтрах, где она улавливается.

Первыми промышленными источниками урана в нашей стране также были угольные месторождения. Позже им на смену пришли другие типы урановых руд.

К группе ценных элементов-примесей относят и элементы, которые можно извлекать совместно с германием и ураном: свинец, цинк, молибден, селен, золото, серебро и редкоземельные элементы.

Ванадий, хром, никель, вольфрам, бор, ртуть называют потенциально ценными. Как видно из самого названия, они могут приобрести значение ценных, если их извлечение станет экономически выгодным.

При сжигании углей (на что расходуется примерно три четверти объёма всей их мировой добычи) элементы-примеси в большей или меньшей степени переходят в золу, причём их концентрация в золе может оказаться значительно более высокой, чем в сжигаемом угле. Например, концентрация германия в золе достигает нескольких десятков килограммов на тонну. Средние концентрации элементов-примесей в золах углей мира получили название зольных кларков. Для многих элементов-примесей (теллура, германия, молибдена, урана, кадмия, ртути, висмута, сурьмы и селена) они больше, чем кларки этих элементов в осадочных породах. Таким образом, зола, образующаяся при сжигании углей, — это руда, из которой в будущем они, возможно, будут извлекаться, а их концентрация в золе станет показателем при промышленной оценке месторождений.

К токсичным относят элементы-примеси, которые при сжигании углей на тепловых электростанциях (или других видах их термической переработки) способны переходить в газовую фазу при температуре сжигания и выбрасываются с дымовыми газами в атмосферу. Эти элементы, выпадая вместе с осадками, переходят в водоёмы и почву, где включаются в трофическую цепь «почва — растения — животные — человек». Обычно в их числе указывают серу, фосфор, бериллий, ртуть, мышьяк, селен, марганец, ванадий, хром, а также радиоактивные элементы — торий и уран. Последние — источники радиационного загрязнения природной среды в районах угольных ТЭС, превышающего, по некоторым оценкам, загрязнение от АЭС равной мощности (естественно, при условии безаварийной эксплуатации последних).

Степень негативного воздействия вредных веществ определяется концентрацией загрязнителей (в нашем случае — элементов-примесей) в приземном слое воздуха и их токсическими свойствами. При оценке токсичности элементов-примесей учитывают их концентрацию в топливе и способность переходить в газовую фазу дымовых выбросов при сжигании углей. Отметим, что токсическое действие многих элементов-примесей и их соединений может многократно усиливаться при их совместном поступлении в организм человека.

Соединения серы (оксиды — SO2, SO3), образующиеся при сжигании многосернистых углей, чаще всего упоминаются в числе загрязнителей атмосферного воздуха в районах крупных угольных ТЭС. При длительном вдыхании они поражают желудочно-кишечный тракт, лёгкие и сердечно-сосудистую систему. Известный трагический пример — события декабря 1952 года в Лондоне. Плотный смог при полном безветрии держался 3—4 дня и, по официальным данным, погубил более четырёх тысяч человек. Ежедневные анализы воздуха показали, что смертность нарастала прямо пропорционально концентрации двуокиси серы (в основном топливного происхождения) в атмосфере.

Один из экологически опасных элементов-примесей — бериллий, который обладает высокой биологической активностью и оказывает аллергическое и канцерогенное воздействие на организм человека*.Он накапливается в скелете, печени и лёгких (имеются сведения о заболеваемости работников угольных тепловых электростанций бериллиозом — серьёзной патологией лёгких). Промышленные объекты, работающие на угле и нефти, считаются главными источниками загрязнения атмосферного воздуха бериллием. Так, при среднем содержании бериллия в донецком угле, сжигаемом на одной крупной ТЭС, 2,5 г/т, выход его в газовую фазу составляет порядка 60%. На площади около 150 км 2 , прилегающей к станции, наблюдается двух-трёхкратное превышение предельно допустимой среднесуточной концентрации (ПДКСС) этого токсичного элемента в атмосфере воздуха. Здесь расположены несколько населённых пунктов с общей численностью населения более 100 тыс. человек.

Другой токсичный элемент — ванадий. Он оказывает отрицательное воздействие на органы дыхания, нервную систему, обмен веществ. Наиболее уязвимы печень, почки, семенники, костная ткань.

Уран, торий обладают высокой токсичностью и в форме химических элементов, и в форме их соединений — главным образом, в виде радиационного воздействия. Примерами служат последствия сравнительно недавних катастроф в атомной энергетике.

Оценки выброса некоторых элементов-примесей двумя крупными ГРЭС приведены в таблице.

Отказаться от угольной энергетики в обозримом будущем вряд ли удастся. Что же делать? Геологи знают, что разработку месторождений часто можно организовать с учётом распределения токсичных элементов в угольных пластах. При подобном планировании концентрация элементов-примесей в топливе, поступающем на ТЭС, может быть снижена. Снижение концентрации элементов-примесей в дымовых выбросах достигается также за счёт повышения эффективности систем очистки дымовых выбросов от золы, поскольку значительная часть элементов-примесей попадает в дымовые газы вместе с твёрдыми частицами, на поверхности которых они оседают.

Отрицательные экологические последствия сжигания углей могут быть уменьшены и при правильном выборе технологии сжигания углей — высоты и числа дымовых труб, скорости выброса дымовых газов и их температуры. Наконец, вредное воздействие выбросов снижается размещением ТЭС с учётом метеоусловий района, прежде всего, господствующих направлений и скорости ветра.

Таким образом, элементы-примеси стóят похвал и заслуживают обвинений. Чего больше — пусть решат будущие поколения.

Подробности для любознательных

Физические и химические свойства германия были предсказаны в 1871 году Д. И. Менделеевым на основе открытого им периодического закона. Учёный назвал этот элемент эка-кремнием — «сходный с кремнием». В 1885 году германий был обнаружен немецким химиком К. Винклером в минерале аргиродите — Ag8GeS6. С этим элементом связано начало эры полупроводниковой электроники, оказавшей исключительное влияние на промышленный и научный прогресс. Когда позднее германий в большой степени был заменён на кремний, он остался принципиально важным элементом в производстве инфракрасной оптики (приборов ночного видения) и оптико-волоконных систем связи. Большие перспективы для германия могут открыться в солнечной энергетике: панели на его основе имеют очень высокий КПД — примерно 37%.

Уран был открыт М. Г. Клапротом в 1789 году, правда, позднее оказалось, что немецкий химик открыл не сам элемент, а его оксид UO2. Д. И. Менделеев поместил уран в самую дальнюю клетку периодической таблицы и первым правильно оценил его плотность, равную 19 005 кг/м 3 (большая плотность позволяет использовать обеднённый уран в качестве балластного материала и сердечников бронебойных снарядов — взамен более дорогого вольфрама).

В 1896 году А. А. Беккерель обнаружил радиоактивность «урановой смолки» — минерала урана. Несколько позднее Пьер и Мария Кюри выделили из неё ещё один химический элемент — радий. В 1903 году всем троим за открытие и изучение радиоактивности была присуждена Нобелевская премия по физике. Интерес к урану достиг апогея после того, как он стал использоваться для изготовления атомных бомб.

В числе других ценных элементов, содержащихся в углях, — галлий (материал, используемый в детекторах нейтронов, а его соединения применяются в электронике, лазерах, световодах), селен (используется в термоэлектрических и фотоэлектрических приборах, медицине), молибден (используется как легирующая добавка в легированных сталях, жаропрочных и коррозионностойких сплавах, в качестве катализаторов химических реакций).

Из числа редкоземельных элементов отметим самарий, необычно высокие концентрации которого обнаружены в золе некоторых теплоэлектростанций. Самарий используется при изготовлении сверхмощных постоянных магнитов, в атомных реакторах. Моносульфид самария (SmS) обладает термоэлектрическими свойствами и считается перспективным материалом для прямого преобразования тепла в электричество в объектах автомобильной, аэрокосмической, судостроительной промышленности.

Кизильштейн Л. Я. Экогеохимия элементов-примесей в углях. — Ростов-на-Дону: Изд-во СКНУ ВШ, 2002. — 296 с.

Юдович Я. Э. Грамм дороже тонны. Редкие элементы в углях. — М.: Наука, 1989. — 160 с.

Юдович Я. Э., Кетрис М. П. Неорганическое вещество углей. — Екатеринбург: УрОРАН, 2002. — 422 с.

Комментарии к статьи

* Напомним, что бериллий — один из важнейших «промышленных» металлов. Он используется в качестве легирующей добавки к различным сплавам и в производстве огнеупорных материалов. В ядерной энергетике его применяют как замедлитель и отражатель нейтронов.

Состав каменного угля

Каменный уголь – это продукт сложного метаморфизма растительных остатков торфяных болот. Под давлением горных пород, при высокой температуре и без доступа кислорода они превращаются в бурый уголь. Затем они еще больше разлагаются , теряют воду и твердеют. Конечными продуктами метаморфизма являются антрацит, графит и тальк.

Состав полезного ископаемого частично определяется еще на стадии формирования торфяника. Он зависит от видов растений, особенностей воды и грунта. Качество и соотношение компонентов меняется в процессе метаморфизма.

Компоненты каменного угля условно можно разделить на 3 группы:

  • Простые химические элементы
  • Сложные органические соединения (петрографический состав)
  • Минеральные примеси

Описание каждой группы вы найдете в продолжении статьи.

Каменный уголь

Каменный уголь

Простые химические элементы

Практически все химические элементы в угле находятся в связанном виде. Они входят в состав органических и неорганических соединений.

Наибольшее практическое значение имеют:

  • Углерод (С): 75-92%
    Углерод является основным элементом органических соединений. От его количества зависит теплота сгорания угля. Он входит в состав органической части материала. Содержание элемента повышается в процессе метаморфизма. Больше всего углерода в антраците (до 97%), меньше – в буром угле (60-70%).
  • Водород (H): 2,5-5,7%
    Теплота сгорания водорода в 4 раза выше, чем у углерода. Но в чистом виде этот элемент становится взрывоопасным. Количество вещества снижается в зависимости от степени метаморфизма. У бурого и каменного углей оно выше , чем у антрацита. Много водорода в сапропелитах – разновидностях угля, образованного из низших видов растений.
  • Кислород (O): 1,5-15%
    Количество кислорода снижается в процессе метаморфизма. В торфе этот элемент составляет около 40%, в буром угле 10-30%, в антраците – 1-2%. При высоком содержании кислорода ускоряются процессы окисления и сгорания материала.
  • Азот (N): 1-3%
    Элемент имеет органическое происхождение. Его процентное содержание снижается в процессе генезиса угля.
  • Сера (S): 0-4%
    Сера может попадать в каменный уголь как в процессе разложения растительных остатков, так и из окружающей пласты породы. При сгорании топлива она окисляется и превращается в сернистый газ SO2. При растворении газа в воде образуется серная кислота. Она повреждает стенки котлов. Поэтому количество серы в топливном угле строго регламентируется. Самое вредное соединение серы – сульфид (S2O). Около 70-80% соли переходит в газообразное состояние при нагревании. Выделяются сернистый газ и сероводород, загрязняющие атмосферу.
  • Фосфор (P): до 0,03%
    Фосфор – один из элементов, входящий в состав органических веществ. Его содержание должно регулироваться в коксе. Если фосфор попадает в сталь, качество сплава резко снижается.
  • Хлор (Cl): 0,015-0,15%
    Содержание хлора в углях колеблется от 0,015 до 0 , 15%. В так называемых «соленых углях» показатель может достигать 1%. Если показатель выше 0,3%, затрудняется сжигание топлива. При окислении и растворении в воде хлор образует соляную кислоту. Она вызывает коррозию металла, повреждение стенок котлов.
  • Мышьяк (As)
    Мышьяк попадает в уголь из грунтовых вод, и лишь незначительная часть имеет органическое происхождение. Этот элемент в высоких концентрациях встречается «пятнами» в некоторых месторождениях. При сжигании топлива он может попадать в золу и воздух. При высоком содержании мышьяк вредит экологии, провоцирует онкологические заболевания.

ГОСТ 32464-2013 регулирует содержание ряда элементов в угле:

  • Сера – до 2,8% (обогащенный), 3% (необогащенный), 4,6% (рядовой)
  • Хлор – до 0,6%
  • Мышьяк – до 0,02%

Петрографический состав угля

Каменный уголь залегает пластами со слоистой структурой. Отдельные слои состоят из твердой органической породы разного строения и происхождения. Принято различать макро- и микрокомпоненты пластов. Они различаются между собой не только составом , но и внешним видом, микроскопической структурой.

Макрокомпоненты каменного угля

Эти компоненты угля залегают пластами, линзами или призмами в толще ископаемой породы. Они образовались из различных видов растений в процессе метаморфизма торфа. Чаще всего изменения проходили в анаэробных условиях (без доступа кислорода).

Макроэлементы не имеют определенной химической структуры. В свое время целлюлоза, лигнин и другие ткани растений прошли процесс гелификации – превращения в желеподобную субстанцию. Затем она затвердела и стала похожей на камень. Под микроскопом в ряде случаев можно заметить окаменевшие споры, клеточные стенки, растительные волокна.

Окаменелые растения или их отпечатки в каменном угле можно обнаружить и без микроскопа. Это не редкость. В некоторых шахтах есть даже свои собственные музеи таких артефактов, а в интернете вовсю торгуют углем с окаменелостями. Например , в 1998 году в угольном пласте штата Иллинойс в Америке был обнаружен целый лес, сохранивший свою изначальную структуру. Площадь его достигает 10 км2, а возраст – 307 миллионов лет. В этом лесу выявлены огромные папоротники, хвощи, остатки рептилий и членистоногих.

Основные макроэлементы угля:

  • Витрен
    Блестящий материал черного цвета, хрупкий, трещиноватый, с раковистым изломом, плотной однородной структуры. Образуется витрен из лигнина и целлюлозы в условиях разложения с ограниченным доступом кислорода. Он проходит процесс гелификации. В молодых углях под микроскопом обнаруживают клеточную структуру, а в более зрелых витрен представляет собой однородную массу. Компонент обладает хорошей спекаемостью, повышает коксирующие свойства угля.
  • Кларен
    Блеск материала слабее, чем у витрена. Состоит кларен из полупрозрачной гелифицированной массы с неоднородной структурой. Он мягкий, с единичными трещинами. Содержание золы в нем 1,2% с незначительным преобладанием оксида алюминия (Al2O3). Образуется кларен из кутикулы и спор. Он залегает мощными пластами, относится к спекающимся материалам. Компонент выполняет роль клея, скрепляет между собой разные части угольной породы.
  • Дюрен
    Это твердый уголь черного цвета с матовым блеском. Структура у него плотная, однородная, текстура и излом зернистые. В состав дюрена входят форменные элементы желтого цвета – пыльца, споры, смоляные тельца. Черный оттенок имеют остатки тела растений. Рассмотреть элементы можно под микроскопом или лупой. Дюрен обладает высокой зольностью, не спекается, с трудом обогащается.
  • Фюзен
    Структура породы волокнистая, рыхлая, напоминает древесный уголь. Под лупой или микроскопом четко просматриваются клетки и растительные волокна , иногда годовые кольца. Внутренняя часть волокон бывает заполнена минералами – кальцитом или пиритом. Фюзен образуется из остатков древесины, которые разлагались в присутствии кислорода. В пластах он залегает в форме линз или призм. Материал не спекается, обладает высокой зольностью, незначительным выходом летучих веществ при сжигании.

Соотношение макроэлементов в каменном угле влияет на его качество и способы применения. Для топлива и производства кокса лучше подойдет порода, содержащая витрен и кларен. Дюрен и фюзен чаще используют для получения смолистых веществ, дегтя, генерации газа.

Так выглядит витрен – цементирующий компонент угля

Микрокомпоненты каменного угля

Микрокомпоненты углей, или мацералы – это мельчайшие органические частички, которые можно разглядеть только под микроскопом. Как и макрокомпоненты, они не имеют определенной химической структ у ры. В состав входят циклические ароматические углероды в разных соотношениях. Классификация основывается на генезисе веществ из растительных остатков, их твердости, блеске, отражении света и других физических свойствах.

По количеству и соотношению микрокомпонентов угля определяют его марку, особенности метаморфизма пластов. Это влияет на способы применения ископаемого и его характеристики.

Различают несколько групп мацералов:

  • Витриниты
  • Семивитриниты
  • Липтиниты
  • Инертиниты

Каждая группа включает еще несколько разновидностей микрокомпонентов. Детальнее о них мы расскажем дальше.

Витриниты

Это группа химических веществ, образовавшаяся из лигнина и целлюлозы. Они твердые, с гладкой блестящей поверхностью, содержат ароматические соединения с циклической структурой. Цвет колеблется от черного и темно-серого до почти прозрачного, в зависимости от степени метаморфизма.

Витриниты потеряли во время генезиса значительную часть водорода и кислорода, в их составе значительно преобладает углерод. При нагревании они плавятся, выделяют среднее или низкое количество летучих веществ.

Группа включает:

  • Телинит
    Материал состоит из стенок древесных клеток, которые четко визуализируются под микроскопом. Его много в битумизированном угле; в зрелых ископаемых количество снижается.
  • Коллинит
    Основное цементирующее вещество витрена.
  • Витродентринит
    Образуется из обломков телинита и коллинита с диаметром около 10 мкм.

Витриниты являются одними из самых распространенных и важнейших органических составляющих каменного угля. Цвет и рельеф этих мацералов используют как эталон для определения других групп. Они наименее зольные, а также хрупкие и плотные (1300-1400 кг/м3). Уголь с высоким соде р жанием витринитов – ценное топливо и материал для производства кокса.

Семивитриниты

Эта группа микрокомпонентов образуется из целлюлозы и лигнина, с примесью древесных остатков (фюзена). Поверхность семивитринитов гладкая, цвет серый (всегда светлее, чем у витринитов). При нагревании вещества размягчаются, но не становятся пластичными.

В группу семивитринитов входят:

По физическим характеристикам семивитринит занимает промежуточное положение между витринитом и инертинитом. Его присутствие говорит о низком или среднем метаморфизме угля. В таком ископаемом обычно меньше углерода, больше кислорода и водорода. При высоком содержании веществ снижается теплота сгорания, повышается способность к окислению. Но обычно в каменном угле количество семивитринитов не превышает 1-3%, что не влияет на качество материала.

Липтиниты

Группа липтинитов, или экзинитов образовалась из липидов растений. Цвет зависит от происхождения и степени углефикации, бывает темно-коричневым, черным и серым. Структура липтинитов практически не изменяется во время п р евращения торфа в бурый и каменный угли. Они не поддаются гумификации и гелификации. Поэтому под микроскопом хорошо видны частички растений – споры, пыльца, кутикула, воск.

В группу входят 6 органических веществ:

  • Споринит
    В структуре преобладают споры растений. Это прочный материал, который связывает между собой элементы дюрена.
  • Кутинит
    Образуется из окаменевшей кутикулы растений. Он прочный, содержит большое количество водорода. При сжигании выделяется много летучих веществ.
  • Резинит
    Он образовался из древесной смолы и воска, рассеян в толще породы или залегает слоями. Резинит содержит много водорода. Он может растворяться в спирте, бензоле. Из него можно получать смолу и битум.
  • Суберинит
    Это компонент желтого цвета, образовавшийся из корковой ткани. Встречается он в виде корок, обволакивающих основной пласт породы.
  • Альгинит
    Происходит альгинит от низших растений, водорослей, простейших и бактерий, богатых липидами. Он входит в состав только особого типа углей – сапропелитов. Они образовались на дне пресных и соленых водоемов. Вещество очень твердое, богато водородом , имеет черный цвет.
  • Липтодетринит
    Образовался из мелких разрушенных частиц (детрита) растений. Является смесью всех описанных выше компонентов.

Плотность липтинитов относительно низкая, 1200-1300 кг/м3. При сжигании они выделяют много летучих веществ. Из этой группы мацералов получается качественный кокс.

Инертиниты

Образуются из растительных остатков (чаще древесины), которые разлагались в присутствии кислорода. Инертиниты залегают мощными пластами на местах старых высушенных болот. Они обладают матовым блеском, в структуре просматриваются целлюлозные волокна, сохраняется рисунок древесины. Цвет веществ светлый, от желтого до белого.

Содержание углерода в инертинитах высокое, а водорода – сниженное. При сгорании они выделяют очень мало летучих веществ, не спекаются. В их состав входит большое количество ароматических углеводов. Плотность у этого вида мацералов высокая, 1400-1500 кг/м3.

Группа инертинита включает 6 веществ:

  • Фюзинит
    Он характеризуется сохраненной клеточной структурой, ячеистым строением. Внутренние полости клеток могут заполняться органическими и минеральными веществами. Фюзинит занимает первое место по содержанию углерода среди всех компонентов угля.
  • Микринит
    Он образовался из смолянистых деревьев , в больших объемах встречается в угле палеозойской эры, длиннопламенных разновидностях. Микринит рассеян в пластах в виде микроскопических зерен, может заполнять пустоты между стенками растительных клеток. Со временем он превращается в вещество, мало отличимое от витринита.
  • Макринит
    В угле встречается редко. Он представляет собой аморфную массу, которая склеивает другие компоненты.
  • Склеротинит
    Он образовался из остатков грибов. Склеротинит имеет форму овальных тельцев с четкими очертаниями и пористой структурой. Размеры включений – от 10 мкм до 80 мкм. Встречается склеротинит в каменном угле пермского периода.
  • Семифюзинит
    Он состоит из остатков древесины с частично сохраненной клеточной структурой и по своим характеристикам занимает промежуточное положение между витринитами и инертинитами.
  • Инертодетринит
    Это смесь обломков всех мацералов группы инертинита с размерами до 20 мкм.

Микрокомпоненты составляют основную массу каменного угля. В процессе метаморфизма они постепенно разлагаются, теряют свою структуру и превращаются в чистый кристаллический углерод. Другие элементы переходят в минеральную часть угольного пласта. О ней мы и поговорим дальше.

Минеральные примеси

Минеральная часть каменного угля представлена оксидами, солями и другими неорганическими соединениями. При сжигании из нее образуется зола. Количество примесей влияет на энергетическую ценность топлива. При высоком содержании некоторых элементов стенки котлов могут быстрее поддаваться эрозии, а золоулавливающие устройства – быстро загрязняться.

Минеральный состав угля различается в разных месторождениях и даже в пластах. Неорганические соединения попадают в породу разными путями – непос р едственно при разложении растений, из болотных и грунтовых вод, окружающей породы.

В ископаемых углях могут попадаться примеси различных минералов

примеси пирита в угле

В связи с этим минералы разделяют по происхождению:

  • Терригенные
    В эту группу входят обломки породы, которые привносятся в сформировавшиеся пласты угля грунтовыми водами (глина, песок, валуны, галька, полевой штат, биотит, мусковит, апатит, хлорит, магнетит, рутил и другие). Элементы в основном проникают через трещины, реже впитываются порами угля. Терригенные элементы могут попадать в каменный уголь при тектонических сдвигах, после взрывов при разработке месторождений.
  • Аутогенные
    Эти минеральные элементы попадают в породу на стадии ее формирования. К ним относятся неорганические вещества, образовавшиеся вследствие глубокого распада растений еще в торфяниках. Соли и оксиды выпадают из болотных и грунтовых вод, впитываются торфом и бурым углем. В процессе метаморфизма в угольные пласты могут попадать соли из геотермальных растворов. Часть породы проходит более существенные преобразования, превращается в тальк и графит.

Аутогенные минеральные вещества представлены каолинитом, иллитом, кварцем, кальцитом, гипсом, карбонатами, сульфидами. Среди них часто встречаются соли элементов, входящих в состав растительных ферментов (кобальта, марганца, магния, молибдена, алюминия, железа).

Терригенные микроэлементы не связаны прочно с породой. Они отделяются во время обогащения угля. Аутогенные отделить невозможно , поэтому на их количество и состав обращают особое внимание.

Около 70-80% всех неорганических веществ каменного угля составляют глинистые минералы. Главными элементами являются кварц, кальций, алюминий, железо, магний, натрий и калий. При сжигании глинистые минералы теряют воду, превращаются в силикаты и оксиды.

Кальцит и доломит при нагревании реагируют между собой и образуют гипс. Нежелательная примесь в угле – пирит. Он распадается на оксиды железа и серы. Затем сернистый газ растворяется в воде, превращаясь в серную кислоту, разъедающую стенки котлов.

В угле иногда присутствуют редкие металлы (золото, германий, уран, молибден, бериллий). При высоком их содержании материал подвергают дополнительной обработке, чтобы извлечь из него ценное сырье. Попадаются в угле и вредные элементы, которые могут повреждать стенки котлов, сделать породу непригодной для производства кокса. К ним относятся сера, фосфор, хлор, фтор, мышьяк, ртуть. Некоторые токсичные элементы наносят вред экологии.

От состава каменного угля во многом зависят свойства и возможности применения материала. Он положен в основу классификации и разделения угля на марки. Данные о некоторых элементах (сере, хлоре, мышьяке) должны быть прописаны в сертификатах. При покупке материала обязательно об р атите на это внимание.

Читайте также: