Соединение водорода с металлами и неметаллами

Обновлено: 27.09.2024

Водород расположен в главной подгруппе I группы и в первом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение водорода

Электронная конфигурация водорода в основном состоянии :

+1H 1s 1 1s

Атом водорода содержит на внешнем энергетическом уровне один неспаренный электрон в основном энергетическом состоянии.

Степени окисления атома водорода — от -1 до +1. Характерные степени окисления -1, 0, +1.

Физические свойства

Водород – легкий газ без цвета, без запаха. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью:

Н–Н

Соединения водорода

Основные степени окисления водорода +1, 0, -1.

Типичные соединения водорода:

вода H2O и др. летучие водородные соединения (HCl, HBr)

кислые соли (NaHCO3 и др.)

основания NaOH, Cu(OH)2

Способы получения

Еще один важный промышленный способ получения водорода — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Химические свойства

1. Водород проявляет свойства окислителя и свойства восстановителя. Поэтому водород реагирует с металлами и неметаллами.

1.1. С активными металлами водород реагирует с образованием гидридов :

2Na + H2 → 2NaH

1.2. В специальных условиях водород реагирует с серой с образованием бинарного соединения сероводорода:

1.3. Водород не реагирует с кремнием .

1.4. С азотом водород реагирует при нагревании под давлением в присутствии катализатора с образованием аммиака:

1.5. В специальных условиях водород реагирует с углеродом .

1.6. Водород горит , взаимодействует с кислородом со взрывом:

2. Водород взаимодействует со сложными веществами:

2.1. Восстанавливает металлы из основных и амфотерных оксидов . Восстановить из оксида водородом можно металлы, расположенные в электрохимическом ряду напряжений после алюминия. При этом образуются металл и вода.

Например , водород взаимодействует с оксидом цинка с образованием цинка и воды:

ZnO + H2 → Zn + H2O

Также водород восстанавливает медь из оксида меди:

СuO + H2 → Cu + H2O

Водород восстанавливает оксиды некоторых неметаллов .

Например , водород взаимодействует с оксидом азота (I):

2.2. С органическими веществами водород вступает в реакции присоединения (реакции гидрирования).

Применение водорода

Применение водорода основано на его физических и химических свойствах:

  • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);
  • кислородно-водородное пламя применяется для получения высоких температур при сварке металлов;
  • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;
  • водород используется для получения аммиака и искусственного жидкого топлива;
  • получение твердых жиров (гидрогенизация).

Водородные соединения металлов

Соединения металлов с водородом — солеобразные гидриды МеНх. Это твердые вещества белого цвета с ионным строением. Устойчивые гидриды образуют активные металлы (щелочные, щелочноземельные и др.).

Гидриды металлов можно получить непосредственным взаимодействием активных металлов и водорода.

Например , при взаимодействии натрия с водородом образуется гидрид натрия:

Гидрид кальция можно получить из кальция и водорода:

Химические свойства

1. Солеобразные гидриды легко разлагаются водой .

Например , гидрид натрия в водной среде разлагается на гидроксид натрия и водород:

NaH + H2O → NaOH + H2

2. При взаимодействии с кислотами гидриды металлов образуют соль и водород.

Например , гидрид натрия реагирует с соляной кислотой с образованием хлорида натрия и водорода:

NaH + HCl → NaCl + H2

3. Солеобразные гидриды проявляют сильные восстановительные свойства и взаимодействуют с окислителями (кислород, галогены и др.)

Например , гидрид натрия окисляется кислородом:

2NaH + O2 = 2NaOH

Гидрид натрия также окисляется хлором :

NaH + Cl2 = NaCl + HCl

Летучие водородные соединения

Соединения водорода с неметаллами — летучие водородные соединения.

Строение и физические свойства

Все летучие водородные соединения — газы (кроме воды).

Способы получения силана

Силан образуется при взаимодействии соляной кислоты с силицидом магния:


Видеоопыт получения силана из силицида магния можно посмотреть здесь.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непрореагировавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Способы получения фосфина

В лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов.

Например , фосфин образуется при водном гидролизе фосфида кальция:

Или при кислотном гидролизе, например , фосфида магния в соляной кислоте:

Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах.

Например , фосфор реагирует с гидроксидом калия с образованием гипофосфита калия и фосфина:

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства силана

1. Силан — неустойчивое водородное соединение (самовоспламеняется на воздухе). При сгорании силана на воздухе образуется оксид кремния (IV) и вода:

Видеоопыт сгорания силана можно посмотреть здесь.

2. Силан разлагается водой с выделением водорода:

3. Силан разлагается (окисляется) щелочами :

4. Силан при нагревании разлагается :

Химические свойства фосфина

1. В водном растворе фосфин проявляет очень слабые основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион фосфония. Основные свойства фосфина гораздо слабее основных свойств аммиака. Проявляются при взаимодействии с безводными кислотами .

Например , фосфин реагирует с йодоводородной кислотой:

Соли фосфония неустойчивые, легко гидролизуются.

2. Фосфин PH3 – сильный восстановитель за счет фосфора в степени окисления -3. На воздухе самопроизвольно самовоспламеняется:

3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей.

Например , азотная кислота окисляет фосфин. При этом фосфор переходит в степень окисления +5 и образует фосфорную кислоту.

Серная кислота также окисляет фосфин:

С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора.

Например , хлорид фосфора (III) окисляет фосфин:

2PH3 + 2PCl3 → 4P + 6HCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства прочих водородных соединений


Кислоты образуют в водном растворе: водородные соединения VIA (кроме воды) и VIIA подгрупп.

Прочитать про химические свойства галогеноводородов вы можете здесь.

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличие от ее газообразных аналогов H2S, H2Se и Н2Те.

1. Вода реагирует с металлами и неметаллами .

1.1. С активными металлами вода реагирует при комнатной температуре с образованием щелочей и водорода :

2Na + 2H2O → 2NaOH + H2

  • с магнием реагирует при кипячении:
  • алюминий не реагирует с водой, так как покрыт оксидной плёнкой. Алюминий, очищенный от оксидной плёнки, взаимодействует с водой, образуя гидроксид:
  • металлы, расположенные в ряду активности от Al до Н , реагируют с водяным паром при высокой температуре, образуя оксиды и водород:
  • металлы, расположенные в ряду активности от после Н , не реагируют с водой:

Ag + Н2O ≠

2. Вода реагирует с оксидами щелочных и щелочноземельных металлов , образуя щелочи (с оксидом магния – при кипячении):

3. Вода взаимодействует с кислотными оксидами (кроме SiO2):

4. Некоторые соли реагируют с с водой. Как правило, в таблице растворимости такие соли отмечены прочерком :

Например , сульфид алюминия разлагается водой:

5. Бинарные соединения металлов и неметаллов , которые не являются кислотами и основаниями, разлагаются водой.

Например , фосфид кальция разлагается водой:

6. Бинарные соединения неметаллов также гидролизуются водой.

Например , фосфид хлора (V) разлагается водой:

6. Некоторые органические вещества гидролизуются водой или вступают в реакции присоединения с водой (алкены, алкины, алкадиены, сложные эфиры и др.).

Водород: химия водорода

Водород расположен в главной подгруппе I группы (или в 1 группе в современной форме ПСХЭ) и в первом периоде периодической системы химических элементов Д.И. Менделеева.

Электронная конфигурация водорода:

Водород – лёгкий газ без цвета, вкуса и запаха, очень плохо растворим в воде. В смеси с воздухом или кислородом крайне взрывоопасен и горюч.

Нахождение в природе

Водород — это самый распространённый элемент во Вселенной. Доля атомов водорода составляет примерно 88,6 % всех атомов (при этом доля атомов гелия — примерно 11,3 %, а доля остальных элементов вместе взятых порядка 0,1%). Водород входит в состав звезд и межзвездного газа.

В земной коре водород составляет только 1% по массе. При этом почти весь водород встречается на Земле в виде соединений. Это связано с высокой реакционной способностью водорода.

Для промышленного получения водорода используют следующие методы:

  • конверсия угля с водяным паром. Вначале получают водяной газ, пропуская пары воды через раскаленный кокс при 1000 °С:

Затем оксид углерода (II) окисляют в оксид углерода (IV), пропуская смесь водяного газа с избытком паров воды над нагретым до 400–450 °С катализатором Fe2O3:

  • Термическое разложение метана при 1200 °С:
    водного раствора поваренной соли или гидроксида натрия (или солей/гидроксидов других щелочных металлов):

Например , электролиз водного раствора NaOH:

Электролиз водного раствора хлорида натрия:

2NaCl + 2H2O → H2 + Cl2 + 2NaOH

  • Крекинг и риформинг углеводородов в процессе переработки нефти.

Для лабораторного получения водорода используют следующие методы:

  • Взаимодействие металлов с минеральными кислотами.

Например , разбавленная соляная кислота реагирует с цинком:

Zn + 2HCl → ZnCl2 + Н2

  • Взаимодействие активных металлов с водой.

Например , кальций реагирует с водой:

  • Взаимодействие щелочей с цинком, бериллием или алюминием.

Например , алюминий растворяется в водном растворе гидроксида калия:

2Al + 2KOH + 6H2O → 2K[Al(OH)4] + 3Н2

Например , гидролиз гидрида натрия:

1. Водород реагирует с активными металлами .

Например , при взаимодействии водорода с натрием образуется гидрид натрия:

2Na + H2 → 2NaH

2. Водород реагирует с неметаллами.

2.1. С серой водород реагирует с образованием сероводорода :

2.2. С галогенами водород реагирует с образованием галогеноводородов:

Например , водород с хлором реагирует с образованием хлороводорода:

С фтором реакция протекает со взрывом:

2.3. C углеродом реакция протекает только в жестких условиях:

2.4. Водород взаимодействует с кислородом , реакция сопровождается взрывом :

2.5. Реакция водорода с азотом протекает при нагревании и под давлением, в присутствии катализатора :

2.6. Реакция водорода с фосфором протекает плохо и только в специальных условиях.

2.7. Реакция водорода с кремнием не протекает.

3. Водород проявляет сильные восстановительные свойства и взаимодействует с оксидами неактивных металлов и неметаллов .

Например , при взаимодействии оксида меди (II) с водородом образуется медь и вода:

CuO + H2 = Cu + H2O

Водород также реагирует с оксидом азота (II):

В жестких условиях водород может восстанавливать кремний из оксида :

4. Водород вступает в реакции присоединения с органическими веществами: алкенами, алкинами, алкадиенами, некоторыми циклоалканами, аренами.

Например , водород реагирует с этиленом с образованием этана:

Также водород вступает в реакции присоединения с карбонильными соединениями (альдегидами и кетонами), реагирует со сложными эфирами, нитрилами, нитросоединениями, и некоторыми другими классами органических соединений. Более подробно эти реакции рассмотрены в блоке «Органическая химия».

Водород. Строение и свойства водорода. Водородные соединения металлов и неметаллов

Строение и физические свойства водородаВодород - двухатомный газ Н2. Он не имеет ни цвета, ни запаха. Это самый легкий газ. Благодаря этому свойству он использовался в аэростатах, дирижаблях и тому подобных устройствах, однако широкому применению водорода в этих целях мешает его взрывоопасность в смеси с воздухом.

Молекулы водорода неполярные и очень маленькие, поэтому взаимодействие между ними мало. В связи с этим он имеет очень низкие температуры плавления (-259оС) и кипения (-253оС). Водород практически нерастворим в воде.

Водород имеет 3 изотопа: обычный 1Н, дейтерий 2H или D, и радиоактивный тритий 3Н или Т. Тяжелые изотопы водорода уникальны тем, что тяжелее обычного водорода в 2 или даже в 3 раза! Именно поэтому замена обычного водорода на дейтерий или тритий заметно сказывается на свойствах вещества (так, температуры кипения обычного водорода Н2 и дейтерия D2 различаются на 3,2 градуса). Взаимодействие водорода с простыми веществами Водород - неметалл среднейэлектроотрицательности. Поэтому ему присущи и окислительные, и восстановительные свойства.

Окислительные свойства водорода проявляются в реакциях с типичными металлами - элементами главных подгрупп I-II группы таблицы Менделеева. Самые активные металлы (щелочные и щелочноземельные) при нагревании с водородом дают гидриды – твердые солеобразные вещества, содержащие в кристаллической решетке гидрид-ион Н-. 2Na + Н2 = 2NaН ; Са + Н2 = СаН2 Восстановительные свойства водорода проявляются в реакциях с более типичными неметаллами, чем водород: 1) Взаимодействие с галогенами H2 + F2 = 2HF

Аналогично протекает взаимодействие с аналогами фтора - хлором, бромом, иодом. По мере уменьшения активности галогена интенсивность протекания реакции уменьшается. Реакция с фтором происходит при обычных условиях со взрывом, для реакции с хлором требуется освещение или нагревание, а реакция с иодом протекает лишь при сильном нагревании и обратимо. 2) Взаимодействие с кислородом2Н2 + О2 = 2Н2О Реакция протекает с большим выделением тепла, иногда со взрывом. 3) Взаимодействие с серой Н2 + S = H2S Сера - гораздо менее активный неметалл, чем кислород, и взаимодействие с водородом протекает спокойно.Ь 4) Взаимодействие с азотом 3Н2 + N2↔ 2NH3 Реакция обратима, протекает в заметной степени только в присутствии катализатора, при нагревании и под давлением. Продукт называется аммиак. 5) Взаимодействие с углеродом С + 2Н2↔ СН4 Реакция протекает в электрической дуге или при очень высоких температурах. В качестве побочных продуктов образуются и другие углеводороды. 3. Взаимодействие водорода со сложными веществами Водород проявляет восстановительные свойства и в реакциях со сложными веществами: 1) Восстановление оксидов металлов, стоящих в электрохимическом ряду напряжений правее алюминия, а также оксиды неметаллов:Fe2O3 + 2H2 2Fe + 3H2O;CuO + H2 Cu + H2OВодород применяют как восстановитель для извлечения металлов из оксидных руд. Реакции идут при нагревании.2) Присоединение к органическим непредельным веществам ; С2Н4 + Н2(t;p)→ С2Н6 Реакции протекают в присутствии катализатора и под давлением. Других реакций водорода мы пока касаться не будем. 4. Получение водородаВ промышленности водород получают переработкой углеводородного сырья - природного и попутного газа, кокса и т.п. Лабораторные методы получения водорода:

1) Взаимодействие металлов, стоящих в электрохимическом ряду напряжений металлов левее водорода, с кислотами.Li K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H2) Cu Hg Ag Pt Mg + 2HCl = MgCl2 + H22) Взаимодействие металлов, стоящих в электрохимическом ряду напряжений металлов левее магния, с холодной водой. При этом также образуется щелочь.

2Na + 2H2O = 2NaOH + H2 Металл, находящийся в электрохимическом ряду напряжений металлов левее марганца, способен вытеснять водород из воды при определенных условиях (магний - из горячей воды, алюминий - при условии снятия оксидной пленки с поверхности).

Mg + 2H2O Mg(OH)2 + H2

Металл, находящийся в электрохимическом ряду напряжений металлов левее кобальта, способен вытеснять водород из водяного пара. При этом также образуется оксид.

3Fe + 4H2Oпар Fe3O4 + 4H23) Взаимодействие металлов, гидроксиды которых амфотерны, с растворами щелочей.

Металлы, гидроксиды которых амфотерны, вытесняют водород из растворов щелочей. Вам необходимо знать 2 таких металла - алюминий и цинк:

2Al + 2NaOH +6H2O = 2Na[Al(OH)4] + + 3H2

Zn + 2KOH + 2H2O = K2[Zn(OH)4] + H2

При этом образуются комплексные соли - гидроксоалюминаты и гидроксоцинкаты.

Все методы, перечисленные до сих пор, основаны на одном и том же процессе - окислении металла атомом водорода в степени окисления +1:

М0 + nН+ = Мn+ + n/2 H2

4) Взаимодействие гидридов активных металлов с водой:

СаН2 + 2Н2О = Са(ОН)2 + 2Н2

Этот процесс основан на взаимодействии водорода в степени окисления -1 с водородом в степени окисления +1:

5) Электролиз водных растворов щелочей, кислот, некоторых солей:

5. Водородные соединенияВ этой таблице слева легкой тенью выделены клетки элементов, образующих с водородом ионные соединения - гидриды. Эти вещества имеют в своем составе гидрид-ион Н-. Они представляют собой твердые бесцветные солеобразные вещества и реагируют с водой с выделением водорода.

Элементы главных подгрупп IV-VII групп образуют с водородом соединения молекулярного строения. Иногда их также называют гидридами, но это некорректно. В их составе нет гидрид-иона, они состоят из молекул. Как правило, простейшие водородные соединения этих элементов - бесцветные газы. Исключения - вода, являющаяся жидкостью, и фтороводород, который при комнатной температуре газообразен, но при нормальных условиях - жидкость.

Темными клетками отмечены элементы, образующие с водородом соединения, проявляющие кислотные свойства.

Темными клетками с крестом обозначены элементы, образующие с водородом соединения, проявляющие основные свойства.

29). общая характеристика свойств элементов главной подгруппы 7гр. Хлор. Свойства лора. Соляная кислота.В подгруппу галогенов входят фтор, хлор, бром, иод и астат (ас­тат - радиоактивный элемент, изучен мало). Это р-элементы VII группы периодической системы Д.И.Менделеева. На внешнем энергетичес­ком уровне их атомы имеют по 7 электронов ns2np5. Этим объясняется общность их свойств.

Они легко присоединяют по одному электрону, проявляя степень окисления -1. Такую степень окисления галогены имеют в соединениях с водородом и металлами.

Будучи наиболее электроотрицательным элементом, фтор может только принимать один электрон на 2р подуровень.У него один неспаренный электрон, поэтому фтор бывает только одновалентным, а степень окисления всегда -1.

Электронное строение атома хлора выражается схемойУ атома хлора один неспаренный электрон на 3р-подуровне и обычном (невозбужденном) состоянии хлор одновалентен. Но посколь­ку хлор находится в третьем периоде, то у него имеется еще пять орбиталей 3d-подуровня, в которых могут разместиться 10 электронов.

. У фтора нет свободных орбиталей,а значит, при химических реакциях не происходит разъединения спаренных электронов в атоме. Поэтому при рассмотрениисвойств галогенов всегда надо учитывать особенности фтора и соединений.

Водные растворы водородных соединений галогенов являются кислотами: НF — фтороводородная (плавиковая), НСl — хлороводородная (соляная),НВr — бромводородная, НI — йодоводородная.

Химически Хлор очень активен, непосредственно соединяется почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании) и с неметаллами (кроме углерода, азота, кислорода, инертных газов), образуя соответствующие хлориды, вступает в реакцию со многими соединениями, замещает водород в предельных углеводородах и присоединяется к ненасыщенным соединениям. Хлор вытесняет бром и иод из их соединений с водородом и металлами; из соединений Хлора с этими элементами он вытесняется фтором. Щелочные металлы в присутствии следов влаги взаимодействуют с Хлором с воспламенением, большинство металлов реагирует с сухим Хлором только при нагревании Фосфор воспламеняется в атмосфере Хлора, образуя РCl3, а при дальнейшем хлорировании - РСl5; сера с Хлором при нагревании дает S2Cl2, SCl2 и другие SnClm. Мышьяк, сурьма, висмут, стронций, теллур энергично взаимодействуют с Хлором. Смесь Хлора с водородом горит бесцветным или желто-зеленым пламенем с образованием хлористого водорода (это цепная реакция). С кислородом Хлор образует оксиды: Cl2О, СlO2, Cl2О6, Сl2О7, Cl2О8, а также гипохлориты (соли хлорноватистой кислоты), хлориты, хлораты и перхлораты. Все кислородные соединения хлора образуют взрывоопасные смеси с легко окисляющимися веществами. Хлор в воде гидролизуется, образуя хлорноватистую и соляную кислоты: Cl2 + Н2О = НClО + НCl. При хлорировании водных растворов щелочей нахолоду образуются гипохлориты и хлориды: 2NaOH + Cl2= NaClO + NaCl + Н2О, а при нагревании - хлораты. Хлорированием сухого гидрооксида кальция получают хлорную известь. При взаимодействии аммиака с Хлором образуется треххлористый азот. При хлорировании органических соединений Хлор либо замещает водород, либо присоединяется по кратным связям, образуя различные хлорсодержащие органических соединения. Хлор образует с других галогенами межгалогенные соединения. Фториды ClF, ClF3, ClF3 очень реакционноспособны; например, в атмосфере ClF3 стеклянная вата самовоспламеняется. Известны соединения хлора с кислородом и фтором - оксифториды Хлора: ClO3F, ClO2F3, ClOF, ClOF3 и перхлорат фтора FClO4. Соля́ная кислота́ (хлороводоро́дная, хлористоводоро́дная, хлористый водород)[1] — HCl, раствор хлороводорода в воде; сильная одноосновная кислота. Бесцветная (техническая соляная кислота желтоватая из-за примесей Fe, Cl2 и др.), «дымящая» на воздухе, едкая жидкость. Максимальная концентрация при 20 °C равна 38% по массе. Соли соляной кислоты называются хлоридами.

Взаимодействие с металлами, стоящими в электрохимическом ряду металлов до водорода с образованием соли и выделением газообразноговодорода:

Взаимодействие с оксидами металлов с образованием растворимой соли и воды:

Взаимодействие с гидроксидами металлов с образованием растворимой соли и воды (реакция нейтрализации):

Взаимодействие с солями металлов, образованных более слабыми кислотами, например угольной:

Взаимодействие с сильными окислителями (перманганат калия, диоксид марганца) с выделением газообразного хлора:

Взаимодействие с аммиаком с образованием густого белого дыма, состоящего из мельчайших кристалликов хлорида аммония[2]:

Качественной реакцией на соляную кислоту и её соли является её взаимодействие с нитратом серебра, при котором образуетсятворожистый осадок хлорида серебра, нерастворимый в азотной кислоте[3]:

Водород

Водород – первый элемент Периодической системы (1‑й период, порядковый номер 1). Не имеет полной аналогии с остальными химическими элементами и не принадлежит ни к какой группе (в таблицах условно помещается в IA– и/или в VIIA‑группу).

Атом водорода наименьший по размерам и самый легкий среди атомов всех элементов. Электронная формула атома 1s 1 , характерные степени окисления 0, +I и реже – I. Состояние H I считается устойчивым (соединения с H ‑I – сильные восстановители).

Шкала степеней окисления водорода:

Природный водород содержит изотоп 1Н – протий с примесью стабильного изотопа 2 H(D) – дейтерия и следами радиоактивного изотопа 3 Н(Т) – трития (на Земле всего 2 кг трития). В химии символом Н в формулах веществ обозначается содержащаяся в них природная смесь изотопов с преобладанием изотопа протий, а сами вещества рассматриваются как почти изотопночистые соединения протия.

Водород – наиболее распространенный элемент в космосе (Солнце, большие планеты Юпитер и Сатурн, звезды, межзвездная среда, туманности); в состав космической материи входит 63 % Н, 36 % Не и 1 % всех остальных элементов.

В природе – третий по химической распространенности элемент (после О и Si), основа гидросферы. Встречается в химически связанном виде (вода, живые организмы, нефть, природный уголь, минералы), содержится в верхних слоях атмосферы.

Водород Н2. Простое вещество. Бесцветный газ без запаха и вкуса. Молекула содержит ковалентную σ‑связь Н – Н. Очень легкий, термически устойчивый до 2000 °C. Весьма мало растворим в воде. Хемосорбируется металлами Fe, Ni, Pd, Pt, где находится в атомном состоянии.

Водород Н2 может проявлять в одних условиях восстановительные свойства (чаще), в других – окислительные свойства (реже):

восстановитель Н2 0 – 2е ‑ = 2Н I

окислитель Н2 0 + 2е ‑ = 2Н ‑I

Сильный восстановитель при высоких температурах, водород реагирует с неметаллами и оксидами малоактивных металлов, выполняет роль окислителя в реакциях с типичными металлами:

Очень высокой восстановительной способностью обладает атомарный водород Н 0 (водород in statu nascendi, лат., – в момент возникновения), который получают непосредственно в зоне проводимой реакции (время жизни Н 0 0,5 с); например, гранулы магния вносят в подкисленный раствор переманганата калия, протекают реакции:

а) образование атомарного водорода

Mg + 2Н + = Mg 2+ + 2Н 0

б) восстановление перманганат‑иона атомарным водородом

5Н 0 + 3H + + MnO4 ‑ = Mn 2+ + 4Н2O

Другой пример – восстановление нитробензола в анилин (реакция Зинина):

а) Fe + 2Н + = Fe 2+ + 2Н 0

Получить атомарный водород можно также пропусканием водорода Н2 над никелевым катализатором.

Атомарный водород легко восстанавливает при комнатной температуре весьма устойчивые соединения, например KNO3 и O2:

Аналогично протекают реакции при использовании амфигенов (Zn, Al) в щелочной среде:

а) Zn + 2OH ‑ + 2H2O = [Zn(OH)4] 2‑ + 2Н 0

б) 8Н 0 + KNO3 = NH3↑ + КОН + 2Н2O (кипячение)

Качественная реакция – сгорание собранного в пробирку водорода с «хлопком» («гремучая» смесь с воздухом при содержании Н2 4–74 % по объему).

Применяется водород как восстановитель и гидрирующий агент в синтезе технически важных продуктов (редкие металлы, NH3, НCl, органические вещества).

Вода Н2O. Бинарное соединение. Бесцветная жидкость (слой более 5 м толщиной окрашен в голубой цвет), без вкуса и запаха. Молекула имеет строение дважды незавершенного тетраэдра [:: ОН2] (sр 3 ‑гибридизация). Летучее вещество, термически устойчивое до 1000 °C.

В обычных условиях полярные молекулы воды образуют между собой водородные связи. Это обусловливает аномалию температур плавления и кипения воды – они значительно выше, чем у ее химических аналогов (H2S и других). Затвердевание воды в лед сопровождается увеличением объема на 9 %, т. е. лед легче жидкой воды (вторая аномалия воды). Наибольшую плотность вода имеет не при 0 °C, а при 4 °C (третья аномалия воды). Твердая вода (лед) легко возгоняется.

Природная вода по изотопному составу водорода в основном 1 Н2O с примесью 1 Н 2 НО и 2 Н2O, по изотопному составу кислорода в основном Н2 16 O с примесью Н2 18 O и Н2 17 O. В малой степени подвергается диссоциации до Н + , или, точнее, до Н3O + , и ОН; очень слабый электролит. Катион оксония Н3O + имеет строение незавершенного тетраэдра [: O(Н)3] (sр 3 ‑гибридизация). Образует кристаллогидраты со многими солями, аквакомплексы – с катионами металлов. Реагирует с металлами, неметаллами, оксидами. Вызывает электролитическую диссоциацию кислот, оснований и солей, гидролизует многие бинарные соединения и соли. Подвергается электролизу в присутствии сильных электролитов. Почти универсальный жидкий растворитель неорганических веществ.

Для химических целей природную воду очищают перегонкой (дистиллированная вода), для промышленных целей умягчают, устраняя «временную» и «постоянную» жесткость, или полностью обессоливают, пропуская через иониты в кислотной Н + ‑форме и щелочной ОН ‑ – форме (ионы солей осаждаются на ионитах, а ионы Н + и ОН ‑ переходят в воду и взаимно нейтрализуются). Питьевую воду обеззараживают хлорированием (старый способ) или озонированием (современный, но дорогой способ; озон не только окисляет вредные примеси подобно хлору, но и увеличивает содержание растворенного кислорода).

Уравнения важнейших реакций:

Примеры гидролиза бинарных соединений:

Вода – окислитель за счет H I :

Электролиз воды:

Электропроводность чистой (дистиллированной) воды весьма мала, поэтому электролиз проводят в присутствии сильных электролитов.

а) в нейтральном растворе (электролит Na2SO4)

катод 2H2O + 2е ‑ = H2↑ + 2OH

раствор ОН ‑ + Н + = Н2O

б) в кислом растворе (электролит H2SO4)

катод 2Н + + 2е ‑ = Н2

в) в щелочном растворе (электролит NaOH)

катод2O + 2е ‑ = Н2↑ + 2OН ‑

анод 4OН ‑ – 4е ‑ = O2↑ + 2Н2O

Один из методов обнаружения воды основан на переходе во влажной атмосфере белого сульфата меди(II) CuSO4 в голубой медный купорос CuSO42O.

Известна изотопная разновидность воды – тяжелая вода D2O ( 2 Н2O); в природных водах массовое отношение D2O: Н2O = 1: 6000.

Плотность, температуры плавления и кипения тяжелой воды выше, чем у обыкновенной. Растворимость большинства веществ в тяжелой воде значительно меньше, чем в обычной воде. Она ядовита, так как замедляет биологические процессы в живых организмах. Тяжелая вода накапливается в остатке электролита при многоразовом электролизе воды. Используется как теплоноситель и замедлитель нейтронов в ядерных реакторах.

Гидрид кальция СаН2. Бинарное соединение. Белый, имеет ионное строение Са 2+ (Н ‑ )2. При плавлении разлагается. Чувствителен к кислороду воздуха. Сильный восстановитель, реагирует с водой, кислотами. Применяется как твердый источник водорода (1 кг СаН2 дает 1000 л Н2), осушитель газов и жидкостей, аналитический реагент для количественного определения воды в кристаллогидратах.

СаН2 = Н2 + Са (особо чистый) (выше 1000 °C)

СаН2 + O2 = Н2O + СаО (особо чистый) (300–400 °C)

ЗСаН2 + 2КClO3 = 2КCl + ЗСаО + ЗН2O (450–550 °C)

Водородные соединения: гидриды и их свойства

H2 - это элемент IА-группы, порядковый № 1. Заряд атомного ядра +1, потому что в ядре 1 протон. Вокруг ядра вращается всего 1 электрон. До завершения уровня атому не хватает 1 электрона. Завершать энергетический уровень атом водорода может различными способами: образовывать летучие водородные соединения и гидриды.

Гидриды

Способы завершения энергетического уровня

Водород — один из немногих химических элементов, который может иметь как положительную, так и отрицательную степень окисления в соединениях. Как, например, бром ( NaBr -1 , Br +1 2O ) и хлор ( NaCl -1 , HClO3 +5 ):

Химия

  1. Может принимать на внешний уровень один недостающий электрон – атом водорода превращается в ион, заряженный отрицательно. Такая реакция происходит при взаимодействии с металлами, которые в соединениях проявляют только положительную степень окисления. Степень окисления водорода будет равна -1, так как заряд отрицательный. Металлы с H2 создают соединения, которые называются гидридами. Способствует их образованию H2 с самыми активными металлами: щелочными и щелочноземельными. Например: NaH (гидрид натрия), CaH2 (гидрид кальция), LiH (гидрид лития), CuH (гидрид меди).
  2. Может отдавать один электрон со своего внешнего энергетического уровня — остается только ядро атома водорода, состоящее из протона. Таким образом, H2 образует химические соединения с неметаллами, которые при этом будут проявлять только отрицательную степень окисления. В соединениях с водородом степень окисления неметалла будет низшая. В этом случае водород становится частицей с положительным зарядом иона или степенью окисления +1. Соединения H2 с неметаллами называют летучие водородные соединения. Например: HCl (соляная кислота/хлороводород), NH3 (водородное соединение азота — аммиак), NH4OH (нашатырный спирт), NaHS (гидросульфид натрия).

Помимо способов завершения энергетического уровня, существует классификация гидридов, в соответствии с их характером связи. Они подразделяются на 3 большие группы.

Типы гидридов

Стоит рассмотреть основные группы, поскольку побочные группы (полимерные, интерметаллические и комплексные) являются подвидами основных, а также имеют схожие с ними физические и химические свойства.

Ионные гидриды

Ионные (солеобразные) — соединения H2 с металлами IA и IIA (кроме магния), а также с алюминием. Их главное отличие от двух других видов в том, что они активно реагируют с H2O с образованием щёлочи и выделением H2 в виде газа. Самым ярким представителем ионных гидридов является гидрид натрия.

Что такое гидриды

Физические свойства: белые твёр­дые ве­ще­ст­ва с кри­стал­лической ре­шёт­кой, со­дер­жа­щей ка­ти­он (плюс) ме­тал­ла и гид­рид-ани­он (минус) Н–. Проводят электрический ток. Устойчивы при нормальных условиях (н.у.).

Как и любое вещество (химический элемент, простое вещество или химическое соединение), ионные гидриды обладают свойствами. Они проявляются в процессе реакции и влияют на неё. Химические свойства:

  1. Разлагаются при нагревании еще до достижения своей температуры плавления: CaH2 = Ca + H2↑.
  2. При растирании на воздухе воспламеняются: CaH2 + O2 = CaO + H2O.
  3. Реагирует с водой с образованием щелочи и выделением водорода: 2NaH + H2O = 2NaOH + H2↑.
  4. Являются сильными восстановителями (при t 700-800°С восстанавливают оксиды до металлов), но их использование в лаборатории осложнено, поскольку они с легкостью реагируют с кислородом и влагой воздуха.

Применение: для по­лу­че­ния ме­тал­лов из их ок­си­дов, уда­ле­ния ока­ли­ны с по­верх­но­сти металлических из­де­лий, как ра­кет­ное то­п­ли­во.

Получение: при взаимодействии металлов с водородом при t 200-600°С:

  • H2 + 2Na = (300°C) 2NaH;
  • H2 + Ca = (600°C) CaH2.

Ковалентные соединения

Ковалентные — гидриды, образованные неметаллами IV, V, VI и VII групп, а также бором. Например, гидрид углерода/метан CH4, силан SiH4, гидрид серы/сероводород H2S.

Физические свойства: газообразные, легко воспламеняются на воздухе.

Ковалентные гидриды во многом отличаются от ионных и металлических. Если последние обладают химическими свойствами, схожими с металлами, то свойства ковалентных следует рассмотреть подробнее. Химические свойства:

  1. При высоких температурах разлагаются практически необратимо: H2S = (около 400°С) S + H2.
  2. Сильные восстановители.
  3. Высокая токсичность.
  4. B2H6 и SiH4 разлагаются водой с выделением водорода: B2H6 + 6H2O → 2H3BO3 + 6H2.
  5. Гидриды элементов V-VII групп не разлагаются водой.

Применение: для получения полупроводниковых пленочных покрытий, защитных покрытий на поверхности металлов.

Получение: термическое разложение, восстановление галогенидов.

Существуют многочисленные производные ковалентных гидридов, в которых часть атомов H2 замещена атомами галогенов или металлов.

Магний по своим свойствам и химической связи располагается между ионными и ковалентными гидридами. С водой и водными растворами MgH2 реагирует с выделением H2, но не так энергично, как ионные гидриды.

Соединения железа с водородом крайней неустойчивы и в чистом виде не обнаружены. Формула неустойчивого гидрида железа выглядит так: C5H5Fe.

Водородные соединения: гидриды

Металлические соединения

Металлические — соединения переходных металлов. Фактически они являются твёрдым раствором H2 в металле, атомы водорода помещаются в кристаллическую решётку металла. Их образованию всегда способствует адсорбция водорода на поверхности металла.

Физические свойства: пред­став­ля­ют со­бой кри­стал­лические ве­ще­ст­ва с металлическим бле­ском. Обладают интенсивной окраской, проявляют металлические или полупроводниковые свойства. Устойчивы на воздухе. С кислородом и водой реагируют медленно. Магнитными, механическими, тепло- и электропроводными свойствами схожи с металлами.

Химическая связь очень прочная.

Применение: применяются в качестве источников водорода особой чистоты (который используется в топливных элементах), также для удаления водорода из газовых смесей.

Получение: реакция металла с водородом при обычной температуре или при нагревании: Ti + H2 = (150-200°С) TiH2.

При взаи­мо­дей­ст­вии H2 с ин­тер­ме­тал­лическими со­еди­не­ния­ми, такими как TiFe, LaNi5, мож­но по­лу­чить гидриды ин­тер­ме­тал­ли­дов TiFeH2, LaNi5H6, ко­то­рые с вы­со­кой ско­ро­стью об­ра­ти­мо по­гло­ща­ют во­до­род при ат­мо­сфер­ном дав­ле­нии.

Гидриды химия

В прикрепленных таблицах указано содержание водорода, температура разложения, плотность и пр., что поможет в более глубоком понимании физических свойств водорода разных типов гидридов.

Особенности водородных соединений

Как и в любом разделе химии, водородные соединения имеют свои исключения. В их числе He, Ne, Ar, Kr, Pm, Os, Ir, Rn, Fr и Ra. Они не образуют бинарные соединения с водородом.

Информация, изложенная выше доказывает то, что химия интереснейший и увлекательный предмет, который стоит потраченного внимания и времени.

Читайте также: