Содержание углерода в металле

Обновлено: 16.05.2024

Центральное место во всем промышленном материаловедении занимает сталь. С ее помощью успешно решают большинство технических задач. К услугам инженера — огромный диапазон вариантов: начиная от самой простой строительной арматуры и заканчивая хромоникелевой нержавейкой, способной работать в условиях открытого космоса.

Наибольшего внимания заслуживает углеродистая сталь и ее марки. Они лишены значимых легирующих добавок и потому представляют собой исключительно композицию железа и углерода в чистом виде. Познакомиться с углеродистыми сталями поближе — значит понять основополагающие принципы, как ведут себя все сплавы из категории «черных» и от чего зависят их рабочие характеристики.

Классификация и марки

Лишь у некоторых уникальных промышленных материалов есть полноценные имена — в честь их изобретателей или каких-то особенных свойств. Остальные довольствуются условным обозначением — т.н. маркой, внутри которой зашифрована ключевая информация. Марку можно сравнить с разновидностью, чей состав и структура жестко определены и неизменны.

Условно все углеродистые стали делят на несколько категорий, используя два определяющих параметра: химсостав материала или его функциональное применение. Причем марки, соседствующие в одной группе по первому делению, с большой долей вероятности станут коллегами и при оценке рабочих свойств.

Металлургический ковш с жидкой сталью

По химическому составу

Ключевым параметром, на который обращают внимание при знакомстве с любой маркой стали, становится процент содержания углерода. Различают три вида:

05кп, 08кп, 10, 15, 20, Ст0, Ст1, Ст2

25, 35, 45, 55, Ст3, Ст4, Ст5, Ст6

58, 60, 65, 70, 75, 80, 85, У9, У12, У13

Низкоуглеродистые стали предназначены преимущественно для изготовления сварных изделий — за счет малой доли углерода они очень податливы к любым процессам сварки, не склонны к образованию флокенов и трещин, легко поддаются механическому резанию и изгибу. В целом, они вязкие и с низкой прочностью.

Термическое упрочнение (закалка, улучшение) не дают ощутимого эффекта по росту прочности или твердости. Зато собственное низкое содержание углерода позволяет применить к материалу особый вид химико-термической обработки — цементацию. Поверхностные слои насыщаются углеродом из внешнего источника, после чего реакция на закалку становится уже совершенно иной. Твердость поверхности зашкаливает, а сердцевина по-прежнему остается мягкой и может работать как гаситель напряжений.

Среднеуглеродистые стали — наиболее ходовые и популярные благодаря своей «серединности» и универсальности. Они лишены недостатков остальных граничных групп и обладают собственными достоинствами.

В частности, такие марки стабильно и уверенно реагируют на закалку, набирая нужную прочность и твердость без дополнительных ухищрений. Но сварку следует вести с осторожностью — увеличенная доза углерода может приводить к развитию трещин при кристаллизации шва.

Их используют для производства деталей машин и механизмов, которые постоянно испытывают рабочие нагрузки. Это разнообразные шестерни, рычаги, колеса, шкивы ременных передач, валы и оси. Углеродистые стали всегда дешевле любых легированных, поэтому марки со средним содержанием углерода предпочтительны, если конечное изделие не испытывает негативного воздействия коррозии, нагрева или охлаждения. Тяжелая работа в обычных условиях — это пример применения таких сплавов.

Высокоуглеродистые стали вообще не рекомендуется варить: они очень склонны к образованию трещин, флокенов и остаточных напряжений в зоне шва. За счет высокой доли углерода на закалку реагируют лучше всех остальных. Результатом становится очень высокая твердость и прочность, вплоть до возникновения пружинящих свойств.

Такие марки закладывают для изготовления специальных деталей машин, пружин различной конфигурации (плоские, витые, тарельчатые), режущего и слесарного инструмента.

По области применения

С учетом химического состава, «круг обязанностей» каждой марки уже предопределен, как и сфера, где ее можно использовать максимально эффективно. Поэтому все углеродистые стали разделили на три категории по области применения:

Категория Группа Примеры марок
Конструкционные Общего назначения Ст0, Ст1, Ст2, Ст3, Ст4, Ст5, Ст5
Качественные 05кп, 08кп, 10, 15, 20, 35, 45, 50, 55, 60
Повышенной обрабатываемости А11, А20, А30, А35
Инструментальные - У8, У10, У11, У12А
Специальные Рессорно-пружинные 65, 70, 75, 80, 85
Для строительных конструкций С235, С285, С590К
Подшипниковые ШХ4
Для крановых рельс К63

Конструкционные углеродистые стали предназначены для изготовления деталей машин и металлоконструкций. Их активно используют во всех сферах промышленности — начиная от металлообработки и заканчивая возведением атомных электростанций.

Среди них выделяют три основных группы:

  • общего назначения — марки со стандартной степенью очистки от постоянных примесей. Нужно преимущественно для сварных строительных конструкций, корпусных деталей и ненагруженных элементов;
  • качественные — повышенной степени очистки и с улучшенными механическими свойствами. Применяются для производства деталей машин и крепежа;
  • повышенной обрабатываемости — с максимально стабильной структурой и постоянством физико-механических свойств по всему объему. Такой материал идет в работу на автоматические линии.

Сварка конструкции из углеродистого проката

Инструментальные углеродистые стали могут похвастать куда большим содержанием углерода, чем все остальные «родственники» — от 0,66 до 1,35%. Такие сплавы используют для производства:

  • режущего инструмента — для работ по дереву, пластику, мягким цветным сплавам и незакаленной стали;
  • мерительного инструмента;
  • слесарного инструмента;
  • оснастки для холодной штамповки;
  • вспомогательной станочной оснастки.

Главное преимущество инструментальных марок — очень сильная реакция на закалку, увеличенная износостойкость, твердость и прочность.

Углеродистая сталь для строительных конструкций идет на массовый выпуск фасонного проката: швеллера, тавровой и двутавровой балки, уголков. В сплавах этого типа заложено мало углерода и ощутимое количество примесей кремния и марганца (до 0,5..0,8%), чтобы обеспечить необходимую вязкость, устойчивость и хорошее восприятие сварочных процессов.

Очень интересна марка ШХ4, случайно попавшая в группу подшипниковых как единственная нелегированная сталь. Ее используют для производства колец железнодорожных подшипников. Содержание углерода там изрядное — в пределах 0,95 до 1,05% — и присутствует щепотка хрома — 0,35..0,5%.

Марку К63 (или просто 63) применяют исключительно для горячей прокатки специального сортамента — рельс крановых путей. Этот сплав обеспечивает необходимый баланс между прочностью, износостойкостью и стрессоустойчивостью. Материал постоянно работает с высокими нагрузками и фрикционным износом от катания колес.

Свойства углеродистых сталей

При рассмотрении той или иной марки, инженера интересует химический состав не сам по себе, а как прямое указание на возможные физико-механические свойства. А те, в свою очередь, отражают диапазон функций, которые характерны для материала.

И с оглядкой на такую взаимосвязь можно сделать утверждение, что каждая марка углеродистой стали по-своему уникальна, потому что обладает собственным, неповторимым набором характеристик.

Прочностные характеристики

Первым параметром, на который ориентируются при проектировании любой конструкции, становится умение материала сопротивляться действующим нагрузкам. Это комплексная характеристика, в которую войдут:

  • предел прочности — размер силовой нагрузки, при которой металл разрушается;
  • предел текучести — размер силовой нагрузки, при которой металл начинает деформироваться;
  • ударная вязкость — способность сопротивляться внезапным силовым воздействиям;
  • относительное удлинение при разрыве — насколько металл будет удлиняться перед тем, как окончательно «порваться» под действием радикальной силовой нагрузки, превышающей предел прочности;
  • твердость — способность сопротивляться внедрению иного твердого тела.

Все эти показатели тесно связаны между собой. И по их оценке можно легко предсказать, как материал поведет себя в работе.

Связь между отдельными механическими характеристиками сплава не всегда прямая. Например, предел прочности всегда в 1,7..2,2 раза больше предела текучести. Зато, чем выше предел прочности сплава — тем зачастую меньшую величину относительного удлинения при разрыве он покажет.

Механические характеристики углеродистых сталей растут вместе с содержанием углерода. Этот элемент — главный признак всех возможностей сплава.

Ниже в таблице приведены ориентировочные показатели разных категорий сталей в «сыром» состоянии.

Как влияет содержание углерода на свойства сталей

Как влияет содержание углерода на свойства сталей

Содержание углерода и легирующих элементов определяет свойства углеродистых сталей. Состав сплава содержит железо, углерод, магний, кремний, марганец, серу и фосфор. Количество одного компонента по отношению к общей массе определяет вязкость, пластичность, прочность и твердость металла. Углеродистые стали классифицируют по химическому составу, способу изготовления, назначению и степени раскисления. Металлопрокат производят из разных марок стали. Компания «Стальмет» продает металлопродукцию из углеродистых сталей, соответствующих ГОСТу 380-2005 и 1050-2005.

Состав стали с углеродом

Технология производства не полностью удаляет примеси из стали. Они занимают малую процентную долю, но присутствуют во всех углеродистых сталях. Содержание углерода разделяет сталь на углеродистую и легированную. Углерод добавляют намеренно, чтобы изменить технические характеристики и механические свойства сталей. Наличие примесей зависит от выбранной плавки сталей. Процентное содержание разных элементов в составе стали:

  • железо — до 99 %;
  • углерод — до 2,14 %;
  • кремний — до 1 %;
  • марганец — до 1 %;
  • фосфор — до 0,6 %;
  • сера — до 0,5 %.

Сталь содержит незначительное количество водорода, кислорода и азота.

3

Какие свойства у стали с разным содержанием углерода?

Механические свойства стали зависят от количества углерода. Увеличение или снижение содержания углерода, даже в сотых долях процента, предопределяет сферу применения металла. Структура углеродистой стали меняется от содержания цементита и феррита. Когда в сталь добавляют больше углерода, сплав становится твердым, прочным и упругим. Когда уменьшают, улучшают ее пластичность и сопротивление удару.

В зависимости от того, сколько углерода в составе сплава, различают несколько видов стали:

  • Низкоуглеродистые содержат меньше 0,25 % углерода. Пластичные, но легко деформируемые. Обрабатываются в холодном состоянии и под действием высокой температуры.
  • Среднеуглеродистые — 0,3-0,6 %. Пластичные, текучие и среднепрочные. Из них изготавливают детали и конструкции, которые будут использовать в нормальных условиях.
  • Высокоуглеродистые — 0,6-2 %. Износостойкие, прочные и дорогие углеродистые стали с низкой вязкостью. Плохо поддаются сварке без предварительного разогрева обрабатываемой зоны до +225оС.

Низкоуглеродистые и среднеуглеродистые стали обрабатывать и варить проще, чем высокоуглеродистые.

Виды углеродистой стали по степени раскисления

У углеродистой стали разная степень раскисления. Бывают спокойные, кипящие и полуспокойные сплавы. Названия связаны с содержанием вредных примесей — оксидом железа. Чем меньше кислорода в сплаве, тем стабильнее и долговечнее стали. После разливки сталь выделяет газы и затвердевает.

В спокойных сталях кислород удален почти полностью, поэтому у них однородная структура и равномерное распределение состава. Полуспокойные чаще содержат 0,15-0,3 % углерода. Таким сталям свойственна неравномерная структура из-за частичного раскисления сплава. Больше всего кислорода у кипящих сталей. Такое раскисление приводит к разному химическому составу. В кипящих сталях много примесей: углерода, азота, серы и фосфора.

1

Чем отличаются инструментальные и конструкционные стали?

Сфера применения и способ изготовления — главные отличия сталей. Конструкционные углеродистые стали выплавляют в конвертерах и мартеновских печах. Они бывают высокого и обыкновенного качества. Их разделяют на группы А, Б и В. Маркируют соответственно буквами и цифрами. В обозначении буква говорит о группе стали, а цифры указывают на содержание углерода, увеличенное в 100 раз. Чем больше значение, тем прочнее сталь. Стали обыкновенного качества с повышенным содержанием марганца маркируются буквой «Г».

Сталь группы А поставляют по механическим свойствам, группы Б — по химическому составу, группы В — по механическим свойствам и химическому составу. Это означает, что сталь группы А обладает заявленными свойствами, а сталь группы Б отвечает нормативной документации.

Углеродистую инструментальную сталь выплавляют в мартеновской или электрической печи. Она бывает спокойной, полуспокойной и кипящей. Ее разделяют на качественную и высококачественную сталь. Доля примесей в качественной инструментальной стали регламентирована: серы должно быть не более 0,4 %, фосфора — не больше 0,6 %. Цифра в маркировке говорит о содержании углерода в сотых долях. Также она обозначает условный номер марки материала.

2

Сферы применения углеродистых сталей

Углеродистые стали обыкновенного качества используют для изготовления двутавра, уголка, швеллера, прута, листа и другого проката. В производстве инструментов и деталей для разных областей машиностроения применяют углеродистую сталь высокого качества.

Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.

Углерод в составе металлов и его влияние на свойства материалов

Количество углерода в сплаве определяет механические характеристики и другие свойства углеродистых сталей. За счет изменения состава можно сделать материал более твердым или пластичным, прочным или вязким.

Стали, которые именуются углеродистыми, классифицируются по составу, методам производства, степени окисления, областям применения. Сплавы с разной степенью цементита востребованы во многих сферах. Рассмотрим взаимосвязь содержания углерода в материалах и особенностей их использования.


На что влияет содержание углерода в металле?

Существующие производственные процессы не позволяют полностью удалить примеси из стали. Поэтому небольшой их процент присутствует во всех углеродистых соединениях. Также на их наличие влияет выбранный метод плавки.

В зависимости от доли углерода в металле выделяются углеродистая и легированная стали. Этот компонент позволяет скорректировать механические и технические характеристики материала.

В стали содержится:

  • до 99 % железа;
  • до 2,14 % углерода;
  • не более 1 % кремния;
  • до 1 % марганца;
  • максимум 0,6 % фосфора;
  • до 0,5 % серы.

Также сталь содержит небольшую долю водорода, кислорода, азота.

Для чего добавляют углерод в металл?

  • Присутствует во множестве марок стали. Благодаря добавке материал приобретает широкий диапазон механических свойств. В частности, углерод влияет на соотношение перлита и феррита в структуре твердого металла, расширяет температурный диапазон, при котором железо остается в устойчивом состоянии.
  • Считается вредной примесью, когда речь идет о сталях специального назначения, таких как стойкие к коррозии, жаропрочные, электротехнические и пр.
  • В процессе окисления забирает основную долю кислорода, поступающего в ванну с целью удаления примесей. Например, в мартеновском скрап-рудном и конвертерном процессах затрачивается более 75–80 % O2. Поэтому важная задача управления окислительным рафинированием — это регулировка удаления углерода в материале.
  • Остается единственной примесью при изготовлении стальных сплавов, окисление которой приводит к выделению газов CO2 и CO. Объем этих побочных продуктов многократно превосходит количество металла. К примеру, окисление 1 кг углерода при температуре +1500 °C вызывает образование свыше 10 м 3 CO. Газ выходит из ванны в виде пузырей. Благодаря этому металл и шлак перемешиваются, возрастает скорость протекания массо- и теплообменных процессов. За счет этого на плавку тратится меньше времени.
  • Пузыри оксида углерода проникают через расплав. Они параллельно забирают с собой газы и неметаллические включения в процессе плавки и вакуумирования.
  • Окисление углерода приводит к нагреву ванны. Это создает условия для протекания кислородных процессов. Например, на конвертерном этапе обработки металла нагревание при окислении углерода отвечает за 20–25 % приходной составляющей теплового баланса плавки. Таким образом, сплав нагревается до температуры выпуска при значительном содержании лома в шихте.
  • Количество углерода в металле и его постоянное окисление влияют на содержание оксидов железа в шлаке и кислорода в стали. От окисленности ванны зависят потери железа со шлаком в форме оксидов. А также угар легирующих добавок и раскислителей, остаточное содержание прочих примесей и пр.
  • Окисление интересующего нас элемента в ходе затвердевания металла в изложницах приводит к формированию слитков стали различных видов. Речь идет о спокойном, полуспокойном и кипящем типе.

При увеличении доли углерода в металле возникают такие изменения:

  • повышается электросопротивление;
  • ухудшается проницаемость магнитов;
  • увеличивается коэрцитивная сила;
  • снижается плотность индукции магнитов.

Свойства стального сплава с разным содержанием углерода

При рассмотрении свойств углерода в металле важно понимать, что характеристики этих сталей определяются сложной структурой молекулярной решетки. Например, у цементита каждая ячейка имеет форму октаэдра.

Такая специфика обеспечивает ряд важных технико-экономических особенностей сплавов:

  • высокую прочность и несущую способность;
  • мягкую сердцевину в сочетании с твердым поверхностным слоем. Объясняется плохой прокаливаемостью: это качество компенсирует хрупкость металла;
  • значительный срок службы — до 50 лет при нормальных условиях эксплуатации либо при использовании средств, защищающих сталь от появления ржавчины;
  • низкую себестоимость технологии выплавки. Применяется на предприятиях с конца XIX века: именно тогда были изобретены мартеновские печи.

Количество углерода в металле влияет на вид стали:

  • низкоуглеродистая (до 0,25 % в составе). Обладает пластичностью, при этом легко поддается деформации. Металл обрабатывается при высоких температурах либо в холодном виде;
  • среднеуглеродистая сталь (от 0,3 до 0,6 %). Характеризуется пластичностью, текучестью. Указанное содержание углерода в металле позволяет применять его как материал для конструкции и деталей, эксплуатируемых в нормальных условиях. Имеет средний коэффициент прочности;
  • высокоуглеродистая сталь (от 0,6 до 2 %). Выделяется превосходной износостойкостью, низкой вязкостью. Для проведения сварки предварительно разогревается до +225 °C. Это прочный и дорогостоящий металл.

Стоит отметить, что низко- и среднеуглеродистые стальные сплавы легче поддаются обработке, свариванию.

Каждая марка обладает определенной сферой применения и отличается от других видов методом изготовления.

Конструкционные стали

Содержат большую долю углерода. Производятся с использованием специальных конвертеров и мартеновских печей. При маркировке конструкционных сталей берут три первые буквы алфавита и цифры. Числовое значение указывает на количество углерода. А буквы позволяют определить принадлежность сплава к конкретной группе.

Если металл содержит марганец, маркировка дополняется литерой Г. Группа А делит сплавы по механическим свойствам. Б — по процентному содержанию примесей. В — по двум показателям сразу. Так, при изготовлении стали группы А производители ориентируются на необходимые качества. А при выпуске сплавов Б опираются на соответствие нормам.

Инструментальные стали

Выпускаются в электрической или мартеновской печи. Первый тип оборудования наиболее распространен. Марки сплава обладают различной вязкостью и степенью раскисления. Кроме того, инструментальные стали делятся на высококачественные и качественные.

Технология производства углеродистых сталей

Информация о содержании углерода в металле позволяет использовать разные методы изготовления сталей. Для каждой технологии существует особое оборудование.

Специалисты выделяют три основных типа печей, применяемых для этих потребностей. Это плавильные конверторные и мартеновские. А также самые распространенные — электрические.

В конверторном оборудовании все компоненты сплава расплавляются одновременно, после чего смесь обрабатывается техническим кислородом. Чтобы удалить присутствующие примеси путем их превращения в шлак, в горячий металл вносится известь. Процесс производства сопряжен с активным окислением металла, что приводит к выделению большого количества угара.

Применение конверторных печей для выработки углеродистых сталей предполагает установку дополнительных фильтровальных систем. Это связано с тем, что во время работы образуется много пыли. Монтаж дополнительного оборудования во всех случаях приводит к повышенным финансовым затратам.

Тем не менее этот недостаток не препятствует активному использованию конверторного метода на металлургических заводах. Специалисты ценят этот способ за высокую производительность.

Мартеновские печи обеспечивают высокое качество разных сортов металлов. Эта технология производства углеродистой стали состоит из следующих этапов:

  • в отдельный отсек печи загружается стальной лом, чугун и пр.;
  • металлы нагреваются до высокой температуры;
  • все составляющие будущего сплава становятся однородной раскаленной массой;
  • между компонентами в процессе плавления происходит химическая реакция;
  • из печи поступает готовый металл.


Электрические печи работают по совершенно иному принципу. Здесь отличается методика нагрева материалов. Благодаря применению электричества в процессе разогрева минимизируется окисляемость металла, что в свою очередь приводит к сокращению доли водорода в сплаве. Это положительно влияет на структуру и качество готовой стали.

Области использования углеродистых сталей

Изготовление деталей машин

Прежде чем начать выпуск определенной детали из углеродистых сталей, оцениваются условия ее дальнейшей работы. Марки металла, содержащие малую долю добавки, подходят для изделий, которые не планируется подвергать серьезным нагрузкам, воздействиям вибрации и ударов. К таким элементам относятся втулки, дистанционные кольца, колпаки, крышки, маховики, прихваты, планки, стаканы для подшипников.

В отдельную категорию выделяются корпусные изделия и сварные каркасные конструкции. В них низкая прочность сталей компенсируется за счет высокой толщины несущего сечения. В то же время податливость материала при сварке обеспечивает повышенный уровень общей технологичности.

Детали, которые в процессе эксплуатации будут подвергаться серьезным нагрузкам, изготавливаются из среднеуглеродистых сталей. В дальнейшем они подвергаются закалке. При условии цементации также используются марки металла с пониженным содержанием углерода.

Эти требования действуют для звездочек цепных передач и шкивов ременных приводов, шестерён, зубчатых колёс, осей, валов, шпинделей, роликов, рычагов, штоков, поршней цилиндров.

Сначала делают заготовку. На этом этапе выполняется резка проката, отливка, поковка или штамповка. Затем переходят к механической обработке и температурной стадии. В конце выполняют доводочные, отделочные операции при помощи абразива. Это шлифовка, хонингование, притирка, суперфиниширование. Важно учесть, что эффективно обработать незакаленные стали с использованием абразивного инструмента невозможно. Дело в том, что процесс приводит к засаливанию режущих зерен.

Высокоуглеродистые рессорно-пружинные виды стали используются лишь в особых случаях. Ведь металл с большим количеством этого вещества в составе предусматривает более сложную обработку. Кроме того, любые дефекты тяжело устранить — например, заварить деталь.

Обычно этот сорт стали применяется для навивки спиральных пружин, производства направляющих скольжения, цанг, рессор и прочих элементов, от которых требуется твердость в сочетании с упругостью.



Рессор

Изготовление инструмента

Назначение углеродистых инструментальных сталей ясно уже из названия. Их использование ограничено повышенной температурой. При нагреве до +250…+300 °C закаленный металл утрачивает твердость и прочность, отпускается.

Кроме того, важно учитывать, что легированные стали превосходят углеродистые по функциональности. Вторые нельзя использовать для резки или выдавливания материалов, имеющих более высокие показатели прочности.

Все указанные особенности позволяют использовать металлы для выпуска ручного инструмента, предназначенного для холодной обработки пластика, дерева, мягких цветных металлов.

В процессе задействуются исключительно кованые заготовки, а не литье. Среди проката подбирается упрочненный сортамент, созданный специально для производства инструмента. Затем металл с заданной долей углерода в составе точится, сверлится, фрезеруется, закаляется и доводится до нужного состояния с помощью абразива. Необходимо отметить, что шлифовка относится к наиболее трудоемким процедурам. Именно в это время задаются требуемые параметры инструмента. Кроме того, все перечисленные операции помогают удалить с металла поверхностный слой, содержащий дефекты после термической обработки.

Производство крепежа


В ГОСТ 1759.4-87 содержатся требования к механическим свойствам крепежа с резьбой. В соответствии с этим стандартом винты, болты, шпильки выпускаются из следующих сортов углеродистых сталей:

  • 20 и 10 — для классов прочности 3.6, 4.8, 4.6, 6.8, 5.8. Актуально, если не предполагается термическая обработка;
  • 35, 30, 45 — для классов прочности 6.6 и 5.6. С выполнением температурной обработки;
  • 35 — для классов прочности 9.8, 8.8, 12.9 и 10.9. При этом термическая обработка считается обязательным этапом.

Крупносерийное и массовое производство метизов из материала, в составе которого содержится углерод, предполагает применение высадочных автоматов, а также технологии холодной или горячей штамповки. После этого на заготовки наносят резьбу.

Если метизы выпускаются мелкой серией, доступен заказ нестандартных крепежных изделий. Партия производится на универсальном оборудовании для металлической резки.

Для изготовления крепежа нередко применяется особая группа углеродистых сталей, отличающаяся повышенной обрабатываемостью. При маркировке таких сортов на первом месте стоит буква А. Металлы отличаются от остальных сплавов максимальной однородностью химического состава и структуры по всему объему проката. Ввиду этого при их обработке на станках-автоматах нет риска перепада нагрузки на инструмент. Ведь эта проблема связана с разной твердостью сплава либо с присутствием в его структуре микродефектов в виде неметаллических включений.

Подводя итог, можно сказать, что углеродистые стали подходят для решения множества технических задач: от сборки несущих конструкций до производства элементов машин. Марки различаются в зависимости от доли углерода в металле.

Почему стоит выбрать нашу компанию?

Мы с уважением относимся ко всем потребностям клиентов и с одинаковым усердием выполняем задачи любого объема.

Наши производственные мощности рассчитаны на различные материалы: цветные металлы, нержавеющую сталь. При выполнении заказа наши сотрудники применяют все доступные способы механической обработки. Новейшее высокотехнологичное оборудование позволяет добиваться максимально точного соответствия изначальным чертежам.

Чтобы заготовка приблизилась к предъявленному заказчиком эскизу, наши работники задействуют универсальное оборудование, которое очень точно затачивает инструмент для особо сложных и деликатных операций. В производственных цехах металл приобретает пластичность. Из него можно создать любую заготовку.

Наши специалисты строго соблюдают требования ГОСТ и всех технологических нормативов. На каждом шаге обработки металла осуществляется жесткий контроль качества. Это позволяет нам гарантировать клиентам добросовестно выполненный заказ.

Огромный опыт наших специалистов позволяет им на выходе получать образцовое изделие, соответствующее всем существующим требованиям. При этом мы ориентируемся на инновационные технологические наработки и отталкиваемся от мощной материальной базы.

Мы принимаем заказы у клиентов со всех регионов России. Если вам требуется услуга металлообработки, наши менеджеры готовы уточнить все условия. В случае необходимости предоставляем бесплатную профильную консультацию.

Углеродистая сталь

Углеродистая сталь отличается содержанием углерода до 2,14% без наличия легирующих элементов, небольшим количеством примесей в составе, и небольшим содержанием магния, кремния и марганца. Это в свою очередь влияет на свойства и особенность применения. Она является основным видом продукции металлургической промышленности.

Состав

В зависимости от количества углерода, разделяют углеродистую и легированную сталь. Наличие углерода придает материалу прочность и твердость, а также уменьшает вязкость и пластичность. Его содержание в сплаве на уровне до 2,14%, а минимальное количество примесей, обусловленное технологическим процессом изготовления, позволяет основной массе до 99,5% состоять из железа.

состав углеродистой стали

Высокая прочность и твёрдость - вот что характеризует углеродистую сталь.

Примеси, которые постоянно входят в структуру углеродистой стали, имеют небольшое содержание. Марганец и кремний не превышают 1 %, а сера и фосфор находятся в пределах 0,1 %. Увеличение количества примесей характерно для другого типа стали, который называют легированным.

Отсутствие технической возможности полного удаления примесей из готового сплава, позволяет входить в состав углеродистой стали таким элементам как:

  • водороду;
  • азоту;
  • кислороду;
  • кремнию;
  • марганцу;
  • фосфору;
  • сере.

Наличие этих веществ обусловлено методом плавки стали: конвертерным, мартеновским или другим. А углерод, добавляется специально. Если количество примесей, трудно отрегулировать, то корректируя уровень углерода, в составе будущего сплава, влияют на свойства готового изделия. При наполнении материала углеродом до 2,4 %, стали относят к углеродистым.

Характеристика

Характеристики и структуру металла меняют, используя термическую обработку, посредством которой, достигают нужной твердости поверхности или других требований для применения стальной конструкции. Однако, не все структурные свойства поддаются корректировке с помощью термических методов. К таким структурно-нечуствительным характеристикам относят жесткость, выраженную модулем упругости или модулем сдвига. Это учитывают при проектировании ответственных узлов и механизмов в различных сферах машиностроения.

В случаях, когда расчет прочности узла требует применения деталей малых размеров, способных выдержать требуемую нагрузку, применяют термическую обработку. Такое воздействие на «сырую» сталь позволяет увеличить жесткость материала в 2-3 раза. К металлу, который подвергают такому процессу, предъявляют требования по количеству углерода и других примесей. Называют эту сталь – повышенного качества.

Классификация углеродистых сталей

По направленности применения продукции, углеродистую сталь разделяют на инструментальную и конструкционную.

Последнюю из них используют для возведения различных строений и остовов деталей. Из инструментальных, изготавливают прочный инструмент для выполнения любых работ, вплоть до обработки металлов резанием. Применение металлических изделий в хозяйстве, потребовало выделить сталь в разные категории, обладающие специфическими свойствами: жаропрочную, криогенную и коррозионно-стойкую.

классификация стали углеродистой

По способу получения углеродистые стали делят на:

  • электростали;
  • мартеновские;
  • кислородно-конвертерные.

Различия структуры сплава обусловлены наличием разных примесей, характерных для того или иного способа плавки.

Отношение стали к химически активным средам, позволило разделить изделия на:

  • кипящие;
  • полуспокойные;
  • спокойные.

Содержание углерода делит сталь на 3 категории:

  1. заэвтектоидные, в которых количество углерода превышает 0,8 %;
  2. эвтектоидные, с содержанием на уровне 0,8 %;
  3. доэвтектоидные – менее 0,8 %.

Именно структура, является характерным признаком, при определении состояния металла. У доэвтектоидных сталей, структура состоит из перлита и феррита. У эвтектоидных – чистый перлит, а заэвтектоидные, характеризуются перлитом с примесями вторичного цементита.

При увеличении количества углерода, сталь повышает прочность и уменьшает пластичность. Большое влияние оказывается также на вязкость и хрупкость материала. При повышении процентного содержания углерода, уменьшается ударная вязкость и повышается ломкость материала. Не случайно, при содержании, на уровне более 2,4 %, металлические сплавы относят уже к чугунам.

По количеству углерода, в составе сплава, сталь бывает:

  1. низкоуглеродистая (до 0,29 %);
  2. среднеуглеродистая (от 0,3 до 0,6 %);
  3. высокоуглеродистая (более 0,6 %).

Маркировка

При обозначении углеродистых сталей обычного качества, используют буквы Ст, которые сопровождаются цифрами, характеризующими содержание углерода. Одна цифра показывает количество, увеличенное в 10, а две цифры – в 100 раз. При гарантии механического состава сплава, перед обозначением добавляют Б, а соблюдение химических составляющих веществ – В.

В окончании маркировки, две буквы показывают степень раскисления: пс – полуспокойного, кп – кипящего состояния сплавов. Для спокойных металлов этот показатель не указывают. Увеличенное количество марганца в структуре изделия, обозначают буквой Г.

При обозначении углеродистых сталей высокого качества, используемых при изготовлении инструментов, применяют букву У, рядом с которой прописывают число, подтверждающее количество процентов углерода в 10-кратном размере, независимо от того, будет оно двухзначным или однозначным. Для выделения сплавов повышенного качества, к обозначению инструментальных сталей добавляют букву А.

Примеры обозначения углеродистых сталей: У8, У12А, Ст4кп, ВСт3, Ст2Г, БСт5пс.

Производство

Изготовлением металлических сплавов занимается металлургическая промышленность. Специфика процесса получения углеродистой стали, заключается в переработке чугунных заготовок с уменьшением таких взвесей, как сера и фосфор, а также углерод, до требуемой концентрации. Различия методики окисления, посредством которой удаляют углерод, позволяет выделить различные виды плавки.

Кислородно-конвертерный способ

Основой методики был бессемеровский метод, который предусматривает продувку жидкого чугуна воздухом. Во время этого процесса, углерод окислялся и удалялся из сплава, после чего, чугунные слитки постепенно превращаются в сталь. Производительность данной методики высока, но сера и фосфор оставались в металле. Кроме того, углеродистая сталь насыщается газами, в том числе, азотом. Это улучшает прочность, но снижает пластичность, сталь становится более склонной к старению и изобилию неметаллическими элементами.

Учитывая низкое качество стали, получаемой бессемеровским методом, его перестали использовать. На замену пришел кислородно-конвертерный способ, отличием которого является использование чистого кислорода, вместо воздуха, при выполнении продувки жидкого чугуна. Использование определенных технических условий, при продувке, значительно снизило количество азота и других вредных примесей. В результате, углеродистая сталь, полученная кислородно-конвертерным способом, по качеству приближена к сплавам, переплавляемым в мартеновских печах.

Технико-экономические показатели конверторного способа подтверждают целесообразность такой плавки и позволяют вытеснить устаревшие методы изготовления стали.

Мартеновский метод

Особенностью способа получения углеродистой стали, является выжигание углерода из чугунных сплавов не только с помощью воздуха, но и за счет добавления железных руд и ржавых изделий из металла. Этот процесс обычно происходит внутри печей, к которым подводят подогретый воздух и горючий газ.

Размер таких плавильных ванн очень велик, они могут вмещать до 500 тонн расплавленного металла. Температура в таких емкостях поддерживается на уровне 1700 ºC, а выжигание углерода происходит в несколько этапов. Сначала, благодаря избытку кислорода в горючих газах, а когда образуется шлак над расплавленным металлом, посредством оксидов железа. При их взаимодействии образуются шлаки фосфатов и силикатов, которые, в дальнейшем удаляются и сталь приобретает требуемые по качеству свойства.

Плавка стали в мартеновских печах проходит около 7 часов. Это позволяет отрегулировать нужный состав сплава, при добавлении различных руд или лома. Углеродистая сталь давно изготавливается этим методом. Такие печи, в наше время, можно найти на территории стран бывшего Советского Союза, а также – в Индии.

Электротермический способ

Изготовить качественную сталь с минимальным содержанием вредных примесей, удается при плавке в вакуумных топках электродуговых или индукционных печей. Благодаря улучшенным свойствам электростали, удается изготовить жаростойкие и инструментальные сплавы. Процесс преобразования сырья в углеродистую сталь, происходит в вакууме, благодаря чему качество полученных заготовок, будет выше, относительно рассмотренных ранее методов.

Стоимость такой обработки металлов дороже, поэтому данный метод используют при технологической необходимости в качественном изделии. Для удешевления технологического процесса используют специальный ковш, который разогревают внутри вакуумной емкости.

Применение

Углеродистая сталь, благодаря своим свойствам, нашла широкое применение в различных отраслях народного хозяйства, особенно, в машиностроении. Использование в конструкторских расчетах способности металла сопротивляться нагрузкам и иметь высокие пределы усталости, позволяет изготавливать из углеродистой стали такие ответственные детали машин, как: маховики, зубчатые передачи редукторов, корпуса шатунов, коленчатые валы, поршни плунжерных насосов, технологическую оснастку для деревообрабатывающей и легкой промышленности.

круг стальной

Высокоуглеродистые стали с увеличенным количеством марганца, применяют для изготовления таких деталей, как пружины, рессоры, торсионы и подобные узлы, требующие упругости сплава. Инструментальные сплавы повышенного качества, широко применяют при производстве инструментов, которыми обрабатывают металлы: резцы, сверла, зенковки.

Использование углеродистой стали с низким и средним количеством содержания углерода, нашло применение при возведении металлических конструкций и коммуникаций. Специальные прокатные станы металлургических комбинатов изготавливают, постоянно пользующиеся спросом, различные профили:

  • уголки;
  • швеллеры;
  • трубы;
  • двутавры;
  • другие, в том числе заказные, виды профилей.

Во всех отраслях широко используется листовой прокат, который отличается размерами, качеством и толщиной изготавливаемых изделий.

Используя специфические свойства углеродистых сталей, их применяют в различных областях народного хозяйства. Знание специфики отличий тех или иных сплавов, позволит грамотно и технологично применить требуемый материал в нужном месте.

Низкоуглеродистая сталь: свойства и состав

Большая часть производства в той или иной степени применяют низкоуглеродистую сталь. Строительство, машиностроение, станкостроение – вот неполный список отраслей, где она активно применяется.

Состав по ГОСТ

Сталь - это сплав железа с углеродом, процент содержания последнего при этом не должно превышать 2,14%. Все что выше этого значения - уже чугун. Низкоуглеродистая сталь отличается пониженным содержанием углерода, что откладывает свой отпечаток как на механические, так технологические свойства.

швеллер

Существует несколько стандартов, которые регулируют состав углеродистых сплавов. Среди них наиболее востребованы ГОСТ 380-2005 и ГОСТ 1050-90. Согласно им низкоуглеродистой может называться сталь, которая включает в себя:

  • Углерод (до 0,25%). Он позволяет термически упрочнять сталь, в результате чего твердость и временное сопротивление металла может увеличиться в несколько раз.
  • Кремний (до 0,35%) Он улучшает механические характеристики, особенно, это касается ударной вязкости и прочности. Также увеличение кремния в сплаве положительно сказывается на свариваемости.
  • Марганец (до 0,8%) относится к группе полезных примесей. По своему молекулярному строению схож с кислородом и активно вступает с ним химическую связь, что препятствует образованию оксида железа. Сталь, легированная марганцем, более однородна по составу, лучше справляется с динамическими нагрузками, становиться податливей к термическому упрочнению.
  • Сера (до 0,06%) – вредная примесь. Делает металл красноломким, усложняет обработку давлением: ковкой, прокаткой и т.д. Снижает плотность сварного шва. Повышает отпускную хрупкость.
  • Фосфор (до 0,08%) ответственен за появление хладноломкости. Искажает кристаллическую структуру стали. Снижает ее ударную вязкость. Ухудшает прочность и выносливость металла. Но не всегда фосфор является вредной примесью. В некоторых случаях его добавление оправдано, т.к. он увеличивает податливость металла резанию. Но все равно, общее количество его не должно превышать 0,1%.
  • Кислород – самый нежелательный элемент в составе стали. Введение 0,001% кислорода способно снизить прочность металла на 50%. Препятствует обработки сплава режущим инструментом.
  • Азот. После попадания его в металл, образует нитриды железа – очень хрупкое соединение, которое снижают как прочностные, так и технологические свойства сплава.

Особенности низкоуглеродистых сталей

Низкоуглеродистая сталь по сравнению с другими сталями крайне пластична. Их относительно удельное сопротивление на сжатие составляет 23-35% в зависимости от процента содержания углерода в составе. Чем его больше, тем пластичность ниже.

Все марки низкоуглеродистых сталей имеют первую категорию свариваемости.

Процесс сварки не требует сложных подготовительных операций: прогрева поверхности, обезжиривания и т.д. Сварной шов получается плотным, при работе на сжатие по прочности сравним с цельным металлом. Пониженная углеродистая сталь поддается всем видам сварки: от обычной электродуговой до вакуумной в среде инертных газов.

Низкоуглеродистая сталь не обладает повышенными прочностными характеристиками. Временное сопротивление на разрыв для нее колеблется в пределах 320-450 МПа. То же самое можно сказать относительно твердости. Без дополнительного упрочнения твердость стали составляет 22-23 единиц по шкале Роквелла.

Низкоуглеродистые марки не поддаются закалке в силу малого содержания углерода в составе. Среди немногочисленных вариантов улучшения сталям своих механических свойства выделяют цементацию. Это разновидность химико-термического упрочнения, при котором поверхность металла принудительно насыщают углеродом, что делает металл более твердым и износостойким. Помимо этого, в качестве механического упрочнения хорошо зарекомендовали себя разного рода наклепы, обкатка роликами и прочее.

Существует несколько основных критериев по которым подразделяются углеродистые марки. Одним из самых важных среди них являются условия проведения раскисления. Выделяют следующие низкоуглеродистые стали:

  • Спокойные. Включает минимальное содержание в составе окиси железа, что делает процесс выплавки «спокойным» - без бурного выделения углекислоты с зеркала металла. Возможным это стало благодаря введению раскислителей: алюминий, марганец и кремний. Все выходящие газы скапливаются в усадочной раковине, которая впоследствии обрубается, что в результате дает плотный и однородный металл.
  • Кипящие. Раскисляются одним марганцем. Имеют увеличенное количество оксида железа в составе. Процесс плавки сопровождается выделением углекислого газа, что создает впечатление будто металл кипит. Эти стали менее прочны и менее однородны по химическому составу, но при этом стоят дешево и имеют низкий процент отходов в производстве.
  • Полуспокойные. Помимо марганца для удаления кислорода дополнительно применяют алюминий. По характеристикам эта углеродистая сталь представляет собой что-то среднее между кипящими и спокойными сплавами.

Помимо степени раскисления низкоуглеродистые марки также классифицируются по наличию неметаллических включений в своем составе. Исходя из этого они различаются на:

  • Обыкновенного качества;
  • Качественные машиностроительные.

Рассмотрим каждый пункт более подробно.

Стали обыкновенного качества. К ним не предъявляются строгие требования как к выбору шихты, так и к плавке и разливке. Фосфора в них допускается не более 0,08%, а серы не более 0,06%. Разливают такой сплав в крупногабаритные слитки, поэтому для них характерно появление зональной ликвации.

пруток

Сталь обыкновенного качества идет на производство разного рода горячекатаного металлопроката: прутки ГОСТ 4290-90, швеллеры ГОСТ 8240-97, балки ГОСТ 8239-95, уголки ГОСТ 8509-95 и прочие. Этот прокат служит материалом для производства разного рода болтовых, клепочных и сварных металлоконструкций. В станкостроении из нее производят малоответственные детали не требующие проведения термобработки: оси, вальцы, зажимы и т.д.

Исходя из гарантированности указанных свойств сталь обыкновенного качества бывает:

  • Группы «А». Поставка происходит по механическим характеристикам, химический состав при этом не нормируется. Маркируется «Ст» и цифрой от 0 до 6. (Ст.6, Ст.5 и т.д.). С увеличением цифры возрастает и прочность выбранного сплава.
  • Группы «Б». Такие металлы идут с нормированным химсоставом. В маркировке дополнительно прописывается способ получения сплава.
  • Группы «В». Здесь в сталях регулируются одновременно прочностные характеристики и химсостав. В маркировке дополнительно указывается буква В.

Качественные машиностроительные стали производятся в более строгих условиях выплавки. Обладают меньшим количеством вредных образований в химсоставе: сера до 0,04%, фосфор до 0,04%. Маркируются надписью «сталь» и цифрой, указывающей количество карбидов в сотых долях процента.

Сталь 08 и 10 применяются в ответственных узлах машиностроения. Из них производят втулки, змеевики, прокладки и т.д. Перед использованием все детали обязательно подвергаются цементации или любому другому химико-термическому упрочнению.

Стали 15, 20, 25 используются для узлов, работающих на износ и не испытывающих повышенных механических нагрузок: рычаги, шестерни, толкатели клапанов и т.д.

состав низкоуглеродстых марок

Способы получения

Выделяют следующие низкоуглеродистые стали в зависимости от способа выплавки:

  • Конверторные печи. Металл плавиться за счет химической теплоты экзотермических реакций. Удаление излишнего углерода происходят при продувке кислорода сквозь зеркало металла. Плюсом такого способа является высокая производительность. Минусом – повышенная концентрация азота на выходе.
  • Мартеновские печи. В рабочей камере сжигается жидкое топливо. Необходимая температура плавки достигается за счет теплоты отходящих газов. При таком способе сплав получается более раскисленным и с меньшим содержанием неметаллических примесей.
  • Электропечи. Обладают более совершенным способом выплавки. Все качественные марки низкоуглеродистой стали выплавляются только таким методом.Достоинством здесь выступает простота регулировки теплового режима и возможность использования шлаков и флюсов. Минус – значительные затраты электроэнергии.

Низкоуглеродистая сталь в большей степени востребована машиностроением и, особенно, строительством. Именно эти отрасли обеспечивают ее постоянным спросом вот уже на протяжении нескольких десятков лет. И ссудя по обширно обустраивающимся городам и развивающейся промышленности потребность в углеродистой стали будет только увеличиваться.

Читайте также: