Сообщение на тему коррозия металлов

Обновлено: 18.05.2024

Коррозионная стойкость металла зависит от его природы, характера среды и температуры.

  • Благородные металлы не подвергаются коррозии из-за химической инертности.
  • Металлы Al, Ti, Zn, Cr, Ni имеют плотные газонепроницаемые оксидные плёнки, которые препятствуют коррозии.
  • Металлы с рыхлой оксидной плёнкой – Fe, Cu и другие – коррозионно неустойчивы. Особенно сильно ржавеет железо.

Различают химическую и электрохимическую коррозию.

Химическая коррозия сопровождается химическими реакциями. Как правило, химическая коррозия металлов происходит при действии на металл сухих газов, её также называют газовой.

При химической коррозии также возможны процессы:

Fe + 2HCl → FeCl2 + H2

2Fe + 3Cl2 → 2FeCl3

Как правило, такие процессы протекают в аппаратах химических производств.

Электрохимическая коррозия – это процесс разрушения металла, который сопровождается электрохимическими процессами. Как правило, электрохимическая коррозия протекает в присутствии воды и кислорода, либо в растворах электролитов.

В таких растворах на поверхности металла возникают процессы переноса электронов от металла к окислителю, которым является либо кислород, либо кислота, содержащаяся в растворе.

При этом электродами являются сам металл (например, железо) и содержащиеся в нем примеси (обычно менее активные металлы, например, олово).

В таком загрязнённом металле идёт перенос электронов от железа к олову, при этом железо (анод) растворяется, т.е. подвергается коррозии:

Fe –2e = Fe 2+

На поверхности олова (катод) идёт процесс восстановления водорода из воды или растворённого кислорода:

2H + + 2e → H2

O2 + 2H2O + 4e → 4OH –

Например, при контакте железа с оловом в растворе соляной кислоты происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: 2H + + 2e → H2

Суммарная реакция: Fe + 2H + → H2 + Fe 2+

Если реакция проходит в атмосферных условиях в воде, в ней участвует кислород и происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: O2 + 2H2O + 4e → 4OH –

Суммарная реакция:

Fe 2+ + 2OH – → Fe(OH)2

4Fe(OH)2 + O2+ 2H2O → 4Fe(OH)3

При этом образуется ржавчина.

Методы защиты от коррозии

Защитные покрытия

Защитные покрытия предотвращают контакт поверхности металла с окислителями.

  • Катодное покрытие – покрытие менее активным металлом (защищает металл только неповреждённое покрытие).
  • Покрытие краской, лаками, смазками.
  • Создание на поверхности некоторых металлов прочной оксидной плёнки химическим путём (анодирование алюминия, кипячение железа в фосфорной кислоте).

Создание сплавов, стойких к коррозии

Физические свойства сплавов могут существенно отличаться от свойств чистых металлов. Добавление некоторых металлов может приводить к повышению коррозионной стойкости сплава. Например, нержавеющая сталь, новые сплавы с большой коррозионной устойчивостью.

Изменение состава среды

Коррозия замедляется при добавлении в среду, окружающую металлическую конструкцию, ингибиторов коррозии. Ингибиторы коррозии — это вещества, подавляющие процессы коррозии.

Электрохимические методы защиты

Протекторная защита: при присоединении к металлической конструкции пластинок из более активного металла – протектора. В результате идёт разрушение протектора, а металлическая конструкция при этом не разрушается.

Коррозия металлов. Виды коррозии металлов

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.

Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

виды коррозии металлов

Основные виды коррозии металлов

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь.

Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Виды химической коррозии

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Фактор Пиллинга-Бэдворса

Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

где Vок — объем образовавшегося оксида

VМе — объем металла, израсходованный на образование оксида

Мок – молярная масса образовавшегося оксида

ρМе – плотность металла

n – число атомов металла

AMe — атомная масса металла

ρок — плотность образовавшегося оксида

Оксидные пленки, у которых α < 1, не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).

Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.

При значениях α > 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения сплошности α для некоторых оксидов металлов

МеталлОксидαМеталлОксидα
KK2O0,45ZnZnO1,55
NaNa2O0,55AgAg2O1,58
LiLi2O0,59ZrZrO21.60
CaCaO0,63NiNiO1,65
SrSrO0,66BeBeO1,67
BaBaO0,73CuCu2O1,67
MgMgO0,79CuCuO1,74
PbPbO1,15TiTi2O31,76
CdCdO1,21CrCr2O32,07
AlAl2­O21,28FeFe2O32,14
SnSnO21,33WWO33,35
NiNiO1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:

2H + +2e — = H2 разряд водородных ионов

Кислородная деполяризация

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:

O2 + 4H + +4e — = H2O восстановление растворенного кислорода

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Виды электрохимической коррозии

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O2 + 4H + + 4e — = 2H2O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла и коррозионной среды

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов

4.1 Основные способы защиты металлов от коррозии …………. 8

Коррозия — это самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды.

Коррозия металлов — разрушение металлов вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства.

В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин “коррозия” употреблять не следует. Например, нельзя говорить о коррозии растворимого анода в гальванической ванне, поскольку анод должен окислятся, посылая свои ионы в раствор, чтобы протекал нужный процесс. Нельзя также говорить о коррозии алюминия при осуществлении аллюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется.

Типы коррозии

Различают 4 основных вида коррозии, например: электрохимическая коррозия, водородная, кислородная коррозия и химическая.

· Электрохимическая коррозии

Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов-называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т. п. При электрохимической коррозии всегда требуется наличие электролита, с которым соприкасаются электроды — либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.

Водородная коррозия - повреждение стали и ее страновление более хрупкой под влиянием длительного воздействия водородной среды при повышенных (gt; 200 °С) температурах эксплуатации в результате физико-химического взаимодействия водорода с отдельными компонентами и/или фазами сплава.

Водородное повреждение при повышенных температурах связано с образованием продуктов реакции между водородом и углеродом по типу: В углеродистой стали суммарная химическая реакция между углеродом, связанным в карбидах железа, и водородом может быть представлена в виде
образующийся в результате реакции метан покидает металл и/или образует внутренние полости и трещины, наполненные газообразным метаном под высоким давлением. В поверхностных слоях металла формируются обезуглероженные зоны. Водородная коррозия может протекать во всех сталях, если они содержат углерод в доступной для реакции форме и он достаточно подвижен, чтобы вступать в реакцию с водородом.
Восприимчивость стали к водородной коррозии зависит от легирующих элементов, которые воздействуют на активность углерода. Скорость водородной коррозии зависит от давления водорода и температуры, а также от размера зерен, состава их границ, степени наклепа стали и других факторов.

Кислородная коррозия возникает при питании парогенератора водой, содержащей кислород. Проявляется эта коррозия в виде язвин и питтингов на трубах. Причиной питтинговой коррозии является двойственное влияние кислорода на коррозионный процесс. С одной стороны, кислород является активным деполяризатором и ускоряет катодный процесс и коррозию в целом. С другой стороны, окисляя металл и образуя окислы, кислород играет роль пассиватора, снижающего скорость коррозии. В результате в присутствии кислорода уменьшается число анодных участков и возрастает площадь катодных участков. Коррозия становится местной, интенсивность её возрастает, разрушения идут, вглубь образуя язвы. Язвенный характер кислородной коррозии делает её особенно опасной.Наблюдается кислородная коррозия главным образом в экономайзерах. При значительном содержании кислорода в питательной воде (более 0,3 мг/кг) кислородная коррозия может протекать в пароводяном коллекторе и отпускных трубах парогенераторов с естественной циркуляцией.

Величина кислородной коррозии пропорциональна содержанию кислорода в питательной воде.

Подъёмные парообразующие трубы также могут разрушаться вследствие кислородной коррозии. Однако коррозионный процесс в них протекает менее интенсивно и практически мало зависит от содержания кислорода. Это обстоятельство связано с деаэрирующией способностью пара при кипении воды в подъёмных трубах.

Повышение давления и температуры при неизменном содержании кислорода приводит к усилению коррозии. Это связано с возрастанием скорости диффузии кислорода к катодным участкам.

Скорость кислородной коррозии зависит от плотности теплового потока, скорости циркуляции, наличия в воде солей. Если в питательной воде наряду с О2 содержаться хлориды, то коррозия усиливается Химическая коррозия

Химическая коррозия — самопроизвольное взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Как и любая химическая реакция, этот вид коррозии носит временной характер. Окислителями (корродирующими агентами) могут быть сухие газы (О2, СО2, SО2, HC1, оксиды азота и др.), перегретый водяной пар, жидкости, не являющиеся электролитами, а также расплавы органических и неорганических веществ, в том числе металлов. Наиболее часто химической коррозии подвергается металлургическое оборудование, сопла реактивных двигателей, детали газовых турбин и двигателей внутреннего сгорания, оболочки ракет и космических кораблей, т. е. изделия, работающие при высоких температурах.

Скорость коррозии

Скорость коррозии металлов и металлических покрытий в атмосферных условиях определяется комплексным воздействием ряда факторов: наличием на поверхности фазовых и адсорбционных пленок влаги, загрязненностью воздуха коррозионно-агрессивными веществами, изменением температуры воздуха и металла, образованием продуктов коррозии и так далее.
Оценка и расчет скорости коррозии должны основываться на учете продолжительности и материальном коррозионном эффекте действия на металл наиболее агрессивных факторов.
В зависимости от факторов, влияющих на скорость коррозии, целесообразно следующее подразделение условий эксплуатации металлов, подвергаемых атмосферной коррозии:
Закрытые помещения с внутренними источниками тепла и влаги (отапливаемые помещения);
Закрытые помещения без внутренних источников тепла и влаги (неотапливаемые помещения);
Открытая атмосфера.

Классификация коррозионных процессов по типу разрушений

1. Равномерная – охватывает всю поверхность равномерно

4. Местная пятнами – корродируют отдельные участки поверхности

5. Язвенная (или питтинг)

7. Межкристаллитная – распространяется вдоль границ кристалла металла

Защита от коррозии

Основные способы защиты металлов от коррозии

Для защиты металлов от коррозии применяются различные способы, которые условно можно разделить на следующие основные направления: легирование металлов; защитные покрытия; электрохимическая защита; изменение свойств коррозионной среды; рациональное конструирование изделий.

Легирование металлов. Это эффективный метод повышения коррозионной стойкости металлов. При легировании в состав сплава или металла вводят легирующие элементы (хром, никель, молибден и др.), вызывающие пассивность металла. Пассивацией называют процесс перехода металла или сплава в состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Пассивное состояние металла объясняется образованием на его поверхности совершенной по структуре оксидной пленки (оксидная пленка обладает защитными свойствами при условии максимального сходства кристаллических решеток металла и образующегося оксида).

Широкое применение нашло легирование для защиты от газовой коррозии. Легированию подвергаются железо, алюминий, медь, магний, цинк, а также сплавы на их основе. В результате чего получаются сплавы с более высокой коррозионной стойкостью, чем сами металлы. Эти сплавы обладают одновременно жаростойкостью и жаропрочностью.

Жаростойкость – стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность – свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например, стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов.

Легирование также используется с целью снижения скорости электрохимической коррозии, особенно коррозии с выделением водорода. К коррозионностойким сплавам, например, относятся нержавеющие стали, в которых легирующими компонентами служат хром, никель и другие металлы.

Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий для защиты их коррозии, называются защитными покрытиями. Нанесение защитных покрытий – самый распространенный метод борьбы с коррозией. Защитные покрытия не только предохраняют изделия от коррозии, но и придают поверхностям ряд ценных физико-химических свойств. Они подразделяются на металлические и неметаллические. Общими требованиями для всех видов защитных покрытий являются высокая адгезионная способность, сплошность и стойкость в агрессивной среде.

Металлические покрытия. Металлические покрытия занимают особое положение, так как их действие имеет двойственный характер. До тех пор, пока целостность слоя покрытия не нарушена, его защитное действие сводится к изоляции поверхности защищаемого металла от окружающей среды. Это не отличается от действия любого механического защитного слоя (окраска, оксидная пленка и т.д.). Металлические покрытия должны быть непроницаемы для коррозионных агентов.

При повреждении покрытия образуется гальванический элемент. Характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов. Защитные антикоррозионные покрытия могут быть катодными и анодными. К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. Анодные покрытия имеют наиболее отрицательный потенциал, чем потенциал основного металла.

При повреждении никелевого покрытия на анодных участках происходит процесс окисления железа вследствие возникновения микрокоррозионных гальванических элементов. На катодных участках - восстановление водорода. Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждения покрытия.

Местное повреждение защитного цинкового слоя ведет к дальнейшему его разрушению, при этом поверхность железа защищена от коррозии. На анодных участках происходит процесс окисления цинка. На катодных участках - восстановление водорода.

Электродные потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия.

Для получения металлических защитных покрытий применяются различные способы:электрохимический(гальванические покрытия);погружение в расплавленный металл(горячее цинкование, лужение);металлизация(нанесение расплавленного металла на защищаемую поверхность с помощью струи сжатого воздуха);химический(получение металлических покрытий с помощью восстановителей, например гидразина).

Методы защита от коррозии

На скорость коррозии влияют как внутренние факторы (наличие дефектов кристаллической решетки металла, механические напряжения и др.), так и внешние: температура, природа и состав электролита. С повышением температуры скорость коррозии, как и большинства химических реакций, возрастает. Усиливают коррозию содержащаяся в атмосфере промышленных городов пыль, SO2, СO2 и другие газы. Поэтому в городах коррозия протекает в 5-10 раз быстрее, чем в сельской местности. Ионы присутствующие в морской воде, являются катализаторами коррозии железа и его сплавов, так как адсорбируясь на поверхности металла, разрушают или препятствуют образованию на нем защитных слоев. Кроме того, скорость коррозии двух контактирующих металлов будет тем больше, чем больше разность потенциалов этих металлов. Полностью предотвратить процессы коррозии металлов практически не удается, однако существуют способы защиты металлов от коррозии.

1. Изменение коррозионной среды - этот метод пригоден для тех случаев, когда защищаемые изделия эксплуатируются в небольшом объеме. Суть метода состоит в удалении из электролита растворенного кислорода или добавлении к этому раствору веществ, замедляющих коррозию - ингибиторов.

2. Легирование металлов. Это введение в состав сплавов компонентов, повышающих химическую стойкость. Наибольшее применение находят нержавеющие стали, в состав которых входит хром , до 15 % и никель, до 10 %. Кроме того, в качестве легирующих компонентов используют марганец, кремний, вольфрам, молибден, титан и другие металлы.

3. Неметаллические покрытия . Механически защищают металлы от коррозии, изолируя их от влияния внешней среды. Неметаллические покрытия делятся на неорганические и органические. Из неорганических покрытий наиболее распространены оксидные и фосфатные пленки. Так, при кипячении железа в растворе солей фосфорной кислоты получают фосфатные пленки, хорошо защищающие от коррозии в атмосфере. Среди органических, покрытий наиболее распространенными являются масляные краски, лаки, полимерные пленки. Лакокрасочные покрытия - самый дешевый метод защиты от коррозии.

4. Металлические покрытия. По характеру защитного действия различают анодные и катодные покрытия. Аноднымявляется покрытие металлом, электродный потенциал которого меньше, чем у защищаемого металла. Покрытие из металла менее активного (с большим электродным потенциалом), чем защищаемый металл, называется катодным.Если покрытие не нарушено и полностью изолирует основной металл от воздействия окружающей среды, принципиального различия между анодными и катодными покрытиями нет. При нарушении слоя защищающего металла возникают коррозионные гальванические элементы, в которых защищаемый металл может играть роль или инертного катода, или активного анода.

5. Электрохимическая защита:

а) катодная защита. Защищаемую конструкцию присоединяют к катоду внешнего источника тока, в результате она становится катодом, не окисляется, на ней идет восстановление компонентов среды. В качестве анода применяют любой металлический лом, который присоединяют к аноду внешнего источника тока. Таким способом защищают, например, подземные трубопроводы;

б) протекторная защита. Защищаемый металл соединяют с более активным металлом, имеющим меньший электродный потенциал. Последний служит анодом, растворяется и защищает основной металл.

Для более активной защиты металлических конструкций можно совмещать несколько способов защиты от коррозии, например, покрытие и катодную электрозащиту.

Заключение

Металлы составляют одну из основ цивилизации на планете Земля. Их широкое внедрение в промышленное строительство и транспорт произошло на рубеже XVIII-XIX. В это время появился первый чугунный мост, спущено на воду первое судно, корпус которого был изготовлен из стали, созданы первые железные дороги. Начало практического использования человеком железа относят к IX веку до нашей эры. Именно в этот период человечество перешло из бронзового века в век железный.

В XXI веке высокие темпы развития промышленности, интенсификация производственных процессов, повышение основных технологических параметров (температура, давление, концентрация реагирующих средств и др.) предъявляют высокие требования к надежной эксплуатации технологического оборудования и строительных конструкций. Особое место в комплексе мероприятий по обеспечению бесперебойной эксплуатации оборудования отводится надежной защите его от коррозии и применению в связи с этим высококачественных химически стойких материалов.

Необходимость осуществления мероприятий по защите от коррозии диктуется тем обстоятельством, что потери от коррозии приносят чрезвычайно большой ущерб. По имеющимся данным, около 10% ежегодной добычи металла расходуется на покрытие безвозвратных потерь вследствие коррозии и последующего распыления. Основной ущерб от коррозии металла связан не только с потерей больших количеств металла, но и с порчей или выходом из строя самих металлических конструкций, т.к. вследствие коррозии они теряют необходимую прочность, пластичность, герметичность, тепло- и электропроводность, отражательную способность и другие необходимые качества. К потерям, которые терпит народное хозяйство от коррозии, должны быть отнесены также громадные затраты на всякого рода защитные антикоррозионные мероприятия, ущерб от ухудшения качества выпускаемой продукции, выход из строя оборудования, аварий в производстве и так далее.

Защита от коррозии является одной из важнейших проблем, имеющей большое значение для народного хозяйства.

Коррозия является физико-химическим процессом, защита же от коррозии металлов – проблема химии в чистом виде.

Проект по химии "Коррозия металлов"

Жизнь человека без металлов невозможна. Металлы и их сплавы являются наиболее важными конструкционными материалами. Но, к сожалению, очень часто под воздействием окружающей среды поверхность металла самопроизвольно разрушается, вследствие химического или электрохимического взаимодействия их с окружающей средой. Процесс самопроизвольного разрушения металлов под воздействием окружающей среды называют коррозией.

Коррозия металлов наносит большой экономический вред. Человечество несет огромные материальные потери в результате коррозии деталей машин, судов, мостов, морских конструкций и технологического оборудования. Коррозия приводит к уменьшению надежности работы оборудования: аппаратов высокого давления, паровых котлов, металлических контейнеров для токсичных и радиоактивных веществ, лопастей и роторов турбин, и т.д. С учетом возможной коррозии приходится завышать прочность этих изделий, а значит, увеличивать расход металла, что приводит к дополнительным экономическим затратам. Коррозия приводит к простоям производства из-за замены вышедшего из строя оборудования, к потерям сырья и продукции (утечка нефти, газов, воды), к энергетическим затратам для преодоления дополнительных сопротивлений, вызванных уменьшением проходных сечений трубопроводов из-за отложения ржавчины и других продуктов коррозии. Коррозия также приводит к загрязнению продукции, а значит, и к снижению ее качества. Затраты на возмещение потерь, связанных с коррозией, исчисляются миллиардами рублей в год.

Но вред, наносимый коррозией, не сводится только к потере металла вследствие его разрушения (прямые потери), больший вред наносят косвенные потери. Гибнет труд людей, затраченный на обработку металла и создание тех или иных машин и механизмов. Таким образом, потери от коррозии в сотни раз превосходят стоимость металла.

Коррозия вызывает и серьезные экологические последствия. Утечка газа, нефти и других опасных химических продуктов из разрушенных коррозией трубопроводов приводит к загрязнению окружающей среды, что отрицательно воздействует на жизнь и здоровье людей.

Процессы коррозии необратимы, поэтому их необходимо обнаруживать на ранних стадиях, давать количественную оценку коррозионного повреждения, прогнозировать опасность развития в случае непринятия мер по усилению коррозионной защиты. Установление причин коррозионного разрушения позволяет правильно выбрать метод защиты.

По роду своей будущей деятельности, да и вообще в жизни, нам придется столкнуться и не раз с проблемами коррозии, поэтому эту тему считаем очень актуальной.

Цель работы : исследование влияния различных факторов на процесс коррозии металлов.

Актуальность исследования обусловлена тем, что ежегодно до 20% выплавленного, обработанного и воплощенного в конструкции металла разрушается от коррозии.

Объект исследования: коррозионный процесс, протекающий в металлах и сплавах.

Предмет исследования : коррозия.

Методы исследования: визуальное наблюдение, химический эксперимент

Гипотеза исследования: на коррозию металлов в окружающей среде оказывают влияние природа металла, минеральный состав воды, температура окружающего воздуха и т.д.

Задачи исследования:

1. Изучить явление коррозии в различных системах, используя методы качественного и количественного анализа.

2. Установить влияние природы металла на коррозию.

3. Установить влияние природы и состава раствора на коррозию металлов.

4. Установить влияние температуры на коррозию металлов.

ГЛАВА I . ТЕОРИЯ КОРРОЗИИ МЕТАЛЛОВ

1.1. Понятие коррозии металлов

Слово «коррозия» происходит от латинского « corrodere », что означает «разъедать». Хотя коррозию чаще всего связывают с металлами, но ей подвергаются также камни, дерево, пластмассы и другие полимерные материалы.

Коррозией металлов называют самопроизвольное разрушение металлов и сплавов вследствие их взаимодействия с окружающей средой.

В основе этого взаимодействия лежат химические и электрохимические реакции, а иногда и механическое воздействие внешней среды. Способность металлов сопротивляться воздействию среды называется коррозионной стойкостью или химическим сопротивлением материала. Металл, подвергающийся коррозии, называют корродирующим металлом, а среда, в которой протекает коррозионный процесс - коррозионной средой. В результате коррозии изменяются свойства металла, и часто происходит ухудшение его функциональных характеристик.

Металл при коррозии может частично или полностью разрушаться. Химические соединения, образующиеся в результате взаимодействия металла и коррозионной среды, называют продуктами коррозии. Продукты коррозии могут оставаться на поверхности металла в виде оксидных пленок, окалины или ржавчины. В зависимости от степени сцепления продуктов коррозии с поверхностью металла наблюдаются различные случаи. Например, ржавчина на поверхности железных сплавов образует рыхлый слой, процесс коррозии распространяется далеко вглубь металла и может привести к образованию сквозных язв и свищей. Напротив, при окислении алюминия на поверхности образуется плотная сплошная пленка оксидов, которая предохраняет металл от дальнейшего разрушения.

Коррозия является физико-химическим процессом, и закономерности ее протекания определяются общими законами термодинамики и кинетики гетерогенных систем. Различают внутренние и внешние факторы коррозии . Внутренние факторы характеризуют влияние на вид и скорость коррозии металла (природа, состав, структура и т.д.). Внешние факторы определяют влияние на коррозию состава коррозионной среды и условий протекания коррозии (температура, давление).

1.2. Виды коррозии металлов

Различают два основных вида коррозии металлов: химическую и электрохимическую.

1.2.1. Химическая коррозия металлов

Химическая коррозия протекает при взаимодействии металлов с сухими газами (газовая коррозия) при повышенных температурах и не сопровождается возникновением электрического тока. Газовой коррозии подвергаются металлы при термической обработке (ковка, прокат), детали двигателей внутреннего сгорания, арматура печей и т.д.

Большинство металлов окисляется кислородом воздуха, образуя на поверхности оксидные пленки. Если эта пленка прочная, плотная, хорошо связанная с металлом, то она защищает металл от дальнейшего разрушения. Такие защитные оксидные пленки образуются у Zn , Al , Cr , Ni , Pb , Nb , и др.

У железа же оксидная пленка рыхлая, пористая и легко отделяется от поверхности и поэтому не способна защищать металл от дальнейшего разрушения. На поверхности щелочных и щелочно-земельных металлов в процессе окисления кислородом воздуха также образуются толстые, рыхлые оксидные пленки, которые не защищают эти металлы от разрушения.

Химическая коррозия протекает не только в сухих газах, но и в неэлектролитах (бензин, керосин, дизельное топливо и т.д.). Например, коррозия бензобаков автомобилей, нефтепроводов, нефтехимического оборудования.

1.2.2. Электрохимическая коррозия

Этот вид коррозии происходит в токопроводящей среде - в электролите. Электролиты - вещества, растворы которых проводят электрический ток (например, минеральные соли, содержащиеся в морской воде). Как правило, металлы и сплавы неоднородны, содержат металлы различных примесей. При контакте их с растворами электролитов одни участки поверхности начинают выполнять роль анода (отдают электроны), а другие - роль катода (принимают электроны).

Если два различных металла ( Zn и Fe ), находящихся в контакте между собой, опустить в водный раствор электролита (например, грунтовая вода), то металл более активный, расположенный в электрохимическом ряду напряжений металлов левее ( Zn ), будет разрушаться, предохраняя тем самым менее активный металл ( Fe ) от коррозии. Цинк, отдавая электроны (разрушается), выполняет роль анода, а железо, принимая электроны - роль катода. При этом Zn заряжается отрицательно, а Fe - положительно. Если соединить эти металлы проводником через гальванометр, то он покажет наличие тока.

Важнейшими окислителями, вызывающими электрохимическую коррозию являются катионы водорода и растворенный кислород.

Скорость коррозии тем больше, чем сильнее отличаются металлы, находящиеся в составе сплава по своей активности, т.е. чем дальше они расположены в электрохимическом ряду напряжений металлов друг от друга. Усиливается коррозия и при увеличении температуры.

Итак, электрохимическая коррозия - это окислительно-восстановительная реакция, происходящая в средах проводящих ток (в отличие от химической коррозии).

1.3. Защита металлов от коррозии

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и прежде всего легкоплавким оловом (лужением). В трудах древнегре­ ческого историка Геродота ( V в. до н, э.) уже имеется упоминание о применении олова для защиты железа от коррозии.

Имеется способ уменьшения коррозии металлов, кото­ рый строго нельзя отнести к защите, — это легирование металлов, т. е. получение сплавов. Например, в настоя­ щее время создано большое число нержавеющих сталей путем присадок к железу никеля, хрома, кобальта и др. Такие стали, действительно, не покрываются ржавчиной, но их поверхностная коррозия хотя и с малой скоростью, но имеет место.

Одним из наиболее распространенных способов защи­ ты металлов от коррозии является нанесение на их поверхность защитных пленок: лака, краски, эмали, дру­ гих металлов.

Лакокрасочные покрытия наиболее доступ­ ны для широкого круга людей. Лаки и краски обладают низкой газопроницаемостью, высокими водоотталкивающи­ ми свойствами и поэтому препятствуют доступу к поверх­ ности металла воды, кислорода и содержащихся в атмо­ сфере агрессивных компонентов. Покрытие поверхности металла лакокрасочным слоем не исключает коррозию, а служит для нее лишь преградой, а значит, лишь тормо­ зит коррозию. Поэтому большое значение имеет качество покрытия — толщина слоя, сплошность (пористость), равномерность, проницаемость, способность набухать в воде, прочность сцепления (адгезия). О бычно рекомендуют наносить не один толстый слой, а несколько тонких слоев покрытия. Лаки и краски наиболее эффективны для защиты от ат­ мосферной коррозии.

Для защиты металлов от коррозии используют стек­ ловидные и фарфоровые эмали. Эмали обладают высокими защитными свойствами, которые обусловлены их непроницаемостью для воды и воздуха (газов) даже при длительном контакте. Их важным качеством является высокая стойкость при повы­ шенных температурах. К основным недостаткам эмале­ вых покрытий относят чувствительность к механическим и термическим ударам. При длительной эксплуатации на поверхности эмалевых покрытий может появиться сетка трещин, которая обеспечивает доступ влаги и воздуха к металлу вследствие чего и начинается кор­ розия.

Широко распространенным способом защиты метал­ лов от коррозии является покрытие их слоем других металлов. Металлические покрытия делят на две группы: корро зионно-стойкие и протекторные. Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. Они более электро­ положительны по отношению к железу, т. е. в электро­ химическом ряду напряжений металлов стоят правее железа. Во вторую группу входят цинк, кадмий, алюми­ ний. По отношению к железу они более электроотрица­ тельны, т. е. в ряду напряжений находятся левее железа.

С протекторной защитой весьма сходна катодная за­ щита металлов от коррозии. Можно сказать, что катод­ ная защита является модификацией протекторной защи­ ты. В данном случае металлическая конструкция или корпус корабля присоединяются к катоду источника постоянного тока и тем самым защищают его от растворения.

«Коррозия металлов» доклад


Научные доклады

Коррозия металлов доклад кратко расскажет Вам об этом явлении и какие металлы наиболее подвержены коррозии. Также информация о коррозии поможет Вам подготовиться к занятию, и Вы углубите свои познания в данной области.

Металлические материалы поддаются электрохимическим и химическим влияниям окружающей среды и разрушаются. Такой процесс называется коррозией. Коррозию металлов вызывают окислительно-восстановительные реакции, вследствие чего металлы, перешедшие в окисленную форму, теряют свои свойства и становятся негодными.

3 признака, которые характеризуют коррозию:

  • С химической точки зрения это окислительно-восстановительный процесс.
  • Это самопроизвольный процесс, который возникает через неустойчивость термодинамической системы. А металл является компонентом окружающей среды.
  • Этот процесс в основном развивается на поверхности металла. Хотя бывают случаи, когда коррозия проникала вглубь металла.

Какие виды коррозии существуют?

Самые распространенные виды коррозии металлов:

  1. Равномерная (охватывает равномерно всю поверхность металла)
  2. Избирательная
  3. Неравномерная
  4. Местная (когда коррозии подвергаются отдельные участки металла)
  5. Язвенная
  6. Межкристаллитная (коррозия распространяется около границ кристалла металла)
  7. Растрескивающая
  8. Точечная
  9. Подповерхностная

Типы коррозии

Ученые с точки зрения механической стороны коррозийного процесса выделили 2 типа коррозии:

В результате некоторых химических реакций происходит разрушение металлической связи. Атомы металла и окислителей образуют химическую связь. Между отдельными участками металла электрический ток не возникает. Химическая коррозия присуща тем средам, которое не могут проводить электрический ток. Это жидкие неэлектролиты и газы.

Данный тип коррозии длится на:

  • Газовую коррозию. Это результат взаимодействия паровых или газовых сред на металл при влиянии высоких температур. Примечательно, что поверхности металла конденсация влаги отсутствует. Газовая коррозия приводит либо к разрушению металла, либо к образованию защитной пленки (хром, алюминий, цирконий).
  • Жидкостную коррозию. Протекает в таких неэлектролитах — смазочные масла, керосин, нефть. Даже небольшое количество влаги приводит к появлению электрохимического характера.

Когда развивается химическая коррозия, то металл разрушается со скоростью, пропорциональной скорости происходящей реакции и скорости проникновения окислителя сквозь металлическую оксидную пленку.

2.Электрохимическая коррозия

Представляет собой процесс разрушения металла в среде электролитов. Он сопровождается возникновением электрического тока внутри системы. Металлы, подвергающиеся коррозии такого типа, поделены на 4 группы:

  • Активные металлы. Характеризуются термодинамической нестабильностью. К ним относятся все металлы, которые находятся в следующем интервале: щелочные металлы — кадмий. Поддаются коррозии даже в водных нейтральных средах.
  • Металлы средней активности. Расположились в интервале кадмий – водород. Подвергаются коррозии в кислой среде.
  • Малоактивные металлы. Характеризуются термодинамической стабильностью. К ним относятся металлы, находящиеся в интервале водород – родий. Коррозия возникает в среде с кислородом или с другими окислителями.
  • Благородные металлы. Характеризуются высокой термодинамической стабильностью. К ним относятся платина, палладий, золото, иридий. Подвергаются коррозии в кислых средах с сильными окислителями.

По характеру протекания выделяют такие виды электрохимической коррозии как:

  1. Коррозия, происходящая в растворе электролитов. То есть в растворах солей, оснований, кислот и в природной воде.
  2. Атмосферная коррозия. Происходит в среде любого влажного газа или в атмосферных условиях.
  3. Почвенная коррозия. Протекает в почве с разной интенсивностью. Все зависит от состава и ее аэрации. Чаще всего коррозия происходит в кислых почвах. Реже всего она развивается в песчаных грунтах.
  4. Аэрационная коррозия. Развивается тогда, когда к разным частям металла воздух поступает неравномерно.
  5. Морская коррозия. Развивается в морской воде через большое количество растворенных в ней солей, органических веществ и газов.
  6. Биокоррозия. Развивается в процессе жизнедеятельности организмов, которые вырабатывают газы, в том числе H2S и CO2, которые способствуют коррозии.
  7. Электрокоррозия. Протекает под влиянием блуждающих токов на подземных сооружениях. Чаще всего причиной такой коррозии являются трамвайные линии, электрические железные дороги.

Как защититься от коррозии?

Самый главный способ защиты – это создание неметаллических, металлических или химических защитных покрытий.

Они наносятся на металлическую поверхность. Если такое покрытие изготовлено из металла с отрицательным потенциалом по отношению к более активному металлу (защищаемому), то его называют анодным. Если покрытие имеет положительный потенциал, то оно называется катодным.

Бывают неорганическими: стекловидная масса и цементный раствор, и органическими, которые представлены лаками, высокомолекулярными соединениями, битумами и красками.

Металл, который следует защитить, подвергают обработке химическими средствами для того, чтобы на его поверхности образовалась пленка из соединений. Пленка является устойчивой к коррозии. Химическая обработка бывает следующих видов: оксидирование, фосфатирование, воронение стали, азотирование, цементация.

К защищаемому металлу или сооружению присоединяют пластины из активного металла – протектора. Он имеет отрицательный потенциал и является анодом. А защищаемый металл называется катодом.

Читайте также: