Соединение углерода с металлом

Обновлено: 02.07.2024

МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ, химические соединения, в которых углеродные атомы или органические группы связаны непосредственно с атомами металлов. Металлоорганические соединения играют важную роль в химии, во-первых, поскольку удобны для синтеза других соединений, во-вторых, потому что структуры некоторых из них привели химиков к новым полезным концепциям химической связи и, в-третьих, благодаря тому, что участвуют как нестойкие промежуточные соединения (интермедиаты) в каталитических реакциях.

Первое металлоорганическое соединение, диэтилцинк (C2H5)2 Zn, выделено в 1847 английским химиком Э.Франклендом, который пытался удалить атом иода из этилиодида C2H5I посредством реакции с цинком. В действительности реакция протекала по уравнению

и Франкленд получил бесцветную жидкость, диэтилцинк, которая самовоспламенялась при контакте с воздухом и бурно реагировала с водой. (Большинство металлоорганических соединений чрезвычайно реакционноспособны и обычно возгораются на воздухе.) Примерно в то же время в Копенгагене датский химик В.Цейзе также случайно получил соль K[PtCl3C2H4] (соль Цейзе), содержащую, как стало известно позднее, этилен, связанный с платиной.

Эти вещества являются представителями двух главных классов металлоорганических соединений: тех, у которых связи металла с углеродом (M–C) локализованы, и тех, где они делокализованы (в случае переходных металлов). В соединениях первого класса, образуемых всеми металлами, органические группы объединены простыми связями, например, M–CH3 или M–C6H5. Существуют также соединения типов M=CR2 и MєCR, с двойными и тройными металл-углеродными связями, – это карбеновые и карбиновые соединения соответственно.

Другой большой класс металлоорганических соединений – p-комплексы. Их называют так потому, что в химическом связывании с d-орбиталями переходных металлов участвуют p-электроны и p-орбитали ненасыщенных органических соединений с C=C-, CєC-, C=N- и т.п. связями (см. также ХИМИЯ ОРГАНИЧЕСКАЯ; МОЛЕКУЛ СТРОЕНИЕ). p-Комплексы включают все соединения, где органическая группа с кратными углерод-углеродными связями присоединена к переходному металлу.

p-Комплексы.

У этилена связь направлена перпендикулярно оси связи C=C (а); циклические олефины могут быть связаны по схеме б; ароматические кольца – нейтральные, как в бензоле C6H6, или заряженные, как у циклопентадиенил-аниона C5H5 – , - могут быть связаны по схеме в. Первое и наиболее известное из таких «сандвичевых» соединений - ферроцен (C5H5)2Fe - имеет структуру типа в. Ацетилены могут быть связаны с двумя атомами металлов по схеме г. Известны тысячи p-комплексов, многие из них - со сложными структурами.

СИНТЕЗ И ПРИМЕНЕНИЕ

Синтез.

Металлоорганические соединения щелочных металлов и магния широко используются как реагенты в органическом синтезе. Их можно приготовить в виде эфирных растворов по реакциям типа (1) и (2):

Смешанные магнийорганические соединения типа RMgX, где X = Cl, Br или I, известны под названием «реактивы Гриньяра» по имени французского химика В.Гриньяра, разработавшего условия их применения для органического синтеза (впервые их получил в 1899 Ф.Барбье – учитель Гриньяра). Реактивы Гриньяра вступают в многочисленные реакции и могут быть использованы, в частности, для синтеза других металлоорганических соединений, например:

Литийорганические соединения типа RLi широко применяются в фармацевтической промышленности для получения разнообразных органических соединений. Примером может служить синтез P(CH3)3:

Алюминийорганические соединения можно получить по реакции типа:

Применение.

Относительно немногие металлоорганические соединения используются как таковые; это, в основном, - кремнийорганические соединения (см. также КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ) и тетраэтилсвинец Pb(C2H5)4, применявшийся как антидетонатор для бензина (см. также НЕФТЬ И ГАЗ). Оловоорганические соединения используются в красках, препятствующих биологическому обрастанию судов и подводных сооружений, и как катализаторы в производстве некоторых пластмасс. Ртутьорганические соединения применялись в сельском хозяйстве в качестве фунгицидов, но их использование запрещено во многих странах по экологическим соображениям, т.к. ртутьорганические соединения превращаются микроорганизмами в водорастворимый и токсичный ион метилртути CH3Hg + (послуживший причиной экологического бедствия в Минамате в Японии). В природе важную роль играет витамин B12, кобальторганическое соединение, дефицит которого в организме приводит к анемии; его действие, по-видимому, заключается в переносе органических групп путем образования Co–C-связей (см. также ПЛАСТМАССЫ; ВИТАМИНЫ).

Катализ.

В промышленности большое значение имеют каталитические реакции, в которых металлоорганические соединения возникают в виде нестойких интермедиатов. Эти реакции могут протекать гомогенно в растворах или гетерогенно, с участием металлоорганических частиц на таких носителях, как оксид алюминия, силикагель или уголь (см. также КАТАЛИЗ). Ниже приводятся примеры катализируемых металлами реакций, имеющих важное промышленное значение.

Полимеризация олефинов.

Полимеризация этилена и пропилена протекает с участием каталитической смеси алкилалюминия и хлорида титана. Катализаторы этого типа называются катализаторами Циглера – Натта, так как процесс был разработан К.Циглером (ФРГ) и Д.Натта (Италия), которые получили в 1963 Нобелевскую премию за эту работу. Бутадиен и сходные непредельные соединения могут быть заполимеризованы в каучук в присутствии алкиллития или алкилнатрия.

Соединения молибдена и вольфрама катализируют родственную реакцию, называемую реакцией метатезиса (диспропорционирования) олефинов:

Гидрирование кратных связей.

Эта важная реакция может быть гетерогенной или гомогенной. Гомогенная реакция с катализатором Уилкинсона RhCl[P(C6H5)3]3 применяется в фармацевтической промышленности; используя оптически активные фосфиновые лиганды, можно осуществить экономичный асимметрический синтез таких лекарственных средств, как L-ДОФА (L-3,4-дигидроксифенилаланин).

Родственная реакция, называемая гидросилилированием, состоит в присоединении триалкилсилана к олефину:

Реакции оксида углерода

CO. Промышленный синтез на основе оксида углерода(II) проводят с участием кобальторганических или родийорганических промежуточных соединений, в которых ацильная группа связана с металлом, R–CO–M. Реакция состоит в превращении M–R в M–COR путем «внедрения» оксида углерода по связи углерод – металл. Соединение M–R в некоторых случаях можно получить по реакции гидрида металла с олефином, например:

Важное место в промышленном синтезе занимают реакция гидроксиформилирования (оксо-синтез):

продуктами которой являются альдегиды или спирты, и процесс Монсанто – превращение метанола в уксусную кислоту с участием иодида родия:

В этих процессах металлоорганические соединения возникают на поверхности катализатора как интермедиаты.

Реакции окисления.

Многие реакции окисления органических соединений катализируются металлами, как, например, вакер-процесс – превращение этилена в ацетальдегид при помощи медно-палладиевого катализатора:

Интермедиатом в этом процессе служит этиленовый p-комплекс, сходный с солью Цейзе.

Коттон Ф., Уилкинсон Дж. Основы неорганической химии. М., 1979
Металлоорганическая химия переходных металлов. Основы и применения. М., 1989

Углерод. Химия углерода и его соединений


Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение углерода

Электронная конфигурация углерода в основном состоянии :

+6С 1s 2 2s 2 2p 2 1s 2p

Электронная конфигурация углерода в возбужденном состоянии :

+6С * 1s 2 2s 1 2p 3 1s 2p

Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома углерода — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства

Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.

Алмаз — это модификация углерода с атомной кристаллической решеткой. Алмаз — самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp 3 -гибридизации.



Графит — это аллотропная модификация, в которой атомы углерода находятся в состоянии sp 2 -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.

Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.



Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.

[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n



Фуллерен — это искусственно полученная модифицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.

Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.


В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).

Качественные реакции

Качественная реакция на карбонат-ионы CO3 2- — взаимодействие солей-карбонатов с сильными кислотами . Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Качественная реакция на углекислый газ CO2 – помутнение известковой воды при пропускании через нее углекислого газа:

При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:


Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.

Углекислый газ СО2 не поддерживает горение . Угарный газ CO горит голубым пламенем.

Соединения углерода

Основные степени окисления углерода — +4, +2, 0, -1 и -4.

Наиболее типичные соединения углерода:

карбиды металлов (карбид алюминия Al4C3)

Химические свойства

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:


Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

ZnO + C → Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Карбиды

Карбиды – это соединения элементов с углеродом . Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.

Например :

Это соединения с металлами, при гидролизе которых образуется пропин

Например : Mg2C3

Например:

СаС2+ 2Н2O →

Пропиниды разлагаются водой или кислотами с образованием пропина и гидроксида или соли

Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями .

Например , карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газа, оксида кремния (IV) и оксида азота (II):

SiC + 8HNO3 → 3SiO2 + 3CO2 + 8NO + 4H2O

Оксид углерода (II)

Строение молекулы и физические свойства

Оксид углерода (II) («угарный газ») – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.

Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:


Способы получения

В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:

НСООН → CO + H2O

В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:

CO2 + C → 2CO

Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

Угарный газ в промышленности также можно получать неполным окислением метана:

Химические свойства

Оксид углерода (II) – несолеобразующий оксид . За счет углерода со степенью окисления +2 проявляет восстановительные свойства.

1. Угарный газ горит в атмосфере кислорода . Пламя окрашено в синий цвет:

2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.

3. Угарный газ взаимодействует с водородом при повышенном давлении . Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.

Например , под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:

4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.

Например , угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:

CO + NaOH → HCOONa

5. Оксид углерода (II) восстанавливает металлы из оксидов .

Например , оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:

Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:

СО + CuO → Cu + CO2

СО + NiO → Ni + CO2

6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.

Например , пероксидом натрия:

Оксид углерода (IV)

Оксид углерода (IV) (углекислый газ) — газ без цвета и запаха. Тяжелее воздуха. Замороженный углекислый газ называют также «сухой лед». Сухой лед легко подвергается сублимации — переходит из твердого состояния в газообразное.

Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:

Углекислый газ не горит, поэтому его применяют при пожаротушении.

Молекула углекислого газа линейная , атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:


Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):


Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода — это покупатель в магазине. А атомы кислорода — это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.

В лаборатории углекислый газ можно получить разными способами:

1. Углекислый газ образуется при действии сильных кислот на карбонаты и гидрокарбонаты металлов. При этом взаимодействуют с кислотами и нерастворимые карбонаты, и растворимые.

Еще один пример : гидрокарбонат натрия реагирует с бромоводородной кислотой:

2. Растворимые карбонаты реагируют с растворимыми солями алюминия, железа (III) и хрома (III) . Карбонаты трехвалентных металлов необратимо гидролизуются в водном растворе.

Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:

3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.

Например , карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:

Углекислый газ — типичный кислотный оксид . За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства .

1. Как кислотный оксид, углекислый газ взаимодействует с водой . Реакция очень сильно обратима, поэтому мы считаем, что в реакциях угольная кислота распадается почти полностью при образовании.

2. Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями . При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами . При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.

Например , гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:

При избытке щелочи образуется средняя соль, карбонат калия:

Помутнение известковой воды — качественная реакция на углекислый газ:

Видеоопыт взаимодействия гидроксида кальция (известковая вода) с углекислым газом можно посмотреть здесь.

3. Углекислый газ взаимодействует с карбонатами . При пропускании СО2 через раствор карбонатов образуются гидрокарбонаты.

Например , карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:

4. Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями .

Например , углекислый газ взаимодействует с углеродом с образованием угарного газа:

Магний горит в атмосфере углекислого газа:

2М g + CO 2 → C + 2 MgO

Видеоопыт взаимодействия магния с углекислым газом можно посмотреть здесь.

Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.

Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:

Карбонаты и гидрокарбонаты

При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).

Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:

Гидрокарбонаты при нагревании переходят в карбонаты:

Качественной реакцией на ионы СО3 2─ и НСО3 − является их взаимодействие с более сильными кислотами , последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО2.

Например , карбонат натрия взаимодействует с соляной кислотой:

Гидрокарбонат натрия также взаимодействует с соляной кислотой:

NaHCO3 + HCl → NaCl + CO2 ↑ + H2O

Гидролиз карбонатов и гидрокарбонатов

Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Химия углерода

Химия углерода

В этой статье мы дадим характеристику углерода с точки зрения химии: узнаем, металл это или неметалл, какими свойствами он обладает, с какими веществами реагирует и где находят применение различные модификации углерода.

· Обновлено 12 июля 2022

Ждём вас 8 октября в 13:00. Вместе с педагогами, психологами и другими экспертами в образовании и воспитании ответим на главные вопросы мам и пап.

Углерод — это химический элемент, неметалл, расположенный в таблице Д. И. Менделеева в главной подгруппе IV группы, во 2-м периоде, имеет порядковый номер 6.

Агрегатное состояние углерода при нормальных условиях — твердое вещество с атомной кристаллической решеткой. Молекула углерода одноатомна. Химическая формула углерода — С.

Строение углерода

В нейтральном атоме углерода находится шесть электронов. Два из них расположены вблизи ядра и образуют первый слой (1s-состояние). Следующие четыре электрона образуют второй электронный слой. Два из четырех электронов находятся в 2s-состоянии, а два других — в 2р-состоянии. Нейтральный атом углерода в основном состоянии двухвалентен и имеет электронно-графическую конфигурацию 1s 2 2s 2 2р 2 .

Несмотря на наличие двух неспаренных электронов на внешнем уровне, в большинстве химических соединений углерод четырехвалентен. Возможность образовывать четыре связи углерод получает при переходе одного электрона из состояния 2s в 2р — происходит «распаривание», т. е. переход атома углерода из нейтрального состояния в возбужденное. Этому возбужденному состоянию атома углерода соответствует электронная конфигурация 1s 2 2s 1 2p 3 .

Электронная конфигурация углерода

Возможные валентности: II, IV.

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Практикующий детский психолог Екатерина Мурашова

Аллотропия углерода

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Выделяют два вида углерода в зависимости от образования модификаций:

Кристаллический углерод входит в состав твердых веществ (алмаз, графит, графен, фуллерен, карбин).

Аморфный углерод образует мягкие вещества (уголь, кокс, сажа).

Рассмотрим подробнее основные аллотропные модификации углерода, их физические свойства и применение.

Алмаз

Алмаз — трехмерный полимер, бесцветное кристаллическое вещество, самый твердый природный минерал, имеет высокую теплопроводность. Его используют в промышленности для обработки различных твердых материалов, для бурения горных пород. Несмотря на то что алмаз твердый, в то же время он хрупкий. Получающийся при измельчении алмаза порошок применяют для шлифовки драгоценных камней. Хорошо отшлифованные прозрачные алмазы называют бриллиантами.

В кристаллической решетке атомы углерода связаны ковалентной связью. Расстояние между всеми атомами одинаковое, поэтому связи прочные по всем направлениям.

Одно из уникальных свойств алмазов — способность преломлять свет (люминесценция). При действии излучения алмазы начинают светиться разными цветами. Такая игра света, хороший показатель преломления и прозрачность делают этот драгоценный камень одним из самых дорогих. При этом необработанный алмаз не обладает такими качествами.

В промышленных масштабах алмазы получают при высоком давлении (тысячи МПа) и высоких температурах (1 500–3 000 °С). Процесс протекает в присутствии катализатора (например, Ni).

При нагревании алмаза до 1 000 °С и высоком давлении без доступа воздуха получают графит. При температуре 1 750 °С переход из алмаза в графит протекает существенно быстрее. При прокаливании в кислороде алмаз сгорает, образуя диоксид углерода.

Графит

Графит — темно-серое мягкое кристаллическое вещество со слабым металлическим блеском. Хорошо электро- и теплопроводен, стоек при нагревании в вакууме. Имеет слоистую структуру. На поверхности оставляет черные черты. На ощупь графит жирный и скользкий.

Графит термодинамически устойчив, поэтому в расчетах термодинамических величин он принимается в качестве стандартного состояния углерода.

На воздухе графит не загорается даже при сильном накаливании, но легко сгорает в чистом кислороде с образованием диоксида углерода.

При температуре 3 000 °С в электрических печах получают искусственный графит из лучших сортов каменного угля.

Графен

Графен представляет собой монослой графита. Впервые графен был получен ручным механическим отщеплением в лабораторных условиях, что не предполагает широкого производства.

В более крупных масштабах графен получают при помощи нагревания кремниевых пластин, верхний слой которых состоит из карбида кремния. Под действием высоких температур происходит отщепление атомов углерода, которые остаются на пластинке в виде графена, а кремний испаряется. Графен представляет собой тонкое и прочное вещество с высокой электропроводностью. В настоящее время он широко используется в микроэлектронике и автомобилестроении.

Карбин

Карбин — твердое черное вещество. Состоит из линейных полимерных цепей, которые соединены чередующимися одинарными и тройными связями в линейные цепочки: −С≡С−С≡С−С≡С−.

Впервые карбин был открыт в 60-х годах, но его существование не признавали до тех пор, пока его не обнаружили в природе — в метеоритном веществе.

Карбин — полупроводник, под действием света его проводимость сильно увеличивается. Переход в графит возможен при нагревании до 2 300 °С.

Карбин применяют в медицине для изготовления искусственных кровеносных сосудов.

Уголь

Уголь — мельчайшие кристаллики графита, полученные путем термического разложения углеродсодержащих соединений без доступа воздуха.

Угли имеют разные свойства в зависимости от веществ, из которых получены. Наиболее важные сорта угля — кокс, древесный уголь, сажа.

Кокс получается при нагревании каменного угля без доступа воздуха. Применяется в металлургии при выплавке металлов из руд.

Древесный уголь образуется при нагревании дерева без доступа воздуха. Благодаря пористому строению он обладает высокой адсорбционной способностью.

Сажа — очень мелкий графитовый кристаллический порошок. Образуется при сжигании углеводородов (природного газа, ацетилена, скипидара и др.) с ограниченным доступом воздуха.

Активные угли — пористые промышленные адсорбенты, получаемые из твердого топлива, дерева и продуктов его переработки. Применяются для поглощения паров летучих жидкостей из воздуха.

Сравнение основных аллотропных модификаций углерода

Сравнение аллотропных модификаций углерода

Нахождение углерода в природе

Согласно справочнику Дж. Эмсли «Элементы», углерод занимает 11-е место по распространенности в природе. Содержание углерода составляет 0,1% массы земной коры. Свободный углерод представлен в виде алмаза и графита.

Основная масса углерода существует в виде природных карбонатов кальция CaCO3 (мела, мрамора, известняка) и магния MgCO3, а также горючих ископаемых.

КАРБИДЫ

КАРБИДЫ (от латинского carbo – уголь) – соединения углерода с металлами, а также с бором и кремнием. Эти соединения обладают удивительным разнообразием физических и химических свойств. Так, карбид золота Au2C2 взрывается уже при попытке пересыпать его с листочка фильтровальной бумаги, на котором он был высушен. С другой стороны, карбиды некоторых элементов (например, бора и тантала) не разлагаются даже при температуре белого каления и настолько химически инертны, что на них не действует царская водка, а по твердости они приближаются к алмазу!

Впервые необычное соединение металла с углеродом (К2С2) получил в 1809 знаменитый английский химик Гемфри Дэви. В 1863 французский химик Марселен Бертло изучил свойства другого карбида – очень неустойчивого и легко взрывающегося карбида одновалентной меди Cu2C2. В 1878 немецкий металлург Ф.Мюллер, растворив образцы стали в разбавленной серной кислоте, выделил карбид железа Fe3C. Но только в конце 19 в. французский химик Анри Муассан, прославившийся получением фтора, синтезировал многие из этих необычных соединений и изучил их свойства. Он получал карбиды, нагревая до очень высокой температуры смеси древесного угля с разными металлами, их оксидами или карбонатами. Для этого он использовал жар вольтовой дуги в электрической печи собственной конструкции.

Карбиды, как оказалось, можно получить не только в лаборатории. Еще до работ Муассана австрийский ученый Э.Вайнсхенк в 1889 открыл в метеоритах минерал когенит, представляющий собой смешанный карбид железа, кобальта и никеля состава (FeNiCo)3C. А сам Муассан в 1904 обнаружил в метеорите, привезенном из каньона Диабло в штате Аризона, темно-зеленый минерал, представляющий собой карбид кремния SiC. Этот минерал в честь ученого назвали муассанитом.

Раньше карбиды классифицировали по их устойчивости к действию воды и кислот, а также по тому, какие газы выделяются при их разложении. Современная классификация учитывает тип химической связи между атомами в карбидах – именно от этого зависят в основном физические и химические свойства. В соответствии с этой классификацией, карбиды можно разделить на три группы, которые довольно сильно отличаются по своим свойствам.

К первой группе относятся так называемые солеобразные карбиды с ионной связью. Эти карбиды образуют щелочные и щелочноземельные металлы, алюминий, редкоземельные элементы, а также актиноиды. Их состав иногда соответствует типичным валентностям металлов (Al4C3), а иногда – нет (Ве2С). Многие ионные карбиды можно получить непосредственно из элементов (Са + 2С ® СаС2) или восстановлением оксидов углеродом (СаО + 3С ® СаС2 + СО). Ионный характер связи приводит к высокой температуре плавления; например, карбид кальция СаС2 плавится при 2300° С, карбид тория ThC2 – при 2655° С. Водой или разбавленными кислотами ионные карбиды легко разлагаются – гидролизуются. При этом образуются различные углеводороды и гидроксид металла. Самый известный пример – получение ацетилена гидролизом карбида кальция: СаС2 + 2Н2О ® Ca(OH)2 + С2Н2. Ацетилен выделяется также при гидролизе Na2C2, К2С2 и др. Поэтому такие карбиды можно рассматривать как производные ацетилена, в которых атомы водорода замещены атомами металла. При этом катионы металла и анионы С2 –2 размещаются в соответствующих узлах кристаллической решетки. Солеобразный характер этих карбидов подтверждается возможностью их электролиза в расплавленном состоянии. Интересно отметить, что чистый карбид кальция – бесцветные кристаллы, хотя увидеть их непросто, так как обычный технический продукт имеет цвет от бурого до черного.

Взаимодействие карбидов щелочных металлов с водой протекает исключительно бурно. Так, если карбид калия просто облить водой, произойдет бурная реакция, которая сопровождается взрывом такой силы, что выделяющийся ацетилен сразу же разлагается с выделением угля. Чтобы провести реакцию К2С2 + 2Н2О ® 2КОН + С2Н2, надо медленно пропускать над карбидом водяной пар.

В ряде случаев карбиды ионного типа образуются непосредственно при пропускании ацетилена через растворы солей металлов. Так карбиды серебра, меди(I), золота и ртути, которые чаще называют ацетиленидами. Ацетилениды щелочных металлов можно получить действием ацетилена на свободные металлы. В сухом виде ацетилениды тяжелых металлов легко разлагаются со взрывом. Гидролиз ионных карбидов других металлов показывает, что они «происходят» из других углеводородов. Например, при гидролизе карбида алюминия выделяется метан: Al4C3 + 12H2O ® 4Al(OH)3 + 3CH4 (так же гидролизуется карбид бериллия Ве2С), а при гидролизе карбида магния получается метилацетилен: Mg2C3 + 4H2O ® 2Mg(OH)2+ НС≡С–СН3. Интересно, что карбид магния другого состава, MgC2, дает при гидролизе только ацетилен. Иногда при гидролизе ионных карбидов углеводороды выделяются совместно с водородом, который частично гидрирует непредельные углеводороды. С выделением почти равных количеств водорода и метана разлагается карбид марганца: Mn3C + 6H2O ® 3Mn(OH)2 + CH4 + H2. Карбиды редкоземельных металлов и тория при разложении разбавленными кислотами выделяют не чистый ацетилен, а его смесь с метаном, этиленом и другими углеводородами. Например, при гидролизе карбида церия СеС2 получается смесь ацетилена с метаном в соотношении 4:1, а также немного этилена и жидких и твердых углеводородов (состав продуктов зависит от условий проведения реакции). Еще больше жидких и твердых углеводородов дает при гидролизе карбид урана.

Выделение углеводородов при гидролизе карбидов позволило Д.И.Менделееву выдвинуть так называемую карбидную теорию происхождения нефти в глубинах Земли из неорганических веществ. По представлению Менделеева, в глубинах земного шара должны быть расплавленные металлы, в основном железо, которое с углеродом дает карбид. Во время горообразования в земной коре образуются трещины, по которым в глубины проникает вода. Воздействуя на карбид железа и карбиды других металлов, вода (в виде пара) образует углеводороды, например: 2FeC + 3H2O ® Fe2O3 + C2H4. Газообразные углеводороды по тем же трещинам поднимаются ближе к поверхности, где скапливаются в пористых пластах. Однако когда в 60-е гг. 20 в. был подробно изучен состав углеводородов нефти, оказалось, что смесь «искусственных углеводородов», образующихся при гидролизе карбидов, по своему составу резко отличается от природной смеси. Кроме того, все нефти, полученные неорганическим путем, оптически неактивны, тогда как природная нефть оптически активна. На основании этих, а также ряда других фактов неорганическая теория происхождения нефти была подвергнута критике, и в настоящее время многие ученые полагают, что нефть имеет биологическое происхождение.

Ко второй группе относятся карбиды, которые образуют переходные металлы IV–VII групп, а также кобальт, железо и никель. Это металлоподобные соединения с другой структурой. В них атомы углерода, имеющие небольшие размеры, не связаны друг с другом и располагаются в пустотах между атомами металлов. Различная упаковка атомов металла в кристаллической решетке приводит к разному составу карбидов даже для одного и того же металла; например, хром образует карбиды состава Cr3C2, Cr4C, Cr7C3 и др. Эти карбиды (их называют карбидами внедрения) часто отличаются большой твердостью и очень высокими температурами плавления. Например, карбиды тантала и гафния TaC и HfC – наиболее тугоплавкие из известных веществ (плавятся при 3985 и 3890° С соответственно).

Металлоподобные карбиды обладают высокой электропроводностью и очень высокой химической стойкостью к агрессивным средам (многие из них не растворяются даже в царской водке). Они используются для упрочнения чугуна и стали (карбиды железа, хрома, вольфрама, молибдена), а также для производства очень твердых сплавов, которые применяют для обработки металлов резанием (карбиды WC, TiC, TaC, VC, Cr3C2). Например, твердые наконечники резцов, сверл делают из победита – спеченного порошка карбида вольфрама WC с добавкой металлического кобальта. Очень важную роль играет карбид железа Fe3C (цементит) – твердые кристаллы, входящие в структуру чугуна и стали.

Карбид вольфрама WC используют также для изготовления буровых коронок, деталей аппаратуры для производства синтетических алмазов, для нанесения износостойких покрытий на поверхности металлов. Карбид титана интересен ярким проявлением нестехиометрии: состав этого соединения выражается формулой TiCх, где х колеблется в пределах от 0,49 до 1 (см. СТЕХИОМЕТРИЯ). Это вещество, как и карбид вольфрама, используют как компонент жаропрочных, жаростойких и твердых сплавов, для получения износостойких покрытий, для изготовления тугоплавких тиглей, в которых можно плавить почти любые металлы (сам карбид плавится при 3257° С). Карбидом титана выкладывают внутренние стенки высокотемпературных печей.

К третьей группе относятся ковалентные карбиды. Их образуют кремний и бор – соседи углерода по периодической таблице, близкие к нему как по размеру атомов, так и по электроотрицательности. Карбид кремния SiC (техническое название – карборунд) в чистом виде – бесцветные кристаллы, но примеси часто окрашивают его в различные цвета, вплоть до черного. По своей структуре это соединение аналогично алмазу; решетку карбида кремния можно получить, если в немного расширенной решетке алмаза заменить половину атомов углерода на атомы кремния. Это вещество обладает очень высокой твердостью; помимо этого оно имеет свойства полупроводника. Из него делают шлифовальные бруски и круги, огнеупорные материалы для печей и литейных машин, нагревательные элементы для электропечей, полупроводниковые диоды.

Бор образует по два карбида с точно известной структурой – В4С и В13С2. Наибольшее значение имеет первый из них – черные блестящие кристаллы, которые по твердости уступают лишь алмазу и нитриду бора BN. Этот карбид применяют для изготовления абразивных и шлифовальных материалов и в качестве полупроводника. Карбид, обогащенный изотопом 10 В, используется как поглотитель нейтронов в ядерных реакторах.

Углерод

Углерод - неметаллический элемент IV группы периодической таблицы Д.И. Менделеева, является важнейшей частью всех органических веществ в природе.

Углерод

Общая характеристика элементов IVa группы

От C к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Из элементов IVа группы углерод и кремний относятся к неметаллам, германий, олово и свинец - металлы.

Элементы IVa группы

  • C - 2s 2 2p 2
  • Si - 3s 2 3p 2
  • Ge - 4s 2 4p 2
  • Sn - 5s 2 5p 2
  • Pb - 6s 2 6p 2

Степени оксиления углерода

Природные соединения
  • Аллотропных модификаций - графит, алмаз, фуллерен
  • MgCO3 - магнезит
  • CaCO3 - кальцит (мел, мрамор)
  • CaCO3*MgCO3 - доломит

Алмаз, графит, магнезит и доломит

Получение

Углерод получают в ходе пиролиза углеводородов (пиролиз - нагревание без доступа кислорода). Также применяется получение углеродистых соединений: древесины и каменного угля.

Разложение углеродистых соединений

Химические свойства

При нагревании углерод реагирует со многими неметаллами: водородом, кислородом, фтором.

2С + O2 → (t) 2CO (угарный газ - продукт неполного окисления углерода, образуется при недостатке кислорода)

С + O2 → (t) CO2 (углекислый газ - продукт полного окисления углерода, образуется при достаточном количестве кислорода)

При нагревании углерод реагирует с металлами, проявляя свои окислительные свойства. Напомню, что металлы могут принимать только положительные степени окисления.

Ca + C → CaC2 (карбид кальция, СО углерода = -1)

Al + C → Al4C3 (карбид алюминий, СО углерода -4)

Очевидно, что степень окисления углерода в соединении с различными металлами может отличаться.

Карбид алюминия

Углерод - хороший восстановитель. С помощью него металлургическая промышленность справляется с задачей получения чистых металлов из их оксидов:

Углерод восстанавливает не только металлы из их оксидов, но и неметаллы подобным образом:

SiO2 + C → (t) Si + CO

Может восстановить и собственный оксид:

Угарный газ

Известная реакция взаимодействия угля с водяным паром, называемая также газификацией угля, торфа, сланца - крайне важна в промышленности:

В реакциях с кислотами углерод проявляет себя как восстановитель:

Оксид азота IV

Оксид углерода II - СO

Оксид углерода II - продукт неполного окисления углерода. Несолеобразующий оксид. Это чрезвычайно опасное вещество часто образуется при пожарах в замкнутых помещениях, при прогревании машины в гараже.

Растворяясь в крови угарный газ (имеющий в 300 раз большее сродство к гемоглобину, чем кислород) легко выигрывает конкуренцию у кислорода и занимает его место в эритроцитах. Отравление угарным газом нередко заканчивается летальным исходом.

В промышленности угарный газ получают восстановлением оксида углерода IV или газификацией угля (t = 1000 °С).

В лаборатории угарный газ получают при разложении муравьиной кислоты в присутствии серной:

Химические свойства

Полностью окисляется до углекислого газа в реакции с кислородом, восстанавливает оксиды металлов.

FeO + CO → Fe + CO2

Образование карбонилов - чрезвычайно токсичных веществ.

Карбонил железа

Оксид углерода IV - CO2

Продукт полного окисления углерода. Относится к кислотным оксидам, соответствует угольной кислоте H2CO3. Бесцветный газ, без запаха.

В промышленности углекислый газ получают при разложении известняка, в ходе производства алкоголя, при спиртовом брожении глюкозы.

В лабораторных условиях используют реакцию мела (мрамора) с соляной кислотой.

Углекислый газ образуется при горении органических веществ:

Горение природного газа

    Реакция с водой

В результате реакции с водой образуется нестойкая угольная кислота, которая сразу же распадается на воду и углекислый газ.

В ходе реакций с основаниями и основными оксидами углекислый газ образует соли угольной кислоты: средние - карбонаты (при избытке основания), кислые - гидрокарбонаты (при избытке кислотного оксида).

2KOH + CO2 → K2CO3 + H2O (соотношение основание - кислотный оксид 2:1)

KOH + CO2 → KHCO3 (соотношение основание - кислотный оксид 1:1)

При нагревании способен окислять металлы до их оксидов.

Zn + CO2 → (t) ZnO + CO

Оксид цинка II

Угольная кислота

Слабая двухосновная кислота, существующая только в растворах, разлагается на воду и углекислый газ.

Угольная кислота

Химические свойства

Определить наличие карбонат-иона можно с помощью кислоты: такая реакция сопровождается "закипанием" - появлением пузырьков бесцветного газа без запаха.

Я не раз встречал описание реакций, связанных с этой кислотой, которое заслуживает нашего внимания. В задании было сказано, что при добавлении к раствору гидроксида кальция углекислого газа осадок появлялся, при дальнейшем пропускании углекислого газа - помутнение исчезало.

Это можно легко объяснить, вспомнив про способность угольной кислоты образовывать кислые соли, которые растворимы.

Осадок выпал и растворился

Чтобы сделать из средней соли (карбоната) - кислую соль (гидрокарбонат) нужно добавить угольную кислоту. Однако написать ее формулу H2CO3 - ошибка. Ее следует записать в виде воды и углекислого газа.

Li2CO3 + CO2 + H2O → LiHCO3 (средняя соль + кислота = кислая соль)

Чтобы вернуть среднюю соль, следует добавить к кислой соли щелочь.

При нагревании карбонаты распадаются на соответствующий оксид металла и углекислый газ, гидрокарбонаты - на карбонат металла, углекислый газ и воду.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: