Соль и металл ионное уравнение

Обновлено: 02.07.2024

Достаточно часто возникают затруднения при записи реакций кислых солей со щелочами. Ниже рассмотрим основные закономерности подобных взаимодействий. Под кислыми солями подразумеваем соли, в которых остались атомы водорода, способные к замещению на катионы металлов или аммония. Отсюда первый вывод: при добавлении щелочи водород в составе «кислого» аниона будет замещаться с образованием среднего аниона. По такой схеме будут идти простейшие примеры 1) и 2):

2) LiHS + LiOH = Li2S + H2O
Li + + HS − + Li + + OH − = 2Li + + S 2- + H2O
HS − + OH − = S 2- + H2O

При рассмотрении солей фосфорной кислоты будут возникать дополнительные варианты за счет образования двух видов кислых солей: гидрофосфатов и дигидрофосфатов. Тут следует обращать внимание на избыток/недостаток соли, либо щелочи. Сравните примеры 3) и 4):

Щелочи в примере 3) мало, не хватает для полного замещения атомов водорода в кислой соли.

В примере 4) щелочи много, заместит все возможные атомы водорода в кислой соли.

Значительно больше сложностей возникает при взаимодействии кислой соли и щелочи с разными катионами. Здесь все так же сперва происходит превращение кислого аниона в средний, а далее возможен обмен катионами. Влиять на такой обмен будет природа катионов, растворимость соответствующих средних солей, а также избыток/недостаток соли, либо щелочи. Рассмотрим возможные комбинации для солей двухосновной кислоты, например, угольной:

В описании задания случай 5) можно охарактеризовать фразой «в образовавшемся растворе практически отсутствовали гидроксид-ионы», что вполне понятно из ионного уравнения.

Для случая 6) можно записать «в образовавшемся растворе практически отсутствовали карбонат-ионы», что вполне понятно, поскольку они полностью перешли в состав осадка карбоната бария.

Различие в примерах 5) и 6) легко понять, если представить, что карбонат калия, образовавшийся на первой стадии, может далее вступить в обмен с избытком гидроксида бария.

Теперь давайте поменяем местами исходные катионы и убедимся, что тогда реакция может пойти единственным образом:

Почему невозможен вариант с получением гидроксида бария по аналогии со случаем 6)? Потому что карбонат бария уже является осадком и в дальнейшее взаимодействие с гидроксидом калия не вступает:

BaCO3 + KOH – нет реакции

Схожие рассуждения можно применить и для реакций с участием трехосновной фосфорной кислоты. Там так же будет больше вариантов протекания, если исходим из соли щелочного металла и щелочи, содержащей щелочноземельный металл:

Вариант 8) с образованием двух солей, по формулировке «в образовавшемся растворе практически отсутствовали гидроксид-ионы». Гидроксида кальция добавили мало, связать все фосфат-ионы в осадок не смог.

Вариант 9) с образованием соли и щелочи, по формулировке «в образовавшемся растворе практически отсутствовали фосфат-ионы». Гидроксида кальция взяли много, все фосфат-ионы перешли в осадок.

Если взять изначально соль щелочноземельного металла и гидроксид щелочного, то вариант будет только один:

Причина отсутствия гидроксида кальция в продуктах по аналогии с пунктом 7) – нерастворимость промежуточно образовавшегося фосфата кальция и отсутствие обмена с ним:

Реакции с дигидрофосфатами будут идти по аналогичным схемам и приводить к двум солям, либо соли и щелочи. Рассмотрим два примера из числа возможных:

Реакции ионного обмена

Реакции ионного обмена – это реакции между сложными веществами в растворах, в результате которых реагирующие вещества обмениваются своими составными частями. Так как в этих реакциях происходит обмен ионами – они называются ионными.

Правило Бертолле: Реакции обмена в растворах электролитов протекают до конца (возможны) только тогда, когда в результате реакции образуется либо твердое малорастворимое вещество (осадок), либо газ, либо вода или любой другой слабый электролит.

Например, нитрат серебра взаимодействует с бромидом калия

AgNО3 + КВr = АgВr↓ + КNО3

Правила составления уравнений реакций ионного обмена

1. Записываем молекулярное уравнение реакции, не забывая расставить коэффициенты:

3KOH +FeCl3 = Fe(OH)3 + 3KCl

2. С помощью таблицы растворимости определяем растворимость каждого вещества. Подчеркнем вещества, которые мы не будем представлять в виде ионов.

р р н р

3KOH + FeCl3 = Fe(OH)3 + 3KCl

3. Составляем полное ионное уравнение. Сильные электролиты записываем в виде ионов, а слабые электролиты, малорастворимые вещества и газообразные вещества записываем в виде молекул.

3K + + 3OH — + Fe 3+ + 3Cl — = Fe(OH)3 + 3K + + 3Cl —

4. Находим одинаковые ионы (они не приняли участия в реакции в левой и правой частях уравнения реакции) и сокращаем их слева и справа.

5. Составляем итоговое сокращенное ионное уравнение (выписываем формулы ионов или веществ, которые приняли участие в реакции).

Fe 3+ + 3OH — = Fe(OH)3

На ионы мы не разбиваем:

  • Оксиды; осадки; газы; воду; слабые электролиты (кислоты и основания)
  • Анионы кислотных остатков кислых солей слабых кислот (НСО3 — , Н2РО4 — и т.п.) и катионы основных солей слабых оснований Al(OH) 2+
  • Комплексные катионы и анионы: [Al(OH)4] —

Например, взаимодействие сульфида цинка и серной кислоты

Составляем уравнение реакции и проверяем растворимость всех веществ. Сульфид цинка нерастворим.

ZnS + H2SO4 = ZnSO4 + H2S

Реакция протекает до конца, т.к. выделяется газ сероводород, который является слабым электролитом. Полное ионно-молекулярное уравнение:

ZnS + 2H + + SO4 2 — = Zn 2+ + SO4 2 — + H2S

Сокращаем ионы, которые не изменились в процессе реакции – в данном случае это только сульфат-ионы, получаем сокращенное ионное уравнение:

ZnS + 2H + = Zn 2+ + H2S

Например, взаимодействие гидрокарбоната натрия и гидроксида натрия

Составляем уравнение реакции и проверяем растворимость всех веществ:

NaHCO3 + NaOH = Na2CO3 + H2O

Кислые анионы слабых кислот являются слабыми электролитами и на ионы не разбиваются:

Na + + НСО3 — + Na + + ОН — = 2Na + + CO3 2- + H2O

Сокращаем одинаковые ионы, получаем сокращенное ионное уравнение:

НСО3 — + ОН — = CO3 2- + H2O

Например, взаимодействие тетрагидроксоалюмината натрия и соляной кислоты

Na[Al(OH)4] + 4HCl = NaCl + AlCl3 + H2O

Комплексные ионы являются слабыми электролитами и на ионы не разбиваются:

Na + + [Al(OH)4] — + 4H + + 4Cl — = Na + + Cl — + Al 3+ + 3Cl — + H2O

[Al(OH)4] — + 4H + = Al 3+ + 4H2O

1.4.6. Реакции ионного обмена.

Реакции ионного обмена — реакции в водных растворах между электролитами, протекающие без изменений степеней окисления образующих их элементов.

Необходимым условием протекания реакции между электролитами (солями, кислотами и основаниями) является образование малодиссоциирующего вещества (вода, слабая кислота, гидроксид аммония), осадка или газа.

Расcмотрим реакцию, в результате которой образуется вода. К таким реакциям относятся все реакции между любой кислотой и любым основанием. Например, взаимодействие азотной кислоты с гидроксидом калия:

Исходные вещества, т.е. азотная кислота и гидроксид калия, а также один из продуктов, а именно нитрат калия, являются сильными электролитами, т.е. в водном растворе они существуют практически только в виде ионов. Образовавшаяся вода относится к слабым электролитам, т.е. практически не распадается на ионы. Таким образом, более точно переписать уравнение выше можно, указав реальное состояние веществ в водном растворе, т.е. в виде ионов:

Как можно заметить из уравнения (2), что до реакции, что после в растворе находятся ионы NO3 − и K + . Другими словами, по сути, нитрат-ионы и ионы калия никак не участвовали в реакции. Реакция произошла только благодаря объединению частиц H + и OH − в молекулы воды. Таким образом, произведя алгебраически сокращение одинаковых ионов в уравнении (2):

Уравнения вида (3) называют сокращенными ионными уравнениями, вида (2) — полными ионными уравнениями, а вида (1) — молекулярными уравнениями реакций.

Фактически ионное уравнение реакции максимально отражает ее суть, именно то, благодаря чему становится возможным ее протекание. Следует отметить, что одному сокращенному ионному уравнению могут соответствовать множество различных реакций. Действительно, если взять, к примеру, не азотную кислоту, а соляную, а вместо гидроксида калия использовать, скажем, гидроксид бария, мы имеем следующее молекулярное уравнение реакции:

Соляная кислота, гидроксид бария и хлорид бария являются сильными электролитами, то есть существуют в растворе преимущественно в виде ионов. Вода, как уже обсуждалось выше, – слабый электролит, то есть существует в растворе практически только в виде молекул. Таким образом, полное ионное уравнение данной реакции будет выглядеть следующим образом:

2H + + 2Cl − + Ba 2+ + 2OH − = Ba 2+ + 2Cl − + 2H2O

Сократим одинаковые ионы слева и справа и получим:

Разделив и левую и правую часть на 2, получим:

Полученное сокращенное ионное уравнение полностью совпадает с сокращенными ионным уравнением взаимодействия азотной кислоты и гидроксида калия.

При составлении ионных уравнений в виде ионов записывают только формулы:

1) сильных кислот (HCl, HBr, HI, H2SO4, HNO3, HClO4 ) (список сильных кислот надо выучить!)
2) сильных оснований (гидроксиды щелочных (ЩМ) и щелочно-земельных металлов(ЩЗМ))
3) растворимых солей

В молекулярном виде записывают формулы:

1) Воды H2O
2) Слабых кислот (H2S, H2CO3, HF, HCN, CH3COOH (и др. практически все органические)).
3) Слабых оcнований («NH4OH» и практически все гидроксиды металлов кроме ЩМ и ЩЗМ.
4) Малорастворимых солей (↓) («М» или «Н» в таблице растворимости).
5) Оксидов (и др. веществ, не являющихся электролитами).

Попробуем записать уравнение между гидроксидом железа (III) и серной кислотой. В молекулярном виде уравнение их взаимодействия записывается следующим образом:

Гидроксиду железа (III) соответствует в таблице растворимости обозначение «Н», что говорит нам о его нерастворимости, т.е. в ионном уравнении его надо записывать целиком, т.е. как Fe(OH)3 . Серная кислота растворима и относится к сильным электролитам, то есть существует в растворе преимущественно в продиссоциированном состоянии. Сульфат железа (III), как и практически все другие соли, относится к сильным электролитам, и, поскольку он растворим в воде, в ионном уравнении его нужно писать в виде ионов. Учитывая все вышесказанное, получаем полное ионное уравнение следующего вида:

Сократив сульфат-ионы слева и справа, получаем:

разделив обе части уравнения на 2 получаем сокращенное ионное уравнение:

Теперь давайте рассмотрим реакцию ионного обмена, в результате которой образуется осадок. Например, взаимодействие двух растворимых солей :

Все три соли – карбонат натрия, хлорид кальция, хлорид натрия и карбонат кальция (да-да, и он тоже) – относятся к сильным электролитам и все, кроме карбоната кальция, растворимы в воде, т.е. есть участвуют в данной реакции в виде ионов:

2Na + + CO3 2- + Ca 2+ + 2Cl − = CaCO3↓+ 2Na + + 2Cl −

Сократив одинаковые ионы слева и справа в данном уравнении, получим сокращенное ионное:

Последнее уравнение отображает причину взаимодействия растворов карбоната натрия и хлорида кальция. Ионы кальция и карбонат-ионы объединяются в нейтральные молекулы карбоната кальция, которые, соединяясь друг с другом, порождают мелкие кристаллы осадка CaCO3 ионного строения.

Примечание важное для сдачи ЕГЭ по химии

Чтобы реакция соли1 с солью2 протекала, помимо базовых требований к протеканиям ионных реакций (газ, осадок или вода в продуктах реакции), на такие реакции накладывается еще одно требование – исходные соли должны быть растворимы. То есть, например,

реакция не идет, хотя FeS – потенциально мог бы дать осадок, т.к. нерастворим. Причина того что реакция не идет – нерастворимость одной из исходных солей (CuS).

протекает, так как карбонат кальция нерастворим и исходные соли растворимы.

То же самое касается взаимодействия солей с основаниями. Помимо базовых требований к протеканию реакций ионного обмена, для того чтобы соль с основанием реагировали необходима растворимость их обоих. Таким образом:

т.к. Cu(OH)2 нерастворим, хотя потенциальный продукт CuS был бы осадком.

А вот реакция между NaOH и Cu(NO3)2 протекает, так оба исходных вещества растворимы и дают осадок Cu(OH)2:

Внимание! Ни в коем случае не распространяйте требование растворимости исходных веществ дальше реакций соль1+ соль2 и соль + основание.

Например, с кислотами выполнение этого требования не обязательно. В частности, все растворимые кислоты прекрасно реагируют со всеми карбонатами, в том числе нерастворимыми.

1) Соль1+ соль2 — реакция идет если исходные соли растворимы, а в продуктах есть осадок
2) Соль + гидроксид металла – реакция идет, если в исходные вещества растворимы и в продуктах есть осадок или гидроксид аммония.

Рассмотрим третье условие протекания реакций ионного обмена – образование газа. Строго говоря, только в результате ионного обмена образование газа возможно лишь в редких случаях, например, при образовании газообразного сероводорода:

В большинстве же остальных случаев газ образуется в результате разложения одного из продуктов реакции ионного обмена. Например, нужно точно знать в рамках ЕГЭ, что с образованием газа в виду неустойчивости разлагаются такие продукты, как H2CO3, «NH4OH» и H2SO3:

(«NH4OH» — такая запись формулы в кавычках подразумевает, что в реальности вещества с такой формулой не существует. Формула используется для большей простоты промежуточных записей. В реальности вместо «гидроксида аммония» правильнее писать формулу гидрата аммиака NH3·H2O).

Другими словами, если в результате ионного обмена образуются угольная кислота, гидроксид аммония или сернистая кислота, реакция ионного обмена протекает благодаря образованию газообразного продукта:

Запишем ионные уравнения для всех указанных выше реакций, приводящих к образованию газов. 1) Для реакции:

В ионном виде будут записываться сульфид калия и бромид калия, т.к. являются растворимыми солями, а также бромоводородная кислота, т.к. относится к сильным кислотам. Сероводород же, являясь малорастворимым и плохо диссоциирцющим на ионы газом, запишется в молекулярном виде:

2K + + S 2- + 2H + + 2Br — = 2K + + 2Br — + H2S↑

Сократив одинаковые ионы получаем:

2) Для уравнения:

В ионном виде запишутся Na2CO3, Na2SO4 как хорошо растворимые соли и H2SO4 как сильная кислота. Вода является малодиссоциирующим веществом, а CO2 и вовсе неэлектролит, поэтому их формулы будут записываться в молекулярном виде:

3) для уравнения:

Молекулы воды и аммиака запишутся целиком, а NH4NO3, KNO3 и KOH запишутся в ионном виде , т.к. все нитраты являются хорошо растворимыми солями, а KOH является гидроксидом щелочного металла, т.е. сильным основанием:

2.7. Характерные химические свойства солей: средних, кислых, основных, комплексных (на примере соединений алюминия и цинка).

Реакция соли с металлом протекает в том случае, если исходный свободный металл более активен, чем тот, который входит в состав исходной соли. Узнать о том, какой металл более активен, можно, воспользовавшись электрохимическим рядом напряжений металлов.

Так, например, железо взаимодействует с сульфатом меди в водном растворе, поскольку является более активным, чем медь (левее в ряду активности):

В то же время железо не реагирует с раствором хлорида цинка, поскольку оно менее активно, чем цинк:

Следует отметить, что такие активные металлы, как щелочные и щелочноземельные, при их добавлении к водным растворам солей будут прежде всего реагировать не с солью, а входящей в состав растворов водой.

Взаимодействие средних солей с гидроксидами металлов

Оговоримся, что под гидроксидами металлов в данном случае понимаются соединения вида Me(OH)x.

Для того чтобы средняя соль реагировала с гидроксидом металла, должны одновременно (!) выполняться два требования:

  • в предполагаемых продуктах должен быть обнаружен осадок или газ;
  • исходная соль и исходный гидроксид металла должны быть растворимы.

Рассмотрим пару случаев, для того чтобы усвоить данное правило.

Определим, какие из реакций ниже протекают, и напишем уравнения протекающих реакций:

Рассмотрим первое взаимодействие сульфида свинца и гидроксида калия. Запишем предполагаемую реакцию ионного обмена и пометим ее слева и справа «шторками», обозначив таким образом, что пока не известно, протекает ли реакция на самом деле:

В предполагаемых продуктах мы видим гидроксид свинца (II), который, судя по таблице растворимости, нерастворим и должен выпадать в осадок. Однако, вывод о том, что реакция протекает, пока сделать нельзя, так как мы не проверили удовлетворение еще одного обязательного требования – растворимости исходных соли и гидроксида. Сульфид свинца – нерастворимая соль, а значит реакция не протекает, так как не выполняется одно из обязательных требований для протекания реакции между солью и гидроксидом металла. Т.е.:

Рассмотрим второе предполагаемое взаимодействие между хлоридом железа (III) и гидроксидом калия. Запишем предполагаемую реакцию ионного обмена и пометим ее слева и справа «шторками», как и в первом случае:

В предполагаемых продуктах мы видим гидроксид железа (III), который нерастворим и должен выпадать в осадок. Однако сделать вывод о протекании реакции пока еще нельзя. Для этого надо еще убедиться в растворимости исходных соли и гидроксида. Оба исходных вещества растворимы, значит мы можем сделать вывод о том, что реакция протекает. Запишем ее уравнение:

Реакции средних солей с кислотами

Средняя соль реагирует с кислотой в том случае, если образуется осадок или слабая кислота.

Распознать осадок среди предполагаемых продуктов практически всегда можно по таблице растворимости. Так, например, серная кислота реагирует с нитратом бария, поскольку в осадок выпадает нерастворимый сульфат бария:

Распознать слабую кислоту по таблице растворимости нельзя, поскольку многие слабые кислоты растворимы в воде. Поэтому список слабых кислот следует выучить. К слабым кислотам относят H2S, H2CO3, H2SO3, HF, HNO2, H2SiO3 и все органические кислоты.

Так, например, соляная кислота реагирует с ацетатом натрия, поскольку образуется слабая органическая кислота (уксусная):

Следует отметить, что сероводород H2S является не только слабой кислотой, но и плохо растворим в воде, в связи с чем выделяется из нее в виде газа (с запахом тухлых яиц):

Кроме того, обязательно следует запомнить, что слабые кислоты — угольная и сернистая — являются неустойчивыми и практически сразу же после образования разлагаются на соответствующий кислотный оксид и воду:

Выше было сказано, что реакция соли с кислотой идет в том случае, если образуется осадок или слабая кислота. Т.е. если нет осадка и в предполагаемых продуктах присутствует сильная кислота, то реакция не пойдет. Однако есть случай, формально не попадающий под это правило, когда концентрированная серная кислота вытесняет хлороводород при действии на твердые хлориды:

Однако, если брать не концентрированную серную кислоту и твердый хлорид натрия, а растворы этих веществ, то реакция действительно не пойдет:

Реакции средних солей с другими средними солями

Реакция между средними солями протекает в том случае, если одновременно (!) выполняются два требования:

  • исходные соли растворимы;
  • в предполагаемых продуктах есть осадок или газ.

Например, сульфат бария не реагирует с карбонатом калия, поскольку несмотря на то что в предполагаемых продуктах есть осадок (карбонат бария), не выполняется требование растворимости исходных солей.

В то же время хлорид бария реагирует с карбонатом калия в растворе, поскольку обе исходные соли растворимы, а в продуктах есть осадок:

Газ при взаимодействии солей образуется в единственном случае – если смешивать при нагревании раствор любого нитрита с раствором любой соли аммония:

Причина образования газа (азота) заключается в том, что в растворе одновременно находятся катионы NH4 + и анионы NO2 — , образующие термически неустойчивый нитрит аммония, разлагающийся в соответствии с уравнением:

Реакции термического разложения солей

Разложение карбонатов

Все нерастворимые карбонаты, а также карбонаты лития и аммония термически неустойчивы и разлагаются при нагревании. Карбонаты металлов разлагаются до оксида металла и углекислого газа:

а карбонат аммония дает три продукта – аммиак, углекислый газ и воду:

Разложение нитратов

Абсолютно все нитраты разлагаются при нагревании, при этом тип разложения зависит от положения металла в ряду активности. Схема разложения нитратов металлов представлена на следующей иллюстрации:

Так, например, в соответствии с этой схемой уравнения разложения нитрата натрия, нитрата алюминия и нитрата ртути записываются следующим образом:

Также следует отметить специфику разложения нитрата аммония и нитрата железа (II):

Реакция разложения нитрата железа (II) снова стала встречаться в ЕГЭ по химии. В заданиях фигурирует формулировка о его разложении в токе воздуха, однако, что в токе воздуха, что без него, уравнение будет одинаковым. Писать оксид FeO при разложении нитрата железа (II) будет ошибкой.

Разложение солей аммония

Термическое разложение солей аммония чаще всего сопровождается образованием аммиака:

В случае, если кислотный остаток обладает окислительными свойствами, вместо аммиака образуется какой-либо продукт его окисления, например, молекулярный азот N2 или оксид азота (I):

Разложение хлората калия

Реакция разложения хлората калия может протекать по-разному. В присутствии катализатора (как правило MnO2), реакция приводит к образованию хлорида калия и кислорода:

Без катализатора, реакция будет протекать по типу диспропорционирования:

Химические свойства кислых солей

Отношение кислых солей к щелочам и кислотам

Кислые соли реагируют с щелочами. При этом, если щелочь содержит тот же металл, что и кислая соль, то образуются средние соли:

Также, если в кислотном остатке кислой соли осталось два или более подвижных атомов водорода, как, например, в дигидрофосфате натрия, то возможно образование как средней:

так и другой кислой соли с меньшим числом атомов водорода в кислотном остатке:

Важно отметить, что кислые соли реагируют с любыми щелочами, в том числе и теми, которые образованы другим металлом. Например:

Кислые соли, образованные слабыми кислотами, реагируют с сильными кислотами аналогично соответствующим средним солям:

Более подробно, с разбором алгоритмов составления уравнений, взаимодействие кислых солей (в частности, гидрокарбонатов, дигидрофосфатов и гидрофосфатов) со щелочами рассмотрено в данной публикации.

Термическое разложение кислых солей

Все кислые соли при нагревании разлагаются. В рамках программы ЕГЭ по химии из реакций разложения кислых солей следует усвоить, как разлагаются гидрокарбонаты. Гидрокарбонаты металлов разлагаются уже при температуре более 60 о С. При этом образуются карбонат металла, углекислый газ и вода:

Последние две реакции являются основной причиной образования накипи на поверхности водонагревательных элементов в электрических чайниках, стиральных машинах и т.д.

Гидрокарбонат аммония разлагается без твердого остатка с образованием двух газов и паров воды:

Химические свойства основных солей

Основные соли всегда реагируют со всеми сильными кислотами. При этом могут образоваться средние соли, если использовались кислота с тем же кислотным остатком, что и в основной соли, или смешанные соли, если кислотный остаток в основной соли отличается от кислотного остатка реагирующей с ней кислоты:

Также для основных солей характерны реакции разложения при нагревании, например:

Химические свойства комплексных солей (на примере соединений алюминия и цинка)

В рамках программы ЕГЭ по химии следует усвоить химические свойства таких комплексных соединений алюминия и цинка, как тетрагидроксоалюминаты и третрагидроксоцинкаты.

Тетрагидроксоалюминатами и тетрагидроксоцинкатами называют соли, анионы которых имеют формулы [Al(OH)4] — и [Zn(OH)4] 2- соответственно. Рассмотрим химические свойства таких соединений на примере солей натрия:

Данные соединения, как и другие растворимые комплексные, хорошо диссоциируют, при этом практически все комплексные ионы (в квадратных скобках) остаются целыми и не диссоциируют дальше:

Действие избытка сильной кислоты на данные соединения приводит к образованию двух солей:

При действии же на них недостатка сильных кислот в новую соль переходит только активный металл. Алюминий и цинк в составе гидроксидов выпадают в осадок:

Осаждение гидроксидов алюминия и цинка сильными кислотами не является удачным выбором, поскольку сложно добавить строго необходимое для этого количество сильной кислоты, не растворив при этом часть осадка. По этой причине для этого используют углекислый газ, обладающий очень слабыми кислотными свойствами и благодаря этому не способный растворить осадок гидроксида:

В случае тетрагидроксоалюмината осаждение гидроксида также можно проводить, используя диоксид серы и сероводород:

В случае тетрагидроксоцинката осаждение сероводородом невозможно, поскольку в осадок вместо гидроксида цинка выпадает его сульфид:

При упаривании растворов тетрагидроксоцинката и тетрагидроксоалюмината с последующим прокаливанием данные соединения переходят соответственно в цинкат и алюминат:

Химические свойства и способы получения солей

Перед изучением этого раздела рекомендую прочитать следующую статью:

Соли – это сложные вещества, которые состоят из катионов металлов и анионов кислотных остатков.

Классификация солей


Получение солей

1. Соли можно получить взаимодействием кислотных оксидов с основными.

кислотный оксид + основный оксид = соль

Например , оксид серы (VI) реагирует с оксидом натрия с образованием сульфата натрия:

2. Взаимодействие кислот с основаниями и амфотерными гидроксидами. При этом щелочи взаимодействуют с любыми кислотами: и сильными, и слабыми.

Щелочь + любая кислота = соль + вода

Например , гидроксид натрия реагирует с соляной кислотой:

HCl + NaOH → NaCl + H2O

При взаимодействии щелочей с избытком многоосновной кислоты образуются кислые соли.

Например , гидроксид калия взаимодействует с избытком фосфорной кислоты с образованием гидрофосфата калия или дигидрофосфата калия:

Нерастворимые основания реагируют только с растворимыми кислотами.

Нерастворимое основание + растворимая кислота = соль + вода

Например , гидроксид меди (II) реагирует с серной кислотой:

Все амфотерные гидроксиды — нерастворимые. Следовательно, они ведут себя как нерастворимые основания при взаимодействии с кислотами:

Амфотерный гидроксид + растворимая кислота = соль + вода

Например , гидроксид цинка (II) реагирует с соляной кислотой:

Также соли образуются при взаимодействии аммиака с кислотами (аммиак проявляет основные свойства).

Аммиак + кислота = соль

Например , аммиак реагирует с соляной кислотой:



3. Взаимодействие кислот с основными оксидами и амфотерными оксидами. При этом растворимые кислоты взаимодействуют с любыми основными оксидами.

Растворимая кислота + основный оксид = соль + вода

Растворимая кислота + амфотерный оксид = соль + вода

Например , соляная кислота реагирует с оксидом меди (II):

2HCl + CuO → CuCl2 + H2O


4. Взаимодействие оснований с кислотными оксидами. Сильные основания взаимодействуют с любыми кислотными оксидами.

Щёлочь + кислотный оксид → соль + вода

Например , гидроксид натрия взаимодействует с углекислым газом с образованием карбоната натрия:

При взаимодействии щелочей с избытком кислотных оксидов, которым соответствуют многоосноосновные кислоты, образуются кислые соли.

Например , при взаимодействии гидроксида натрия с избытком углекислого газа образуется гидрокарбонат натрия:

NaOH + CO2 → NaHCO3

Нерастворимые основания взаимодействуют только с кислотными оксидами сильных кислот.

Например , гидроксид меди (II) взаимодействует с оксидом серы (VI), но не вступает в реакцию с углекислым газом:



5. Соли образуются при взаимодействии кислот с солями. Нерастворимые соли взаимодействуют только с более сильными кислотами (более сильная кислота вытесняет менее сильную кислоту из соли). Растворимые соли взаимодействуют с растворимыми кислотами, если в продуктах реакции есть осадок, газ или вода или слабый электролит.

Например: карбонат кальция CaCO3 (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

Силикат натрия (растворимая соль кремниевой кислоты) взаимодействует с соляной кислотой, т.к. в ходе реакции образуется нерастворимая кремниевая кислота:


6. Соли можно получить окислением оксидов, других солей, металлов и неметаллов (в щелочной среде) в водном растворе кислородом или другими окислителями.

Например , кислород окисляет сульфит натрия до сульфата натрия:

7. Еще один способ получения солей — взаимодействие металлов с неметаллами . Таким способом можно получить только соли бескислородных кислот.

Например , сера взаимодействует с кальцием с образованием сульфида кальция:

Ca + S → CaS

8. Соли образуются при растворении металлов в кислотах . Минеральные кислоты и кислоты-окислители (азотная кислота, серная концентрированная кислота) реагируют с металлами по-разному.

Кислоты-окислители реагируют с металлами с образованием продуктов восстановления азота и серы. Водород в таких реакциях не выделяется!

Минеральные кислоты реагируют по схеме:

металл + кислота → соль + водород

При этом с кислотами реагируют только металлы, расположенные в ряду активности левее водорода. А образуется соль металла с минимальной степенью окисления.

Например , железо растворяется в соляной кислоте с образованием хлорида железа (II):

Fe + 2HCl → FeCl2 + H2


9. Соли образуются при взаимодействии щелочей с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6 H2 + O = 2Na[ Al +3 (OH)4] + 3 H2 0

10. Соли образуются при взаимодействии щелочей с неметаллами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2

NaOH +N2

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH + Cl2 0 = NaCl — + NaOCl + + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH + Cl2 0 = 5NaCl — + NaCl +5 O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH + Si 0 + H2 + O= Na2Si +4 O3 + 2H2 0

Фтор окисляет щёлочи:

2F2 0 + 4NaO -2 H = O2 0 + 4NaF — + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

11. Соли образуются при взаимодействии солей с неметалами. При этом протекают окислительно-восстановительные реакции. Один из примеров таких реакций — взаимодействие галогенидов металлов с другими галогенами. При этом более активный галоген вытесняет менее активный из соли.

Например , хлор взаимодействует с бромидом калия:

2KBr + Cl2 = 2KCl + Br2

Но не реагирует с фторидом калия:

KF +Cl2

Химические свойства солей

1. В водных растворах соли диссоциируют на катионы металлов Ме + и анионы кислотных остатков. При этом растворимые соли диссоциируют почти полностью, а нерастворимые соли практически не диссоциируют, либо диссоциируют только частично.

Например , хлорид кальция диссоциирует почти полностью:

CaCl2 → Ca 2+ + 2Cl –

Кислые и основные соли диссоциируют cтупенчато. При диссоциации кислых солей сначала разрываются ионные связи металла с кислотными остатком, затем диссоциирует кислотный остаток кислой соли на катионы водорода и анион кислотного остатка.

Например , гидрокарбонат натрия диссоциирует в две ступени:

NaHCO3 → Na + + HCO3

HCO3 – → H + + CO3 2–

Основные соли также диссоциируют ступенчато.

Например , гидроксокарбонат меди (II) диссоциирует в две ступени:

CuOH + → Cu 2+ + OH –

Двойные соли диссоциируют в одну ступень.

Например , сульфат алюминия-калия диссоциирует в одну ступень:

Смешанные соли диссоциируют также одноступенчато.

Например , хлорид-гипохлорит кальция диссоциирует в одну ступень:

CaCl(OCl) → Ca 2+ + Cl — + ClO –

Комплексные соли диссоциируют на комплексный ион и ионы внешней сферы.

Например , тетрагидроксоалюминат калия распадается на ионы калия и тетрагидроксоалюминат-ион:


2. Соли взаимодействуют с кислотными и амфотерными оксидами . При этом менее летучие оксиды вытесняют более летучие при сплавлении.

соль1 + амфотерный оксид = соль2 + кислотный оксид

соль1 + твердый кислотный оксид = соль2 + кислотный оксид

соль + основный оксид ≠

Например , карбонат калия взаимодействует с оксидом кремния (IV) с образованием силиката калия и углекислого газа:

Карбонат калия также взаимодействует с оксидом алюминия с образованием алюмината калия и углекислого газа:

3. Соли взаимодействуют с кислотами. Закономерности взаимодействия кислот с солями уже рассмотрены в данной статье в разделе «Получение солей».

4. Растворимые соли взаимодействуют с щелочами. Реакция возможна, только если образуется газ, осадок, вода или слабый электролит, поэтому с щелочами взаимодействуют, как правило, соли тяжелых металлов или соли аммония.

Растворимая соль + щелочь = соль2 + основание

Например , сульфат меди (II) взаимодействует с гидроксидом калия, т.к. образуется осадок гидроксида меди (II):

Хлорид аммония взаимодействует с гидроксидом натрия:

Кислые соли взаимодействуют с щелочами с образованием средних солей.

Кислая соль + щелочь = средняя соль + вода

Например , гидрокарбонат калия взаимодействует с гидроксидом калия:


5. Растворимые соли взаимодействуют с солями. Реакция возможна, только если обе соли растворимые, и в результате реакции образуется осадок.

Растворимая соль1 + растворимая соль2 = соль3 + соль4

Растворимая соль + нерастворимая соль ≠

Например , сульфат меди (II) взаимодействует с хлоридом бария, т.к. образуется осадок сульфата бария:

Некоторые кислые соли взаимодействуют с кислыми солями более слабых кислот. При этом более сильные кислоты вытесняют более слабые:

Кислая соль1 + кислая соль2 = соль3 + кислота

Например , гидрокарбонат калия взаимодействует с гидросульфатом калия:

Некоторые кислые соли могут реагировать со своими средними солями.

Например , фосфат калия взаимодействует с дигидрофосфатом калия с образованием гидрофосфата калия:


6. C оли взаимодействуют с металлами. Более активные металлы (расположенные левее в ряду активности металлов) вытесняют из солей менее активные.

Например , железо вытесняет медь из раствора сульфата меди (II):

CuSO4 + Fe = FeSO4 + Cu

А вот серебро вытеснить медь не сможет:

CuSO4 + Ag ≠

Обратите внимание! Если реакция протекает в растворе, то добавляемый металл не должен реагировать с водой в растворе. Если мы добавляем в раствор соли щелочной или щелочноземельный металл, то этот металл будет реагировать преимущественно с водой, а с солью будет реагировать незначительно.

Например , при добавлении натрия в раствор хлорида цинка натрий будет взаимодействовать с водой:

2H2O + 2Na = 2NaOH + H2

Образующийся гидроксид натрия, конечно, будет реагировать с хлоридом цинка:

ZnCl2 + 2NaOH = 2NaCl + Zn(OH)2

Но сам-то натрий с хлоридом цинка, таким образом, взаимодействовать напрямую не будет!

ZnCl2(р-р) + Na ≠

А вот в расплаве эта реакция при определенных условиях уже может протекать, так как в расплаве никакой воды нет.

ZnCl2(р-в) + 2Na = 2NaCl + Zn

И еще один нюанс. Чтобы получить расплав, соль необходимо нагреть. Но многие соли при нагревании разлагаются. И реагировать с металлом, естественно, при этом не могут. Таким образом, реагировать с металлами в расплаве могут только те соли, которые не разлагаются при нагревании. А разлагаются при нагревании почти все нитраты, нерастворимые карбонаты и некоторые другие соли.

Например , нитрат меди (II) в расплаве не реагирует с железом, так как при нагревании нитрат меди разлагается:

Образующийся оксид меди, конечно, будет реагировать с железом:

CuO + Fe = FeO + Cu

Но сам-то нитрат меди, получается, с железом реагировать напрямую не будет!


При добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

7. Некоторые соли при нагревании разлагаются .

Соли, в составе которых есть сильные окислители, разлагаются с окислительно-восстановительной реакцией. К таким солям относятся:

NH4NO3 → N2O + 2H2O

NH4NO2 → N2 + 2H2O

(NH4)2Cr2O7 → N2 + 4H2O + Cr2O3

2AgNO3 → 2Ag +2NO2 + O2

2AgCl → 2Ag + Cl2

Некоторые соли разлагаются без изменения степени окисления элементов. К ним относятся:

MgСO3 → MgO + СО2

2NaНСО3 → Na2СО3 + СО2 + Н2О

  • Карбонат, сульфат, сульфит, сульфид, хлорид, фосфат аммония:

NH4Cl → NH3 + HCl

(NH4)2CO3 → 2NH3 + CO2 + H2O

(NH4)2SO4 → NH4HSO4 + NH3


7. Соли проявляют восстановительные свойства . Как правило, восстановительные свойства проявляют либо соли, содержащие неметаллы с низшей степенью окисления, либо соли, содержащие неметаллы или металлы с промежуточной степенью окисления.

Например , йодид калия окисляется хлоридом меди (II):

4KI — + 2Cu +2 Cl2 → 4KCl + 2Cu + l + I2 0


8. Соли проявляют и окислительные свойства . Как правило, окислительные свойства проявляют соли, содержащие атомы металлов или неметаллов с высшей или промежуточной степенью окисления. Окислительные свойства некоторых солей рассмотрены в статье Окислительно-восстановительные реакции.

Читайте также: