Сорбенты для очистки сточных вод от тяжелых металлов

Обновлено: 16.05.2024

Данные для цитирования: Petukhova Yu.N., Ilyina S.I., Fursenko A.V., Nosyrev M.A. . ОЧИСТКА СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ С ПОМОЩЬЮ СОРБЕНТОВ (51-54) // Евразийский Союз Ученых — публикация научных статей в ежемесячном научном журнале. PDF архив. ; ():-. 10.31618/ESU.2413-9335.2019.6.64.254

Очистка сточных вод от ионов тяжелых металлов с помощью сорбентов.

Петухова Ю.Н.

студентка 4 курса кафедры мембранной технологии факультета инженерной химии, Российский Химико-Технологический университет им. Д.И. Менделеева, Российская Федерация

Ильина С.И.

доцент кафедры процессов и аппаратов химической технологии, доцент кафедры мембранной технологии, кандидат технических наук, Российский Химико-Технологический университет им. Д.И. Менделеева, Российская Федерация

Фурсенко А.В.

выпускница кафедры мембранной технологии факультета инженерной химии, Российский Химико-Технологический университет им. Д.И. Менделеева, Российская Федерация

Носырев М.А.

доцент кафедры процессов и аппаратов химической технологии, кандидат технических наук, Российский Химико-Технологический университет им. Д.И. Менделеева, Российская Федерация

В работе проведен краткий обзор применения сорбентов из вторичного сырья для извлечения ионов тяжелых металлов из сточных вод. Приведена сравнительная характеристика целлюлозосодержащих сорбентов по сравнению с активированным углем и катионообменными смолами.

T he paper provides a brief overview of the use of sorbents from secondary raw materials for the extraction of heavy metal ions from wastewater. The comparative characteristic of cellulose sorbents in comparison with activated carbon and cation exchange resins is given.

Ключевые слова: сточные воды, сорбенты, биополимеры

Key words: waste water, sorbents, biopolymers

В настоящее время одной из важных проблем является утилизация отходов. Причем этот вопрос требует решения во всех отраслях народного хозяйства.

Деятельность многих промышленных предприятий часто приводит к загрязнению окружающей среды сточными водами, содержащие в своём составе вредные вещества, оказывающие и в небольших количествах довольно серьёзное негативное воздействие на здоровье человека и состояние биосферы в целом [1].

Весьма опасными токсинами в сточной воде считаются ионы тяжелых металлов (ИТМ), а также их соединения [2, 3]. Они содержатся в сточных водах гальванических цехов, предприятий машиностроения и металлообработки, рудного и шахтного производства, чёрной и цветной металлургии, химической и нефтехимической промышленности и других отраслей [4].

Вред тяжёлых металлов для живого организма обусловлен их способностью к биоаккумуляции и концентрированию при движении по трофической цепи, что приводит к нарушению функционирования систем органов. Сложность удаления из организма ИТМ вызвано тем, что они образуют прочные связи с белками и другими компонентами клеточных структур [5]. В связи с этим очистка сточных вод промышленных предприятий должна осуществляться до практически полного удаления тяжелых металлов. Но используя лишь традиционные методы этого сложно достичь.

Одним из распространённых способов очистки сточных вод от ИТМ являются сорбционные и ионообменные методы. В связи с этим возрастает необходимость получения более дешёвых сорбентов с улучшенными физико-химическими и эксплуатационными характеристиками. В основном, сорбенты, используемые в промышленности, разрабатываются на основе активных углей. Также интерес представляют сорбенты, изготовленные из вторсырья. Такие материалы могут решить помимо проблемы очистки воды и другую задачу, а именно, утилизацию отходов [7].

Создание достаточно эффективных и безопасных с экологической точки зрения сорбентов и технологий осуществимо за счет образования на полисахаридных полимерах новых функциональных групп, прочно связывающих ионы тяжелых металлов [8]. Подобным образом получают так называемые биополимерные сорбенты. Сырьё, применяемое для сорбции ИТМ, представлено неограниченным набором различных материалов растительного происхождения – шишками, опилками, листьями, семенами, плодами и стеблями различных растений, корой лиственных и хвойных пород деревьев, жмыхами и шротами, скорлупой орехов, шелухой, свекловичным жомом, кожурой фруктов, соломой, травянистыми и водными растениями, торфом. А также илом, морскими водорослями, биомассой бактерий, дрожжей; грибов, и др. 9. Здесь стоит отметить, что важным направлением создания биополимерных сорбентов представляется модифицирование структуры природного целлюлозосодержащего сырья, вызывающее иммобилизацию на целлюлозной матрице новых сорбционно-активных центров, являющихся фрагментами комплексонов. Это повышает их селективность, сорбционную емкость и уменьшает время сорбции [8].

При этом некоторые целлюлозосодержащие сорбенты обладают сравнительно низкой емкостью по отношению к ИТМ, другие же по своим свойствам вполне могут быть сопоставимы или даже превосходить применяемые в промышленности ионообменные смолы. Значения величин сорбционной емкости различных целлюлозосодержащих растительных сорбентов в сравнении с величинами сорбционной емкости активированного угля и некоторых ионообменных смол приведены в таблице 1.

Таблица 1. Адсорбционная способность целлюлозосодержащих сорбентов по сравнению с активированным углем (АУ) и катионообменными смолами [12].


Как отмечалось ранее, для улучшения сорбционных свойств вторичное сырье подвергают обработке. В работе [13] показана возможность извлечения ионов тяжелых металлов с помощью сульфокатионитов на основе хлопка (Х), пшеничной соломы (С) и камыша (К). Их получают в две стадии. Исходное сырьё без предварительной активации сульфировали концентрированной серной кислотой при комнатной температуре в течении 1 часа при массовом соотношении растительного сырья к H2SO4, равном 1:9. Затем, варьируя соотношения реагентов, температуру и продолжительность процесса, проводили химическое модифицирование сульфированного продукта глицидилметакрилатом (ГМА). В результате чего были синтезированы иониты сетчатого строения КС-ГМА-Х, КС-ГМА-С и КС-ГМА-К. При сравнении результатов с данными по сорбции ионов тяжелых металлов (таблица 2) было установлено, что сульфокатионит на основе пшеничной соломы обладает высокими сорбционными и кинетическими свойствами по отношению к ионам Со(II), а катионообменник, синтезированный из камыша, — к ионам Со(II) и Zn(II).

Таблица 2. Сорбционные характеристики сульфокатионитов на основе растительного сырья и ГМА по отношению к ионам тяжелых металлов [13].

Из таблицы 2 хорошо видно, что параметры сульфокатионитов на основе растительного сырья имеют близкие значения с таким широко используемым катионитом, как КУ-2х8, а некоторые из них даже лучше, чем у общеупотребляемого катионита.

КС-ГМА-С имеет суммарную обменную ёмкость по катионам Сu(II) и Co(II) 510 мл/г из раствора, в которых содержание меди и кобальта составляет соответственно 0,95 и 2,36 г/л. Следовательно, его можно рекомендовать для группового извлечения вышеназванных ионов из промышленных растворов и сточных вод на предприятиях цветной металлургии [13].

Химическое модифицирование целлюлозы для улучшения ее сорбционной емкости по отношению к ионам Cu(II), Ni(II) и Zn(II) с использованием этилендиамина было проведено в работе [14]. Поскольку у целлюлозы в каждом элементарном звене содержатся гидроксильные группы, они могут реагировать с карбоксильными и аминогруппами различных органических соединений. На основании полученных изотерм сорбции авторы установили, что величины максимальной сорбционной емкости составили 308,2, 104,1 и 69,3 мг/г для ионов Ni(II), Cu(II) и Zn(II), соответственно.

Хорошие сорбционные свойства имеет и такой биополимер, как хитозан. Его макромолекулы построены из звеньев 2-ацетамидо-2- дезоксиD- глюкопиранозы и 2-амино-2-дезокси-D- глюкопиранозы, сопряженные связью β – (1→4). Новые сорбенты созданы в процессе модифицирования хитозана иминодиянтарной и этилендиамин-диянтарной кислотой. Эксперименты показали, что величины предельной сорбционной емкости для сорбентов, обработанных иминодиянтарной кислотой составили: для Cu(II) – 113,64 мг/г, для Zn(II) – 116,24 мг/г, для Cd(II) – 133,33 мг/г, для Pb(II) – 164,95 мг/г. А для сорбентов, обработанных этилендиамин-диянтарной кислотой: для Cu(II) – 55,56 мг/г, для Zn(II) – 107,53 мг/г, для Cd(II) – 122,08 мг/г, для Pb(II) – 217,39 мг/г [15].

Таким образом, к изучению процессов сорбции тяжелых металлов природными материалами из возобновляемого сырья полисахаридной природы проявляется большой интерес. Обусловливается это тем, что отходы и побочные продукты агропромышленного комплекса являются перспективными и экономически выгодными сорбентами для очистки от ИТМ водных растворов, имеющих различный состав, начиная от сточных вод промышленных предприятий до природных вод и пищевых систем.

Библиографический список

1. Евгеньев М.И., Евгеньева И.И. Контроль и оценка экологического риска химических производств. Казань: издательство «Фән» АН РТ, 2007. 207 с.

2. Майстренко В.Н., Хамитов Р.З., Будников Г.К. Эколого-аналитический мониторинг супертоксикантов. М.: Химия, 1996. 319 с.

3. Будников Г.К. Тяжелые металлы в экологическом мониторинге водных систем // Соровский Образовательный журнал. 1998. № 5 С. 23-29.

4. Жмур Н.С. Технологические и биохимические процессы очистки сточных вод на сооружениях с аэротенками. М.: АКВАРОС, 2003. 512 с.

5. Кузнецов А.Е., Градова Н.Б., Лушников С.В., Энгельхарт М., Вайссер Т., Чеботарёва М. В. Прикладная экобиотехнология: учебное пособие: в 2 т. Т. 2. М.: БИНОМ. Лаборатория знаний, 2010. 485 с.

6. Ергожин Е.Е., Бектенов Н.А., Акимбаева А.М. Полиэлектролиты на основе глицидилметакрилата и его сополимеров. — Алматы: Эверо, 2004. — 271 с.

7. Собгайда Н.А., Макарова Ю.А. Влияние природы связующего материала на сорбционные свойства сорбентов, изготовленных из отходов агропромышленного комплекса // Вестник Саратовского государственного технического университета. — 2011. — №1. — С. 41-45.

8. Никифорова Т.Е. Физико-химические основы хемосорбции ионов d-металлов модифицированными целлюлозосодержащими материалами // Автореф. дисс… доктора хим. наук.- Иваново, 2010.

9. Sud, D. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review / D. Sud, G, Mahajan, M.P. Kaur // Bioresource Technology. – 2008. – V. 99. – P. 6017–6027

10. Aydin, H. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents / H. Aydın, Y. Bulut, C. Yerlikaya // J. Environ. Management. — 2008. — V. 87. — P. 37–45.

11. Ho, Y.S. Sorption equilibrium of mercury onto ground-up tree fern / Y.S. Ho, C.C. Wang // J. Hazard. Mater. – 2008. – V. 156. – P. 398–404.

12. Kumar, U. Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and wastewater: A review / U. Kumar // Sci. Res. Essays. — 2006. V. 1 (2). — P. 033-037.

13. Ергожин Е.Е., Никитина А.И., Кабулова Г.К., Бектенов Н.А. Сульфокатиониты на основе растительного сырья и глицидилметакрилата // Химия растительного сырья, 2013, № 1. — С. 67-72.

14. Torres J.D., Faria E.A. , Prado A.G.S. Thermodynamic studies of the interaction at solid / liquid interface between metal ions and cellulose modified with ethylenediamine // J. Hazard. Mater. B. – 2006. – V. 129. – P. 239-243.

15. Kołodynska, D. Adsorption characteristics of chitosan modified by chelating agents of a new generation / D. Kołodynska // Chem. Eng. J. — 2012. — V. 179. — Р. 33–43.

Адсорбционный метод очистки сточных вод гальванического производства


Сорбцией называют процесс поглощения твердым телом или жидкостью (сорбентом) какого-либо вещества из окружающей среды. Различают три основные разновидности сорбции – адсорбцию, абсорбцию и хемосорбцию.

Адсорбция – поглощение вещества из газовой или жидкой среды поверхностным слоем твердого тела или жидкости (адсорбента).

Абсорбция – поглощение какого-либо вещества из окружающей среды всей массой поглощающего тела (абсорбента). Абсорбция жидким абсорбентом какого-либо вещества из газовой смеси называется растворением. Абсорбция жидким абсорбентом какого-либо вещества из жидкой смеси называется экстракцией.

Хемосорбция – поглощение вещества поверхностью какого- либо тела (хемосорбента) в результате образования химической связи между молекулами вещества и хемосорбента.

Адсорбцию широко применяют для глубокой очистки сточных вод от растворенных органических веществ после биологической очистки, значительно реже – для очистки от ионов тяжелых металлов. Использование адсорбции для удаления гетерогенных примесей экономически не оправдано и не практикуется. Блок адсорбционной очистки, как правило, включают в схему на заключительной стадии обезвреживания воды, когда из неё отстаиванием, фильтрацией, коагуляцией уже удалена основная масса взвешенных частиц, эмульгированных смол и масел, и вода освобождена от крупных мицелл коллоидных систем.

Адсорбционная очистка эффективна во всем диапазоне концентраций примесей в воде, однако более всего её преимущества сказываются на фоне других методов очистки при низких концентрациях загрязнений. Основные области применения адсорбционных процессов в очистке воды – подготовка питьевой воды и доочистка сточных вод.

При адсорбции из растворов происходит поглощение адсорбентом как молекул загрязнения, так и воды. Кроме того, при очистке водных растворов происходит конкуренция двух видов межмолекулярных взаимодействий: гидратация молекул загрязнителя, т.е. взаимодействие их с молекулами воды в растворе, и взаимодействие молекул загрязнителя с адсорбентом.

Конкуренция процессов гидратации и адсорбции молекул загрязнителя и адсорбции молекул воды лежит в основе разграничения сорбентов для удаления из воды органических и неорганических веществ. Для адсорбции органических веществ применяют углеродные пористые материалы – активные угли, дробленые материалы различного органического происхождения: уголь, кокс, топливные шлаки, сорбенты на основе целлюлозы и резины, синтетические полимеры. Полярные гидрофильные материалы – иониты, глины, силикагели, алюмогель, цеолиты, оксиды и гидроксиды для адсорбции органических веществ малопригодны, так как величина энергии взаимодействия их с молекулами воды равна величине энергии сорбции молекул органических загрязнений или превышает её. Эти гидрофильные материалы используют для удаления из воды неорганических соединений, присутствующих в ней, как правило, в ионной форме.

Использование угля в очистке воды гальванического производства

Наиболее универсальными из адсорбентов являются активированные угли. С их помощью возможно практически полное удаление из растворов почти всех органических соединений, а при определенных условиях и эффективная очистка воды от некоторых токсичных ионов неорганических веществ, в том числе ионов тяжелых металлов. Сорбционная емкость активированного угля по отношению к ионам тяжелых металлов значительно повышается в том случае, если уголь гранулируется, а затем на его поверхность наносится активный компонент, состоящий из тиолтриазинового производного. Для приготовления такого адсорбента гранулированный активированный уголь перемешивают в растворе или суспензии тиолтриазинового производного и доводят pH смеси до величины >3 в водной фазе.

В качестве сорбента для извлечения ионов тяжелых металлов из сточных вод гальванических производств предлагается также использовать силикатный адсорбент, содержащий более 50 мас.% SiCh, например природный или синтетический цеолит. Обработку сточных вод проводят добавлением в неё цеолита при рН=5-9, образовавшийся осадок отделяют и высушивают. Вес адсорбента в осадке составляет 10-50 мас.%. Перед обработкой сточных вод цеолит хорошо измельчают для увеличения поверхности его контакта с жидкостью.

Использование адсорбентов

Для извлечения простых или комплексных ионов тяжелых металлов из сточных вод можно использовать адсорбент, получаемый путем нагревания органического гумуса (предпочтительно смешанного с поливинилацетатом или желатином) при 200-250 °С в течение 1 ч в присутствии формальдегида или его производных (параформальдегида, гексаметилентетрамина и др.). В качестве источника органического гумуса предлагается использовать продукт ферментативного разложения избыточного активного ила, образующегося в результате биохимической очистки сточных вод. Поливинилацетат или желатин от 1 до 50 мас.ч. на 100 мас.ч. гумуса являются связующими компонентами. Формальдегид или его производные используются в количестве 0,1-10 мас.ч. на 100 мас.ч. гумуса, причем наиболее предпочтительно применять их в виде водного раствора.

Удаление солей тяжелых металлов из сточных вод может быть осуществлено при смешении этих вод с порошкообразным неорганическим материалом и ПАВ с последующим обжигом полученной смеси при 1000-1300 °С. В качестве порошкообразного неорганического материала может быть использована глина, тальк или каолин. В результате такой обработки образуется твердый продукт, не выделяющий тяжелых металлов при выщелачивании. Так, водный раствор, содержащий 100 мг/л хрома (VI), обрабатывают смесью, состоящей из 93-94 мас.% глины, 5 мас.% бентонита (в качестве связующего) и 1-2 мас.% ПАВ. После фильтрации и сушки при комнатной температуре твердый продукт покрывают глазурью и подвергают обжигу при 1230 °С в электропечи. Полученный материал не выделяет хрома при контакте с водой.

В качестве адсорбента для очистки промывных хром содержащих вод предложено использовать фильтр с активированным углем. Сточные воды предварительно подкисляются до pH 1,5-2,0. Скорость фильтрации и pH среды меняются в зависимости от содержания Сг 6+ и составляют соответственно 7 м/ч и pH 2 при концентрации Сг 6+ до 5 мг/л и 0,1 м/ч и pH 1 при концентрации Сг 6+ до 150 мг/л. Регенерацию адсорбента производят раствором серной кислоты. При регенерации адсорбента 15 %-ным раствором NaOH элюат содержит ион СгС>4 2 ‘ в виде Na2Cr04. После регенерации адсорбент отмывают водопроводной водой до pH 7-8.

Очистка сточных вод на гранулированных сорбентах проводится в адсорберах с плотным, взрыхленным, движущимся и псевдоожиженным слоем. Одно- и многослойные адсорберы с плотным слоем гранулированного активного угля работают с восходящим и нисходящим потоками воды, по параллельной и последовательной схемам.

Сорбцию загрязнений на пылевидных сорбентах ведут либо в аппаратах с перемешиванием воздухом или мешалкой, либо на намывных фильтрах. Во всех случаях могут применяться одна или несколько последовательных ступеней с неограниченным числом параллельных технологических линий.

На рис. 4.13 представлена принципиальная схема адсорбционной очистки сточных вод.

Принципиальная схема сорбционной очистки сточных вод

Рис. 4.13. Принципиальная схема сорбционной очистки сточных вод:

1-накопитель стоков, 2-насос, 3-механический фильтр, 4-адсорбер, 5-дозатор кислоты (pH 1,5-2,0 для очистки от ионов хрома).

Эффективные адсорбенты и сорбенты для очистки сточных вод от тяжелых металлов

Из-за сброса промышленными предприятиями неочищенных сточных вод в окружающую среду происходит серьезное ухудшение экологической обстановки.

Одними из самых опасных для здоровья человека, живых организмов и состояния экосистемы являются ионы тяжелых металлов (меди, цинка, хрома, кадмия, железа, никеля и пр.), а также их соединения, обильно содержащиеся в стоках промышленных предприятий (металлообработки и машиностроения, гальванических цехов, цветной и черной металлургии, шахтного и рудного производства, химической промышленности и т.д.).

загрязнение сточных вод тяжелыми металлами

Вследствие сложности, а иногда и невозможности полного выведения металлов из организма у человека и животных, задача по очистке сточных вод от ионов тяжелых металлов является весьма актуальной.

В зависимости от того, куда направляются сточные воды предприятия (в водоем или городские очистные сооружения) устанавливаются предельно допустимые концентрации (ПДК) загрязнений, в т. ч. металлов. Для достижения заданного ПДК очищаемого стока, на промышленных предприятиях создаются локальные очистные сооружения – ЛОС.

Как правило, основной объем тяжелых металлов извлекается на ЛОС из сточных вод методом нейтрализации (реагентной очистки) с последующим отстаиванием и обезвоживанием осадка. Обезвоженный осадок вывозится на полигоны. Нейтрализованная и осветленная в отстойнике сточная вода для достижения норм ПДК доочищается различными методами. Наиболее распространенные методы доочистки сточных вод:

  • Ионообменный, с применением ионообменных смол
  • Мембранный (фильтрование стока через керамические мембраны)
  • Сорбционный (фильтрование через сорбционные зернистые загрузки)

В основном ионообменный и мембранный методы доочистки сточных вод позволяют достичь ПДК тяжелых металлов. Тем не менее они имеют серьёзные ограничения и сложности:

  1. Высокую чувствительность смол и мембран к качеству сточной воды. Проще говоря, смолу или мембрану легко испортить, если предварительная обработка стока (нейтрализация) «пропустила» лишние загрязнения.
  2. Высокая стоимость мембран и ионообменных смол.
  3. В результате регенерации/промывки смол и мембран образуются жидкие концентрированные отходы. Стоимость утилизации жидких отходов на полигонах существенно (зачастую на порядок) выше, чем твердых. Таким образом возникают дополнительные значительные расходы на выпаривание и утилизацию жидких отходов. Кроме того, не во всех регионах есть полигоны, способные принимать жидкие отходы.

Поэтому в случаях, когда требуется придерживаться строго заданного качества очистки сточных вод от тяжелых металлов можно достичь этого необходимо рассматривать сорбционный метод с применением различных сорбентов. При этом технологическое решение должно обеспечить:

– упрощение технологической схемы, конструкции и режима эксплуатации очистных сооружений;

– экологическую безопасность технологического процесса;

– повышение степени очистки стоков;

– универсальность и надежность;

– возможность максимальной автоматизации технологического процесса.

– уменьшение трудозатрат и прямых затрат на эксплуатацию

– минимизацию зависимости от человеческого фактора

очистка сточных вод от тяжелых металлов сорбентами и адсорбентами

  1. Эффективные сорбенты и адсорбенты для очистки сточных вод

Одним из перспективных и интересных технологий в очистке стоков является применение сорбентов (адсорбентов), изготовленных из искусственных и природных материалов. Сорбция позволяет решать поставленные экологические проблемы и в то же время, относительно недорога и проста в применении.

Сорбционный метод относится к физико-химическим методам. Основные преимущества сорбции:

– хорошая управляемость процессом;

– очистка загрязнений разнообразной природы;

– отсутствие образования вторичных загрязнений.

Сорбционный метод заключается в сборе загрязняющего вещества из сточной воды в порах или на поверхности сорбента. Использование сорбентов таких как активированный уголь, природные материалы и т.д. наиболее целесообразно при низких концентрациях загрязняющих веществ. Для этого сточные воды предварительно проходят через реагентную очистку: кислые и щелочные стоки взаимно нейтрализуются, при необходимости применяются реагенты – едкий натр; известковое молоко; кальцинированная сода; соляная или серная кислоты, в результате обработки ионы тяжелых металлов переводятся в практически нерастворимые формы гидроксидов, которые затем отстаиваются и фильтруются.

сорбенты (адсорбенты) для очистки сточных вод

Отдельно необходимо рассмотреть вопрос утилизации самой фильтрующей загрузки. Некоторые отработанные сорбенты не представляют серьезной опасности для окружающей среды. Поэтому их можно направлять на вторичную переработку. Например, добавлять в строительные материалы различного назначения (цемент, гипс, смеси для самовыравнивающихся полов). Подобный вид утилизации отработанных сорбентов не оказывает негативного воздействия на окружающую среду, поэтому он может рассматриваться как возможность не только снижения стоимости утилизации но и уменьшение себестоимости строительных смесей. Небольшие количества минеральных отработанных сорбентов не оказывают существенного влияния на механические и химико-физические свойства строительных материалов, но и придают им, за счет металлов содержащихся в сорбентах фунгицидную активность и большую прочность. Так, при внесении цеолитового туфа наблюдается увеличение сырцовой прочности кирпича до 80%.

Очень распространенным и эффективным сорбентом является активированный уголь. При этом следует иметь в виду, что активированный уголь является по сути материалом одноразового применения. Регенерация активированного угля возможна, однако она трудоемкая, дорогостоящая и в условиях круглосуточно работающих очистных сооружений неудобна. Для регенерации требуется выгрузить уголь из фильтра, активировать уголь в специализированном узле за пределами цеха очистных сооружений, далее необходимо привезти уголь обратно и загрузить в фильтр. Использование же активированного угля как одноразовой загрузки зачастую экономически нерентабельна.

Вследствие этого продолжаются исследования по разработке эффективных сорбентов для очистки сточных вод от тяжелых металлов, которые обладают высокой поверхностной активностью, способны длительный период очищать воду и регенерируются простой процедурой непосредственно в фильтре.

3.Решение проблемы очистки стоков от ионов тяжелых металлов –

алюмосиликатный адсорбент ГЛИНТ

Наиболее целесообразным является использование алюмосиликатных минералов в качестве основы для адсорбентов, т.к. это позволяет вводить в адсорбент разнообразные минеральные и органические добавки, задавая требования к поверхности адсорбента и необходимые свойства.

К преимуществам алюмосиликатных адсорбентов относится способность к катионному замещению (образно называемая «дефектность» кристаллической решетки). Благодаря сложно разветвлённой, слоистой структуре адсорбент легко принимает катионы загрязнений как в своей кристаллической решетке, в межплоскостных и межслоевых пространствах, так и в базальных плоскостях частиц. В качестве катионов обмена можно использовать соединения кальция и магния, легко переходящие в водную среду, т.к. они слабо связаны с поверхностью крупиц минерала.

Для решения вышеописанных задач был разработан активированный алюмосиликатный адсорбент ГЛИНТ.

сорбенты сточные воды адсорбенты

В Санкт-Петербурге на базе ГУ «Городского ла­бораторного центра государствен­ного санитарно-эпидемиологиче­ского надзора» в 2004 году исследовалось, насколько эффективен адсорбент ГЛИНТ. Результаты подтвердили способность ГЛИНТА существенно уменьшать концентрацию ионов тяжелых металлов (кадмия, цинка, марганца, меди и хрома, железа, свинца, никеля и пр.) в водных растворах:

Особенности активированного алюмосиликатного адсорбента ГЛИНТ:

– при фильтровании pH сточной воды увеличивается до 9;

– возможность ионного обмена щелочных и щелочноземельных металлов (магния Mg 2+ , кальция Ca 2+ , натрия Na + );

– на поверхности зерна адсорбента возникает положительный ζ-потенциал;

– сорбционная активность к ионам тяжелых металлов восстанавливается регенерацией адсорбента непосредственно в фильтре.

В ходе производства адсорбента ГЛИНТ в межслоевом пространстве и узлах зерен адсорбента катионами кальция и магния (находящимися в составе активатора) замещается трехвалентный алюминий. Вследствие подобной модификации и активирования исходного сырья создается гранулированный адсорбент, образующий положительный электрокинетический потенциал и подщелачивающий воду.

Подщелачивание происходит благодаря оксидам кальция и магния, насыщающими адсорбент при его производстве. Оксиды магния и кальция в сточной воде образуют гидроксиды – за счет излишка анионов ОН – растет рН воды. При попадании в щелочную среду катионов тяжелых металлов, в результате реакции происходит образование труднорастворимых гидроксидов по следующей схеме:

Ме 2+ + 2ОН – = Ме(ОН)2

Ме 3+ + 3ОН – = Ме(ОН)3

Равновесие химического взаимодействия смещается в сторону создания труднорастворимых гидроксидов тяжелых металлов, т.к. произведение растворимости гидроксидов магния и кальция в десятки и в сотни раз больше произведения растворимости гидроксидов тяжелых металлов. К тому же, из алюмосиликатного адсорбента в сточную воду (благодаря слабости связей с кристаллической решеткой катионита) проникают обменные катионы кальция Ca 2+ и магния Mg 2+ , также способствующие повышению щелочности среды (за счет избыточных анионов ОН – , в дальнейшем связывающие тяжелые металлы в труднорастворимые гидроксиды). Так происходит формирование мицелл гидроксидов тяжелых металлов (которые затем укрупнятся в агрегаты), образование и рост коллоидной структуры (вследствие работы сил электростатического взаимодействия между отрицательно заряженными мицеллами гидроксидов тяжелых металлов и положительно заряженной поверхностью зерен алюмосиликатного адсорбента).

В ходе сорбции активная часть адсорбента (катионы кальция и магния), редуцирующаяся в стоки, понемногу иссякает. Спустя некоторое время очистительная способность адсорбента настолько снижается, что концентрация ионов тяжелых металлов в отфильтрованной воде начинает превышать ПДК. Значит, пора активировать адсорбент – восполнить обменные катионы, ушедшие вместе с фильтратом.

Критерии подбора эффективного активатора для восстановления сорбционных свойств адсорбента:

  1. Катион должен быть в ряду активности катионов выше магния и кальция;
  2. Активация производится внутри фильтра, поэтому активатор должен растворяться в воде;
  3. Катион должен обладать щелочными свойствами;
  4. Катион должен быть доступным.

Путем проведения исследований был выбран катион натрия Na + в кальцинированной соде.

Эксплуатация ГЛИНТА на предприятиях подтвердила результат исследований. Очистительная способность алюмосиликатного адсорбента восстанавливается в течение 30-35 минут обработки (в режиме циркуляции с интенсивностью 3 л/с*м 2 ) раствором кальцинированной соды (3-4%). Причем, независимо от срока эксплуатации адсорбента и количества циклов регенерации. 3-4%-й раствор кальцинированной соды может использоваться многократно.

Технология очистки промыш­ленных сточных вод от ионов тяжелых металлов активированным алюмосиликатным адсорбентом ГЛИНТ реализо­вана на сотнях предприятий. Некоторые из них:

– ОАО «Северсталь», г. Череповец (стоки металлургического производства);

– ЗАО «Завод электротехнического оборудования», г. Великие Луки (стоки гальванического производства);

– АО «Импульс», г. Великие Луки (общезаводские сточные воды);

– ФГУП «Рязанский приборный завод», г. Рязань (стоки гальванического производства);

– Аккумуляторный завод «Электротяга», Санкт-Петербург (сточные воды гальванического производства);

– ОАО «Завод по выпуску алмазного инструмента», г. Томилино Московской области (общезаводские стоки);

– АО «Муромский радиозавод», г. Муром (сточные воды гальванического производства);

– ОАО «Ступинский металлургический комбинат», г. Ступино Московской области (промышленные стоки);

– «Ленинградский Электромеханический Завод», Санкт-Петербург (сточные воды гальванического производства);

– ОАО «Новая Эра», Санкт-Петербург (сточные воды гальванического производства);

– ОАО «Бологовский арматурный завод», г. Бологое Тверской области (промстоки);

– ОАО «ГОЗ «Обуховский завод», Санкт-Петербург (сточные воды гальванического производства);

– и на ряде других предприятий.

сорбент ионов металлов адсорбент

Например: в ОАО «Ступинская металлургическая компания» (г. Ступино Московской области) с 2000 г. загружены напорные фильтры (производительность 3500 м 3 /сут) активированным алюмосиликатным адсорбентом (пять фильтров по 16 м 2 ).

Состав загрязнений, поступающих на фильтры, мг/л:

– нефтепродукты до 20;

Состав полученного фильтрата соответствует значениям ПДК вредных веществ для водоемов рыбохозяйственного назначения. Регенерация адсорбента ГЛИНТ производится через 5-7 суток 3-про­центным раствором кальцинированной соды. Износ адсорбента около 5% в год.

Выводы

Эксплуатация адсорбента ГЛИНТ на промышленных объектах подтверждает эффективность, надежность и экономическую целесообразность сорбционного метода очистки сточных вод от ионов тяжелых металлов.

Очистка сточных вод от
тяжелых металлов

Методы очистки сточных вод от ионов тяжелых металлов

На выбор определенного метода очистки влияют концентрация и компоненты стоков с содержанием тяжелых металлов, вид производства, возможность применения той или иной технологии очистки. На разных этапах извлечения ионов применяется тот метод, который является наиболее эффективным и экономически менее затратным. Такими являются:

  • реагентный;
  • сорбционный;
  • ионообменный;
  • электрохимический;
  • обратный осмос и нанофильтрация.

Реагентные методы

Реагентный метод очистки сточных вод от тяжелых металлов предполагает химическое превращение высокотоксичных растворов в нетоксичные соединения. Реагентами могут выступать гидроксиды K и Na, карбонат Na, сульфиды Na.

Если в растворе содержатся вещества, которые способны легко восстанавливаться, тогда прибегают к методу восстановительной очистки. Для этих целей используют сульфат железа, диоксид серы, гидросульфит натрия.

Осаждение ионов тяжелых металлов осуществляют с помощью известкового молока, раствора едкого натра и соды. При применении NaOH необходимо строго контролировать величину рН и подбирать оптимальную дозировку. Использование соды в случае, когда стоки загрязнены такими металлами, как Zn, Pb, Cu и Cd, приводит к образованию основных карбонатов, состав которых зависит от условий реакции: температуры, концентрации раствора, рН и пр.

ZnCl₂ + 2Na₂CO₃ = 2ZnCO₃ + 4NaCl
2ZnCO₃ + H₂O = (ZnOH)₂CO₃ + CO₂
2ZnCl₂ + 2Na₂CO3 + H₂O = 4NaCl + CO₃+ (ZnOH)₂CO₃

Для повышения результатов очистки металлосодержащих стоков целесообразно использовать коагулянты и флокулянты. Коагулянтами могут выступать соли Fe, Al или их смеси.

Наибольшее распространение среди солей Al получили Al₂(SO₄)₃ и NaAlO₂. Сульфат алюминия экономически выгоден, кроме того легко растворяется в воде и дает хороший результат при рН 5 - 7,5. Алюминат натрия при рН 9,3 - 9,8 образует хлопья, способные к быстрому осаждению. Чаще всего применяют смесь солей алюминия, что позволяет расширить диапазон значений рН, повысить скорость образования хлопьев и увеличить их плотность.

Из солей железа чаще всего применяют сульфат железа, хлорное железо, соли трехвалентного железа. Но из-за высокой коррозионной способности и меньшего эффекта хлопьеобразования, соли железа имеют не такое широкое распространение или их используют в смеси с солями алюминия.

Применение титанового коагулянта позволяет довести степень очистки стоков от тяжелых металлов до 50 - 67%.

Флокулянтами могут выступать природные (крахмал, декстрин, эфиры), неорганические (диоксид кремния), синтетические (полиакриламид) вещества.

Недостатками реагентного метода являются:

  • высокая стоимость реагентов при их большом расходе;
  • повторное загрязнение очищенных вод, что исключает ее возврат в цикл оборотного водопользования;
  • утрата ценных веществ и затруднение их переработки;
  • образование большого количества осадков.

Хотя исходный состав металлосодержащих стоков не играет существенной роли для качества их очистки реагентным методом, все же требуется доочистка на электродиализаторах или ионообменных фильтрах перед сбросом в водоемы хозяйственно-бытового назначения.

Ионный обмен

При использовании метода ионного обмена получаемое качество очистки позволяет использовать очищенные воды от тяжелых металлов в оборотном цикле водопользования. Метод предполагает обмен между ионами в растворе и ионами на поверхности твердой фазы - ионита. В качестве ионитов чаще всего используют синтетические ионообменные смолы.

С помощью ионного обмена производится глубокая очистка загрязненных стоков от ионов тяжелых металлов: Zn, Cu, Cr, Ni, Pb, Hg, Cd и цианидов.

Основным недостатком метода ионного обмена является вторичное загрязнение сточных вод после восстановления, когда возникает необходимость их обезвреживания.

Нанофильтрация

При нанофильтрации используются мембраны с отверстиями в несколько нм. Для таких мембран используют пористые материалы: ароматические полиамиды, ацетат целлюлозы, керамику.

Способ очистки металлосодержащих сточных вод на нанофильтрационных мембранах заключается в движении воды вдоль мембранной поверхности и смывании загрязнений. Такие мембраны имеют сниженную селективность и большую проницаемость.

Нанофильтрация дает хороший результат на заключительном этапе очистки стоков от загрязнений ионами тяжелых металлов.

В загрязненных стоках ртуть находится в металлической форме, а также в виде оксидов, сульфатов, сульфидов, нитратов, цианидов, тиоцианатов, ционатов. Стоки, которые содержат ионы ртути, являются наиболее токсичными.

Металлическую форму ртути очищают из загрязненных стоков методом отстаивания или фильтрования. Взвешенные частицы осаждают хлором или гипохлоритом натрия до хлорида ртути, затем восстанавливают. Далее следуют процессы осаждения с помощью сульфида Na с образованием сульфида Hg и последующей коагуляцией хлоридом Fe.

Соединения ртути из стоков можно извлечь несколькими способами:

  • осадить сульфидом железа или его смесью с сульфатом бария;
  • восстановить до металлической формы;
  • использовать реагентный или сорбционный метод или метод ионного обмена.

Очистка стоков от цинка, меди, никеля, свинца, кадмия

Для извлечения из загрязненных стоков ионов цинка Zn, меди Cu, никеля Ni, свинца Pb, кадмия Cd наиболее рациональным методом является реагентный. Регенты переводят растворимые соединения в нерастворимые осадки. Для этого используют оксид кальция, гидроксид натрия, соду и едкий натр.

Загрязненные воды, которые содержат соли цинка, обрабатывают гидроксидом натрия. При этом необходимо контролировать величину рН.

Соли меди образуют гидроксид Cu или гидроксикарбонат Cu, но так как гидроксикарбонат слабо растворим, то наиболее правильно будет осаждать медь в виде основного карбоната. Для этих целей используют известь третьего сорта.

Очистка загрязненных стоков от кадмия осуществляется добавлением диоксида S или сульфитов и металла в виде порошка (Fe или Zn). Металлы способствуют восстановлению сульфитов до труднорастворимых сульфидов.

Для осаждения никеля также подходит известь третьего сорта.

Удаление свинца из загрязненных стоков происходит с превращением его в карбонат свинца с помощью известняка, мела, мрамора. Как правило, эти минералы являются загрузкой фильтров.

Использование Na₂S позволяет добиться высоких результатов очистки.

Очистка стоков от мышьяка

Для очистки мышьяка из загрязненных стоков следует учитывать форму металла и его концентрацию, кислотность раствора, компоненты и некоторые другие показатели раствора. Чаще всего вещество переводят в малорастворимое и осаждают. Получаются арсенаты и арсениты металлов, сульфиды и триоксид мышьяка.

В сильнокислом растворе используют известковое молоко, сульфид натрия, сероводород. Мышьяк As (V) легко связывается и более способен к осаждению, чем As (III). Поэтому перед очисткой из стоков мышьяка As (V) необходимо его перевести в форму As (III). Для этого используют хлорную известь, гипохлоритную пульпу, пероксид водорода, азотную кислоту, озон, пиролюзит.

Очистка стоков от хрома (VI)

Удаление из загрязненных стоков хрома (VI) происходит в два этапа:

  • восстановление хрома (VI) до хрома (III);
  • осаждение хрома (III) в виде гидроксида.

Реагентами выступают натрия сульфит, натрия гидросульфит, натрия тиосульфат. Восстановление осуществляется в кислой среде. Если в качестве восстановителя применить сульфат железа, то подкисление стоков не требуется.

Очистка стоков от железа

Для удаления железа из загрязненных стоков используют аэрацию, реагентные методы, электродиализ, адсорбцию, обратный осмос.

Во время воздействия кислородом воздуха железо окисляется и переходит из Fe (II) в Fe (III), которое затем отделяется после осаждения. Для перевода железа в форму трехвалентного используют также хлор, хлорную известь, перманганат калия, озон, известь, соду.

Читайте также: