Сплавы и металлы реферат

Обновлено: 11.05.2024

Цветная металлургия - это отрасль металлургии, которая включает добычу, переработку руд цветных металлов и выплавку цветных металлов и их сплавов. По своим физическим свойствам и назначению цветные металлы условно можно разделить на благородные, тяжелые, легкие и редкие.

К драгоценным металлам относятся металлы с высокой коррозионной стойкостью: золото, платина, палладий, серебро, иридий, родий, рутений и осмий. Они используются в виде сплавов в электротехнике, электровакуумной технике, приборостроении, медицине и др.

К тяжелым металлам относятся металлы с высокой плотностью: свинец, медь, хром, кобальт и т. д. Тяжелые металлы используются в основном в качестве легирующих элементов, а такие металлы, как медь, свинец, цинк и частично кобальт, также используются в чистом виде.

К легким металлам относятся металлы с плотностью менее 5 граммов на кубический сантиметр: литий, калий, натрий, алюминий и т. д. Они используются в качестве раскислителей металлов и сплавов, для легирования, в пиротехнике, фотографии, медицине и т. д.

К редким металлам относятся металлы с особыми свойствами: вольфрам, молибден, селен, уран и др.

В группу широко используемых цветных металлов входят алюминий, титан, магний, медь, свинец и олово.

Цветные металлы обладают рядом очень ценных свойств. Например, высокая теплопроводность (алюминий, медь), очень низкая плотность (алюминий, магний), высокая коррозионная стойкость (титан, алюминий).

По технологии изготовления заготовок и изделий сплавы цветных металлов делятся на деформируемые и литые (иногда спеченные).

На основе этого разделения проводится различие между металлургией легких металлов и металлургией тяжелых металлов.

Медь и ее сплавы

Медь - красный металл, на изломе розовый. Медь относится к металлам, известным с древних времен.

Технически чистая медь обладает высокой пластичностью и коррозионной стойкостью, высокой электрической и теплопроводностью (100% чистая медь, затем 65% алюминия, 17% железа), а также стойкостью к атмосферной коррозии. Позволяет использовать его как кровельный материал для ответственных построек.

Температура плавления меди составляет 1083 ° C. Кристаллическая решетка FCC. Плотность меди составляет 8,94 г / см 3. Благодаря высокой пластичности медь хорошо обрабатывается давлением (из меди можно сделать фольгу толщиной 0,02 мм), плохо режется.

Низкие литейные свойства из-за большой усадки.

На свойства меди большое влияние оказывают примеси: все, кроме серебра и бериллия, ухудшает электропроводность.

Стоимость чистой меди постоянно растет, а мировые запасы медной руды, по разным оценкам, будут исчерпаны в ближайшие 10-30 лет.

Медь обозначается буквой M, за которой следует цифра. Чем больше число, тем больше в нем примесей. Высший сорт М00 - медь 99,99%, М4 - мед 99%.

Медные сплавы

В технике используются 2 большие группы медных сплавов: латунь и бронза.

Латунь - сплавы меди с цинком (до 50% Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца (ГОСТ 15527-70, ГОСТ 17711-80). Сплавы меди, предназначенные для изготовления деталей методами литья, называют литьем, а сплавы, предназначенные для изготовления деталей путем пластической деформации, - сплавами, обработанными давлением.

Латунь дешевле меди и превосходит ее по прочности, ударной вязкости и коррозионной стойкости. У них хорошие литейные свойства.

Латунь в основном используется для изготовления деталей штамповкой, волочением, прокаткой, прокаткой, то есть процессами, требующими высокой пластичности материала заготовки. Гильзы различных боеприпасов изготавливаются из латуни.

В зависимости от количества компонентов различают простую (двойную) и специальную (многокомпонентную) латунь.

Обычная латунь содержит только Cu и Zn.

Специальная латунь содержит от 1 до 8% различных легирующих элементов (ЛЭ), повышающих механические свойства и коррозионную стойкость.

Al, Mn, Ni повышают механические свойства и коррозионную стойкость латуни. Свинец улучшает обрабатываемость. Силиконовые латуни обладают хорошей текучестью и свариваемостью.

Бронзы - это сплавы меди с оловом (4-33% Sn), свинцом (до 30% Pb), алюминием (5-11% AL), кремнием (4-5% Si), сурьмой, фосфором и другими элементами.

Бронза - это любой медный сплав, кроме латуни. Это медные сплавы, в которых цинк не является основным легирующим элементом. Общей характеристикой бронз является высокая коррозионная стойкость и антифрикционные свойства (от анти- и лат. Трение). Бронзы отличаются высокой коррозионной стойкостью и антифрикционными свойствами. Из них изготавливают вкладыши подшипников скольжения, венцы червячных передач и другие детали.

Высокие литейные свойства некоторых бронз позволяют использовать их для изготовления предметов искусства, памятников и колоколов.

По химическому составу делятся на оловянные бронзы и без оловянные (специальные).

Оловянные бронзы обладают высокими механическими, литейными, антифрикционными свойствами, коррозионной стойкостью и обрабатываемостью, но имеют ограниченное применение из-за редкости и высокой стоимости олова.

Специальные бронзы не только заменяют оловянные бронзы, но в некоторых случаях превосходят их по своим механическим, антикоррозийным и технологическим свойствам:

Алюминиевые бронзы - 5-11% алюминия. У них более высокие механические и антифрикционные свойства, чем у оловянных бронз, но их литейные свойства ниже. Для улучшения механических и антикоррозионных свойств вводятся железо, марганец, никель (например, БрАЖ9-4). Из этих бронз изготавливают различные втулки, направляющие, мелкие ответственные детали.

Бериллиевые бронзы содержат 1,8–2,3% бериллия, отличаются высокой твердостью, износостойкостью и эластичностью (например, БрБ2, БрБМН1,7). Они используются для пружин в устройствах, которые работают в агрессивной среде.

Кремниевая бронза - 3-4% кремния, легированная никелем, марганцем, цинком, по механическим свойствам близка сталям.

Свинцовые бронзы содержат 30% свинца, являются хорошими антифрикционными сплавами и используются при производстве подшипников скольжения.

Медные сплавы обозначаются начальными буквами их названий (Br или L), за которыми следуют первые буквы названий основных элементов, образующих сплав, и числа, указывающие количество элемента в процентах.

Примеры:

  1. БрА9Мц2Л - бронза, содержащая 9% алюминия, 2% Mn, остальное Cu («L» означает, что сплав литейный);
  2. ЛЦ40Мц3Ж - латунь, содержащая 40% Zn, 3% Mn, ~ 1% Fe, остальное Cu;
  3. Бр0Ф8,0-0,3 - бронза, содержащая 8% олова и 0,3% фосфора;
  4. ЛАМш77-2-0.05 - латунь, содержащая 77% Cu, 2% Al, 0,055 мышьяка, остальное Zn (в обозначении латуни, предназначенной для обработки давлением, первая цифра указывает на содержание меди).

В латунях простого состава указывается только содержание меди в сплаве:

  • L96 - латунь, содержащая 96% Cu и ~ 4% Zn (томбак);
  • Lb3 - латунь, содержащая 63% Cu и 37% Zn.

Высокая стоимость меди и сплавов на ее основе привела в 20 веке к поиску материалов для их замены. В настоящее время их успешно заменяют пластмассы и композитные материалы.

Алюминий и его сплавы

Алюминий - серебристо-белый металл. Температура плавления 650 ° C. Алюминий имеет кристаллическую решетку с ГЦК-решеткой. Электропроводность алюминия составляет 65% от меди. Алюминий занимает 3-е место по распределению в земной коре после кислорода и кремния. Алюминий устойчив к атмосферной коррозии за счет образования на его поверхности плотной оксидной пленки. Важнейшей особенностью алюминия является его низкая плотность - 2,7 г / см 3 против 7,8 г / см 3 у железа и 8,94 г / см 3 у меди. Обладает хорошей теплопроводностью и электропроводностью. Хорошо справляется с давлением.

Он отмечен буквой A и числом, указывающим на содержание алюминия. Алюминий высокой чистоты имеет марку A999 - содержание Al в этой марке составляет 99,999%. Алюминий высокой чистоты - A99, A95 содержат Al 99,99% и 99,95% соответственно. Технический алюминий - А85, А8, А7 и др.

Он используется в электротехнической промышленности для изготовления токопроводов, в пищевой и химической промышленности. Алюминий нестабилен в кислой и щелочной среде, поэтому алюминиевая посуда не используется для маринадов, солений, кисломолочных продуктов. Используется в качестве раскислителя в производстве стали, для алюминирования деталей с целью повышения их термостойкости. В чистом виде применяется редко из-за невысокой прочности - 50 МПа.

Деформируемые алюминиевые сплавы

В зависимости от возможности термического упрочнения деформируемые алюминиевые сплавы подразделяются на незакаленные и термически упрочняемые.

К сплавам, не упрочняемым термической обработкой, относятся сплавы Al c Mn (AMts1) и сплавы Al c Mg (AMg 2, AMg3). Цифра - условный номер бренда.

Эти сплавы хорошо свариваются, обладают высокими пластическими свойствами и коррозионной стойкостью, но невысокой прочностью. Эти сплавы упрочняются холодной обработкой. Сплавы этой группы нашли применение в качестве листового материала для изготовления изделий сложной формы, получаемых методом холодной и горячей штамповки и прокатки. Изделия глубокой вытяжки, заклепки, рамы и т. д.

Сплавы, упрочненные теплопередачей, широко используются в машиностроении, особенно в авиастроении, поскольку имеют низкий удельный вес при достаточно высоких механических свойствах. Они включают:

Дуралюминий - основными легирующими компонентами являются медь и магний:

D1 - лопасти винта, D16 - обшивки, шпангоуты, лонжероны самолетов, D17 - сплав основной заклепки.

Высокопрочные сплавы - В95, В96, наряду с медью и магнием, также содержат значительное количество цинка. Используется для высоконагруженных конструкций.

Сплавы повышенной пластичности и коррозионной стойкости - АВ, АД31, АД33. Лопасти вертолетов, штампованные и кованые детали сложной конфигурации.

Литые алюминиевые сплавы

Наиболее распространенными сплавами системы Al-Si являются силумины.

Силумин обладает сочетанием высоких литейных и механических свойств и небольшого удельного веса. Типичный силуминный сплав AL2 (AK12) содержит 10-13% Si, закален и состарен (AK7 (AL9), AK9 (AL4).

Цинк и его сплавы

Цинк - вязкий металл голубовато-серого цвета. Металл с низкой температурой плавления (419 градусов С) и высокой плотностью (7,1 г / см ). Прочность цинка низкая (150 МПа) при высокой пластичности.

Цинк используется для горячего и гальванического цинкования стальных листов, в полиграфической промышленности, для изготовления электрохимических ячеек. Он используется в качестве добавки к сплавам, в первую очередь в медных сплавах (латунь и т. д.), А также в качестве основы для цинковых сплавов, а также в качестве печатного металла.

В зависимости от чистоты цинк подразделяется на марки ЦВ00 (99,997% Zn), ЦВ0 (99,995% Zn), ЦВ (99,99% Zn), Ц0А (99,98% Zn), Ц0 (99,975% Zn), Ц1 (99,95%). % Zn), C2 (98,7% Zn), CZ (97,5% Zn).

Цинковые сплавы широко используются в машиностроении и делятся на сплавы для литья под давлением, кокильные, для центробежного литья и антифрикционные сплавы. Основными легирующими компонентами цинковых сплавов являются алюминий, медь и магний. Отливки из цинкового сплава легко полировать и допускать гальванические покрытия.

Состав, свойства и применение некоторых цинковых сплавов:

  • CA4 содержит 3,9-4,3% Al, 0,03-0,06% Mg, предел прочности 250-300 МПа, пластичность 3-6%, твердость 70-90HB). Он используется для литья под давлением деталей, требующих стабильности размеров и механических свойств.
  • ЦАМ10-5Л содержит 9,0-12,4% Al, 4,0-5,5% Cu, 0,03-0,06% Mg, предел прочности при растяжении не менее 250 МПа, пластичность не менее 0,4%, твердость - не менее 100HB. Из сплава изготавливают подшипники и втулки для металлообрабатывающих станков и прессов, работающих под давлением до 200-10000 Па.
  • ЦАМ9-1,5 содержит 9,0-11,0% Al, 1,0-2,0% Cu, 0,03-0,06% Mg, предел прочности не менее 250 МПа, пластичность не менее 1%, твердость не менее 90HB. Сплав используется для изготовления различных узлов трения и подшипников качения.

Магний и его сплавы.

Магний - серебристо-белый металл. Температура плавления магния 650 ° C. Кристаллическая решетка гексагональная. Отличается невысокой плотностью (1,74 г / см ), хорошей обрабатываемостью, способностью воспринимать ударные и демпфирующие вибрационные нагрузки.

В зависимости от содержания примесей установлены следующие марки магния: Mg96 (99,96% Mg), Mg95 (99,95% Mg), Mg90 (99,90% Mg), магний особой чистоты (99,9999% Mg).

Магний - химически активный металл, легко окисляется на воздухе. Чистый магний из-за низких механических свойств (предел прочности 100-190 МПа, относительное удлинение 6-17%, твердость 30-40HV) практически не используется в качестве конструкционного материала. Применяется в пиротехнике, в химической промышленности для синтеза органических соединений, в металлургии различных металлов и сплавов в качестве раскислителя, восстановителя и легирующего элемента.

Сплавы на основе магния

Преимущество магниевых сплавов - их высокая удельная прочность. Предел прочности на разрыв магниевых сплавов достигает 250-400 МПа при плотности менее 2 граммов на кубический сантиметр. Горячие сплавы хорошо коваются, прокатываются и прессуются. Магниевые сплавы хорошо обрабатываются (лучше, чем сплавы стали, алюминия и меди), хорошо шлифуются и полируются. Их удовлетворительно сваривают контактной и дуговой сваркой в ​​среде защитного газа.

К недостаткам магниевых сплавов, помимо низкой коррозионной стойкости и низкого модуля упругости, можно отнести плохие литейные свойства, склонность к газонасыщению, окислению и воспламенению при их получении.

По механическим свойствам магниевые сплавы подразделяются на сплавы низкой и средней прочности, высокопрочные и жаропрочные, по склонности к упрочнению с помощью термической обработки - на упрочняемые и незакаленные.

Деформируемые магниевые сплавы. В сплавах МА1 и МА8 основным легирующим элементом является марганец. Эти сплавы не упрочняются термической обработкой, обладают хорошей коррозионной стойкостью и свариваемостью. Сплавы МА2-1 и МА5 относятся к системе Mg-Al-Zn-Mn. Алюминий и цинк повышают прочность сплавов, придают хорошую технологическую пластичность, что позволяет изготавливать из них кованые и штампованные детали сложной формы (рабочие колеса и решетки капота самолета). Сплавы системы Mg-Zn, дополнительно легированные цирконием (МА14), кадмием, редкоземельными металлами (МА15, МА19 и др.), Относятся к высокопрочным магниевым сплавам. Применяются для несвариваемых, тяжело нагруженных деталей (облицовка самолетов, детали подъемных машин, автомобилей, ткацких станков и т. д.).

Литье магниевых сплавов. Наибольшее применение нашли сплавы системы Mg-Al-Zn (ML5, ML6). Они широко используются в авиастроении (кожухи приборов, насосы, коробки передач, фонари и двери кабины и т. д.), Ракетной технике (корпуса ракет, обтекатели, топливные и кислородные баки, стабилизаторы), автомобильных конструкциях, особенно гоночных (корпуса, колеса, насосы). и др.), в приборостроении (корпусах и деталях приборов). Из-за низкой способности поглощать тепловые нейтроны сплавы магния используются в ядерной технике, а из-за их высокой демпфирующей способности - в производстве корпусов для электронного оборудования.

Сплавы магния с цинком и цирконием (МЛ 12), а также сплавы, дополнительно легированные кадмием (МЛ8), редкоземельными металлами (МЛ9, МЛ10), обладают более высокими технологическими и механическими свойствами. Эти сплавы используются для нагруженных деталей самолетов и авиационных двигателей (картеры компрессоров, картеры, фермы шасси, стойки управления и т. д.).

Магниевые сплавы подвергаются следующим видам термической обработки: Т1 - старение, Т2 - отжиг, Т4 - гомогенизация и закалка на воздухе, Т6 - гомогенизация, закалка на воздухе и старение, Т61 - гомогенизация, закалка в воде и старение.

Заключение

Цветные металлы и их сплавы широко используются в строительстве благодаря своей прочности, легкости и высокой коррозионной стойкости. Они делятся на легкие (в основном на основе алюминия) и тяжелые (на основе меди, латуни, олова и т. д.).

Цветная металлургия - одна из наиболее конкурентоспособных отраслей в России, а российские компании в ряде подсекторов (алюминий, никель, титан) входят в число мировых лидеров. Достижения участников рынка в мировом масштабе стали возможны благодаря активной инвестиционной политике предприятий отрасли. Так, например, объем инвестиций в 2006 году по сравнению с показателями 2000 года увеличился в 2,5 раза и составляет 80 млрд рублей, а объем иностранных инвестиций увеличился почти в 10 раз, достигнув 4,5 млрд долларов. Общий объем инвестиций в строительство и реконструкцию металлургических производств приходится на 2007-2010 годы. более 220 млрд руб.

Список литературы

  1. Колачев Б.А., Ливанов В.А., Елагин В.И. Металлургия и термическая обработка цветных металлов и сплавов. - М .: Металлургия, 1982. - 416 с.
  2. Материаловедение: Учебник для высших технических учебных заведений / Б.Н. Арзамасов, И.И.Сидорин, Г.Ф.Косолапов и др .; под итог. изд. Б.Н. Арзамасов. // 2-е изд. - М .: Машиностроение, 1987. - 384 с.
  3. Гуляев А.П. Металлургия. - М .: Металлургия, 1987. - 544 с.
  4. Материалы будущего: Пер. с этим. / Под ред. А. Нойман. - Л .: Химия, 1985. - 240 с.
  5. Венецкий С.И. Рассказы о металлах. - М .: Металлургия, 1986. - 240 с.

Посмотрите похожие темы рефератов возможно они вам могут быть полезны:

Металлы и сплавы

Цветные металлы и сплавы, их свойства и назначение. Медные сплавы, физические и химические свойства меди, латуни и бронзы. Характеристика и методы обработки алюминиевых сплавов. Титановые и цинковые сплавы, области применения и технология производства.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 12.01.2015
Размер файла 19,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание работы

1. Цветные металлы и сплавы, их свойства и назначение

2. Медные сплавы

3. Алюминиевые сплавы

4. Титановые сплавы

5. Цинковые сплавы

Ценные свойства цветных металлов обусловили их широкое применение в различных отраслях современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники. Цветные металлы обладают рядом ценных свойств: высокой теплопроводностью, очень малой плотностью (алюминий и магний), очень низкой температурой плавления (олово, свинец), высокой коррозионной стойкостью (титан, алюминий). В различных отраслях промышленности широко применяются сплавы алюминия с другими легирующими элементами.

Сплавы на магниевой основе отличаются малой плотностью, высокой удельной прочностью, хорошо обрабатываются резанием. Они нашли широкое применение в машиностроении и в частности в авиастроении.

Техническая медь, содержащая не более 0,1 % примесей, применяется для различных видов проводников тока.

Медные сплавы по химическому составу классифицируются на латуни и бронзы. В свою очередь латуни по химическому составу подразделяются на простые, легированные только цинком, и специальные, которые, помимо цинка, содержат в качестве легирующих элементов свинец, олово, никель, марганец.

Бронзы также подразделяются на оловянные и безоловянные. Безоловянные бронзы имеют высокую прочность, хорошие антикоррозионные и антифрикционные свойства.

В металлургии широко используется магний, с помощью которого осуществляют раскисление и обессеривание некоторых металлов и сплавов, модифицируют серый чугун с целью получения графита шаровидной формы, производят трудно восстанавливаемые металлы (например, титан), смеси порошка магния с окислителями служат для изготовления осветительных и зажигательных ракет в реактивной технике и пиротехнике. Свойства магния значительно улучшаются за счет легирования. Алюминий и цинк с массовой долей до 7 % повышают его механические свойства, марганец улучшает его сопротивление коррозии и свариваемость, цирконий, введенный в сплав вместе с цинком, измельчает зерно (в структуре сплава), повышает механические свойства и сопротивление коррозии.

Из магниевых сплавов изготавливают фасонные отливки, а также полуфабрикаты - листы, плиты, прутки, профили, трубы, проволоки. Промышленный магний получают электролитическим способом из магнезита, доломита, карналлита, морской воды и отходов различного производства по схеме получение чистых безводных солей магния, электролиз этих солей в расплавленном состоянии и рафинирование магния В природе мощные скопления образуют карбонаты магния - магнезит и доломит, а также карналлиты.

В пищевой промышленности широко применяется упаковочная фольга из алюминия и его сплавов - для обертки кондитерских и молочных изделий, а также в больших количествах используется алюминиевая посуда (пищеварочные котлы, поддоны, ванны и т. д.).

Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, радио--и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Медь обладает высокой электропроводностью и теплопроводностью, прочностью вязкостью и коррозионной стойкостью. Физические свойства ее обусловлены структурой. Она имеет кубическую гра--нецентрированную пространственную решетку. Ее температура плавления - +1083 °C, кипения - +2360 °C. Средний предел прочности зависит от вида обработки и составляет от 220 до 420 МПа (22-45 кгс/мм 2), относительное удлинение - 4--60 %, твердость - 35--130 НВ, плотность - 8,94 г/см 3. Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т. е. вводят в сплавы такие металлы, как цинк, олово, алюминий, никель и другие, за счет чего улучшаются ее механические и технологические свойства. В чистом виде медь применяется ограниченно, более широко - ее сплавы. По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению - на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.

Латуни - сплавы меди с цинком и другими компонентами. Латуни, содержащие, кроме цинка, другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: томпак Л90 - это латунь, содержащая 90 % меди, остальное - цинк; латунь алюминиевая ЛА77-2 - 77 % меди, 2 % алюминия, остальное - цинк и т. д. По сравнению с медью латуни обладают большой прочностью, коррозионной стойкостью и упругостью. Они обрабатываются литьем, давлением и резанием. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, штамповки, запорную арматуру - краны, вентили, медали и значки, художественные изделия, музыкальные инструменты, сильфоны, подшипники).

Бронзы - сплавы на основе меди, в которых в качестве добавок используются олово, алюминий, бериллий, кремний, свинец, хром и другие элементы. Бронзы подразделяются на безоловянные (БрА9Мц2Л и др.), оловянные (БрО3ц12С5 и др.), алюминиевые (БрА5, БрА7 и др.), кремниевые (БрКН1-3, БрКМц3-1), марганцевые (БрМц5), бериллиевые бронзы (БрБ2, БрБНТ1,7 и др.). Бронзы используются для производства запорной арматуры (краны, вентили), различных деталей, работающих в воде, масле, паре, слабоагрессивных средах, морской воде.

Название «алюминий» происходит от латинского слова alumen - так за 500 лет до н. э. называли алюминиевые квасцы, которые использовались для протравливания при крашении тканей и дубления кож.

По распространенности в природе алюминий занимает третье место после кислорода и кремния и первое место среди металлов. По использованию в технике он занимает второе место после железа. В свободном виде алюминий не встречается, его получают из минералов - бокситов, нефелинов и алунитов, при этом сначала производят глинозем, а затем из глинозема путем электролиза получают алюминий. Механические свойства алюминия невысоки: сопротивление на разрыв - 50-90 МПа (5-9 кгс/мм 2), относительное удлинение - 25-45 %, твердость - 13-28 НВ.

Алюминий хорошо сваривается, однако трудно обрабатывается резанием, имеет большую линейную усадку - 1,8 % В чистом виде алюминий применяется редко, в основном широко используются его сплавы с медью, магнием, кремнием, железом и т. д. Алюминий и его сплавы необходимы для авиа--и машиностроения, линий электропередач, подвижного состава метро и железных дорог.

Алюминиевые сплавы подразделяются на литейные и деформируемые. Литейные сплавы алюминия выпускаются в чушках - рафинированные и нерафинированные.

Сплавы, в обозначении марок которых имеется буква «П», предназначены для изготовления пищевой посуды. Механические свойства сплавов зависят от их химического состава и способов получения. Химический состав основных компонентов, входящих в сплав, можно определить по марке. Например, сплав АК12 содержит 12 % кремния, остальное - алюминий; АК7М2П - 7 % кремния, 2 % меди, остальное - алюминий. Наиболее широко применяется в различных отраслях промышленности сплав алюминия с кремнием - силумин, который изготовляется четырех марок - СИЛ-00,

Кроме того, цветная металлургия производит алюминиевые антифрикционные сплавы, применяемые для изготовления монометаллических и биметаллических подшипников методом литья. В зависимости от химического состава стандартом предусмотрены следующие марки этих сплавов: АО3-7, АО9-2, АО6-1, АО9-1, АО20-1, АМСТ. Стандартом также определены условия работы изделий, изготовленных из этих сплавов: нагрузка от 19,5 до 39,2 МН/м2 (200-400 кгс/см 2), температура от 100 до 120 °C, твердость - от 200 до 320 НВ.

Титан - металл серебристо--белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3), тугоплавок (температура плавления 1665 °C), весьма прочен и пластичен. На поверхности его образуется стойкая окисная пленка, за счет которой он хорошо сопротивляется коррозии в пресной и морской воде, а также в некоторых кислотах. При температурах до 882 °C он имеет гексагональную плотно упакованную решетку, при более высоких температурах - объемно--центрированный куб. Механические свойства листового титана зависят от химического состава и способа термической обработки. Предел прочности его - 300--1200 МПа (30--120 КГС/мм 2), относительное удлинение - 4--10 %. Вредными примесями титана являются азот, углерод, кислород и водород. Они снижают его пластичность и свариваемость, повышают твердость и прочность, ухудшают сопротивление коррозии.

При температуре свыше 500 °C титан и его сплавы легко окисляются, поглощая водород, который вызывает охрупчи--вание (водородная хрупкость). При нагревании выше 800 °C титан энергично поглощает кислород, азот и водород, эта его способность используется в металлургии для раскисления стали. Он служит легирующим элементом для других цветных металлов и для стали.

Благодаря своим замечательным свойствам титан и его сплавы нашли широкое применение в авиа-, ракето--и судостроении. Из титана и его сплавов изготовляют полуфабрикаты: листы, трубы, прутки и проволоку. Основными промышленными материалами для получения титана являются ильменит, рутил, перовскит и сфен (титанит). Технология получения титана сложна, трудоемка и длительна: сначала вырабатывают титановую губку, а затем путем переплавки в вакуумных печах из нее производят ковкий титан.

Сплав цинка с медью - латунь - был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.

Цинк - металл светло--серо--голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до 100-150 °C становится пластичным.

В соответствии со стандартом цинк изготовляется и поставляется в виде чушек и блоков массой до 25 кг. Стандарт устанавливает также марки цинка и области их применения: ЦВ00 (содержание цинка - 99,997 %) - для научных целей, получения химических реактивов, изготовления изделий для электротехнической промышленности; ЦВО (цинка - 99,995 %) - для полиграфической и автомобильной промышленности; ЦВ1, ЦВ (цинка - 99,99 %) - для производства отливок под давлением, предназначенных для изготовления деталей особо ответственного назначения, для получения окиси цинка, цинкового порошка и чистых реактивов; ЦОА (цинка 99,98 %), ЦО (цинка 99,975 %) - для изготовления цинковых листов, цинковых сплавов, обрабатываемых давлением, белил, лигатуры, для горячего и гальванического цинкования; Ц1С, Ц1, Ц2С, Ц2, Ц3С, Ц3 - для различных целей.

В промышленности широко применяются цинковые сплавы: латуни, цинковые бронзы, сплавы для покрытия различных стальных изделий, изготовления гальванических элементов, типографские и др. Цинковые сплавы в чушках для литья нормируются стандартом. Эти сплавы используются в автомобиле--и приборостроении, а также в других отраслях промышленности. Стандартом установлены марки сплавов, их химический состав, определены изготовляемые из них изделия:

1) ЦАМ4-10 - особо ответственные детали;

2) ЦАМ4-1 - ответственные детали;

3) ЦАМ4-1В - неответственные детали;

4) ЦА4О - ответственные детали с устойчивыми размерами;

5) ЦА4 - неответственные детали с устойчивым размерами.

Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий, а также полуфабрикатов, методами литья и обработки давлением нормируются стандартом. Механические свойства сплавов зависят от их химического состава: предел прочности ?В = 250-350 МПа (25-35 КГС/мм 2), относительное удлинение ? = 0,4--10 %, твердость - 85--100 НВ. Стандарт устанавливает марки этих сплавов, области их применения и условия работы: ЦАМ9-1,5Л - отливка монометаллических вкладышей, втулок и ползунов; допустимые: нагрузка - 10 МПа (100 кгс/см 2), скорость скольжения - 8 м/с, температура 80 °C; если биметаллические детали получают методом литья при наличии металлического каркаса, то нагрузка, скорость скольжения и температура могут быть увеличены до 20 МПа (200 КГС/см 2), 10 м/с и 100 °C соответственно: ЦАМ9-1,5 - получение биметаллической ленты (сплав цинка со сталью и дюралюминием) методом прокатки, лента предназначена для изготовления вкладышей путем штамповки; допустимые: нагрузка - до 25 МПА (250 кгс/см 2), скорость скольжения - до 15 м/с, температура 100 °C; АМ10-5Л - отливка подшипников и втулок, допустимые: нагрузка - 10 МПа (100 КГС/см 2), скорость скольжения - 8 м/с, температура 80 °C.

Список литературы

цветной металл сплав

1. Гуляев А.П. «Металловедение», М.: 1968.

2. Дальский А.М. «Технология конструкционных материалов», М.: 1985.

3. Куманин И.Б. «Литейное производство», М.: 1971.

4. Лахтин Ю.М. «Материаловедение», М.: 1990.

5. Семенов «Ковка и объемная штамповка», М.: 1972.

6. Никифоров В.М. «Технология металлов и конструкционные материалы», Ленинград.: 1986.

Подобные документы

Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

курсовая работа [1,6 M], добавлен 19.03.2013

Цветная металлургия как наиболее конкурентоспособная отрасль промышленности России, инвестиционная политика. Цветные металлы и сплавы: медь, алюминий, цинк, магний; их технологические и механические свойства, применение в промышленности и строительстве.

реферат [28,2 K], добавлен 05.12.2010

Железоуглеродистые сплавы, физические и химические свойства, строение, полиморфные превращения; производство чугуна и доменный процесс. Термическая обработка стали: отжиг, отпуск, закалка. Медь и её сплавы, область применения, оксиды и гидрооксиды.

курсовая работа [1,6 M], добавлен 17.10.2009

Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.

контрольная работа [780,1 K], добавлен 13.01.2010

Классификация металлов: технические, редкие. Физико-химические свойства: магнитные, редкоземельные, благородные и др. Свойства конструкционных материалов. Строение и свойства сталей, сплавов. Классификация конструкционных сталей. Углеродистые стали.

Классификация металлов и их сплавов

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Металлическое состояние объясняется электронным строением. Элементы металла, вступая в химическую реакцию с элементами, являющимися неметаллами, отдают им свои внешние, так называемые валентные электроны. Это является следствием того, что у металлов внешние электроны непрочно связаны с ядром; кроме того, на наружных электронных оболочках немного (всего 1–2), тогда как у неметаллов электронов много (5–8).

Все элементы, расположенные левее галлииндия и таллия – металлы, а правее мышьяка, сурьмы и висмута – неметаллы.

В технике под неметаллом понимают вещества, обладающие «металлическим блеском» и пластичностью – характерные свойства.

Кроме этого все металлы обладают высокой электропроводностью и теплопроводностью.

Особенность строения металлических веществ заключается в том, что все они построены в основном из легких атомов, у которых внешние электроны слабо связаны с ядром. Это обуславливает особый характер взаимодействия атомов металла и металлические свойства. Металлы являются хорошими проводниками электрического тока.

Из известных (к 1985 г.) 106 химических элементов 83 – металлы.

2. Классификация металлов

Каждый металл отличается строением и свойствами от другого, тем не менее, по некоторым признакам их можно объединить в группы.

Данная классификация разработана русским ученым Гуляевым А.П. и может не совпадать с общепринятой.

Все металлы можно разделить на две большие группы – черные и цветные металлы.

Черные металлы чаще всего имеют темно-серый цвет, большую плотность (кроме щелочно-земельных), высокую температуру плавления, относительно высокую твердость. Наиболее типичным металлом этой группы является железо.

Цветные металлы чаще всего имеют характерную окраску: красную, желтую и белую. Обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления. Наиболее типичным элементом этой группы является медь.

Черные металлы в свою очередь можно подразделить следующим образом:

1. Железные металлы – железо, кобальт, никель (так называемые ферромагнетики) и близкий к ним по свойствам марганец. Co, Ni, Mu часто применяют как добавки к сплавам железа, а также в качестве основы для соответствующих сплавов, похожих по своим свойствам на высоколегированные стали.

2. Тугоплавкие металлы, температура плавления которых выше, чем железа (т.е. выше 1539С). Применяют как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов. К ним относят: Ti, V, Cr, Zr, Nb, Mo, Tc (технеций), Hf (гафий), Ta(тантал), W, Re (рений).

3. Урановые металлы – актиниды, имеющие преимущественное применение в сплавах для атомной энергетики. К ним относят: Ас(актиний), Th(торий), U(уран), Np(нептуний), Pu(плутоний), Bk(берклий), Cf (калифорний), Md(менделевий), No(нобелий) и др.

4. Редкоземельные металлы (РЗМ) – La(лантан), Ce(церий), Nd(неодим), Sm(санарий), Eu(европий), Dy(диспрозий), Lu(лютеций), Y(иттрий), Sc(сландий) и др., объединяемые под названием лантаноидов. Эти металлы обладают весьма близкими химическими свойствами, но довольно различными физическими (Тип. и др.). Их применяют как присадки к сплавам других элементов. В природных условиях они встречаются вместе и трудно разделимы на отдельные элементы. Обычно используется смешанный сплав – 40–45% Се (церий) и 40–45% всех других РЗМ.

5. Щелочноземельные металлы – в свободном металлическом состоянии не применяются, за исключением особых случаев, например, теплоносители в атомных реакторах. Li(литий), Na, K(калий), Rb(рубидий), Cs(цезий), Fr(франций), Ca(кальций), Sr(стронций), Ba(барий), Ra(радий).

Цветные металлы подразделяются на:

1. Легкие металлы – Ве(берилий), Mg(магний), Al(аллюминий), обладающие малой плотностью.

2. Благородные металлы – Ag(серебро), Pt(платина), Au(золото), Pd(палладий), Os(осмий), Ir(иридий), и др. Сu – полублагородный металл. Обладают высокой устойчивостью против коррозии.

3. Легкоплавкие металлы – Zn(цинк), Cd(кадмий), Hg(ртуть), Sn(олово), Bi(висмут), Sb(сурьма), Pb(свинец), As(мышьяк), In(индий) и т.д., и элементы с ослабленными металлическими свойствами – Ga(галий), Ge(германий).

Применение металлов началось с меди, серебра и золота. Так как они встречаются в природе в чистом (самородном) виде.

Позднее стали восстанавливать металлы из руд – Sn, Pb, Fe и др.

Наибольшее распространение в технике получили сплавы железа с углеродом: сталь (0,025–2,14% С) чугун (2,14–6,76% С); причина широкого использования Fe-C сплавов связано с рядом причин: малой стоимостью, наилучшими механическими свойствами, возможностью массового изготовления и большой распространенностью руд Fe в природе.

Более 90% изготовленных металлов составляет сталь.

Производство металлов на 1980 г.:

Железо – 718 000 тыс. тонн (в СССР до 150 млн тонн в год)

Марганец – > 10 000 тыс. тонн

Алюминий – 17 000 тыс. тонн

Медь – 9 400 тыс. тонн

Цинк – 6200 тыс. тонн

Олово – 5400 тыс. тонн

Никель – 760 тыс. тонн

Магний – 370 тыс. тонн

Золото – > 1,2 тыс. тонн

Стоимость металла – фактор возможности и целесообразности его применения. В таблице показана относительная стоимость разных металлов (за единицу принята стоимость железа, точнее простой углеродистой стали).

Материаловедение: металлы и сплавы

Материаловедение: металлы и сплавы

Самостоятельная работа №1

«Формирование структуры и методы исследования свойств металлов»

2. Самостоятельная работа № 2

«Диаграмма состояния “железо-цементит”

3. Самостоятельная работа №3

4. Самостоятельная работа № 4

«Термическая обработка металлов и сплавов»

5. Самостоятельная работа № 5

«Сплавы, применяемые в промышленности»

Самостоятельная работа 1

«Формирование структуры и методы исследования свойств металлов»

Вариант задания № 9

Объясните, к какой деформации (холодной или горячей), следует отнести прокатку низкоуглеродистой стали, свинца и вольфрама при комнатной температуре.

Горячая деформация производится при температуре выше температуры рекристаллизации для получения полностью рекристаллизованной структуры. Холодная прокатка производится ниже температуры рекристаллизации, сопровождается упрочнением (наклепом) металла. Прокатка низкоуглеродистой стали, свинца и вольфрама при комнатной температуре следует отнести к холодной деформации.

В цветной металлургии холодная прокатка применяется для получения тонких полос, листов и лент из алюминия и его сплавов, меди и ее сплавов, никеля, титана, цинка, свинца и многих других металлов.

Напишите, каким способом надо измерять твёрдость листовой мягкой стали толщиной 1мм.

Твёрдость в большинстве случаев испытывается при статическом характере вдавливания индентора в виде шарика, конуса или пирамиды в тело исследуемого объекта или царапанием поверхностного слоя пирамидой из твёрдого материала (склерометрический метод).

Для определения твёрдости тонких слоёв или мелких образцов используют прибор “Супер-Роквелл”, отличающийся от обычного прибора “ТК” меньшими нагрузками.

Объясните, когда процесс кристаллизации протекает быстрее – при небольшой, большой и очень большой степени переохлаждения? (ответ обосновать).

Пространственные кристаллические решетки образуются в металле при переходе из жидкого состояния в твердое. Этот процесс называется кристаллизацией.

Процесс кристаллизации может протекать только при переохлаждении металла ниже равновесной температуры Тп (температура плавления).

На рис.1. изображены термические кривые, характеризующие процесс кристаллизации металлов при охлаждении с разной скоростью. При очень медленном охлаждении степень переохлаждения невелика (рис.1 кривая ?Т). В этих условиях будет получено крупное зерно. С увеличением степени переохлаждения (кривые ?Т1, ?Т2) число зародышей возрастает в большей мере, чем скорость их роста, и размер зерна в металле уменьшается.

Зерно металла сильно влияет на механические свойства: чем мельче зерно, тем выше вязкость и пластичность.

При увеличении степени переохлаждения скорость образования кристаллов и скорость их роста возрастают, при определенной степени переохлаждения достигают максимума, после чего снижаются.

Самостоятельная работа 2

«Диаграмма состояния “Железо-цементит”»

Построить диаграмму «железо-цементит» с обозначением линий, точек и областей.

Рис..1. Диаграмма состояния железо – цементит

К углеродистым сталям относятся сплавы железа с углеродом с массовой долей углерода от 0,02 до 2,14 %.

Основными компонентами углеродистых сталей являются железо и углерод.

Железо является полиморфным металлом. При температурах ниже 910° С, железо существует в ? -модификации. Эта аллотропическая модификация железа называется ? -железом. В интервале температур от 910° С до 1392° С существует ? -железо с гранецентрированной кубической решеткой.

Углерод является неметаллическим элементом. В углеродистых сталях эти компоненты взаимодействуют, образуя, и зависимости от их количественного соотношения и температуры, разные фазы, представляющие собой однородные части сплава. Углерод может растворяться как в жидком (расплавленном) железе, так и в различных его модификациях в твердом состоянии. В углеродистых сталях различают следующие фазы (рис.1): жидкий сплав (Ж), твердые растворы -феррит (Ф) и аустенит (А) и химическое соединение цементит (Ц),

Феррит - твердый раствор внедрения углерода в ? -железе. Содержит при нормальной температуре 0,006 % углерода. У феррита низкие твердость (HB = 790 МПа) и прочность (?6 = 245МПа), высокие пластичность (? = 50%, ? = 85%) и ударная вязкость (KCU = 2940кДж/м 2 ).

Аустенит - твердый раствор внедрения углерода в ? -железе, при нормальной температуре в углеродистых сталях в равновесном состоянии не существует.

Цементит - химическое соединение железа с углеродом, карбид железа Fc3C. Содержит 6,67 % углерода. Для цементита характерна высокая твердость (НV = 9800 МПа) и очень низкая пластичность.

Перлит – эвтектоидная механическая смесь феррита и цементита (Ф+Ц). Существует ниже 727° С и содержит 0,8% С.

Определить вид углеродистой стали и белого чугуна по заданному содержанию углерода, отметить эти точки на своей диаграмме.

Линия ликвидус системы. На участке АВ начинается кристаллизация феррита (), на участке ВС начинается кристаллизация аустенита, на участке СD – кристаллизация цементита первичного.

Линия солидус. На участке АН заканчивается кристаллизация феррита (). На линии HJB при постоянной температуре 1499°С идет перетектическое превращение, заключающееся в том, что жидкая фаза реагирует с ранее образовавшимися кристаллами феррита (), в результате чего образуется аустенит.

На участке JЕ заканчивается кристаллизация аустенита.

На участке ECF при постоянной температуре 1147 o С идет эвтектическое превращение, заключающееся в том, что жидкость, содержащая 4,3 % углерода превращается в эвтектическую смесь аустенита и цементита первичного

При 1147°С протекает эвтектическая реакция Lc-AE+Ц.

Жидкость, состав которой соответствует точке С, превращается в эвтектическую смесь аустенита, состав которого соответствует точке Е, и цементита, называемую ледебуритом.

При 727°С протекает эвтектическая реакция A - Фр+Ц.

В отличие от эвтектики, образующейся из жидкости, эвтектоид возникает из твердых фаз. Продукт превращения – эвтектоидная смесь феррита и цементита, называемая перлитом.

Реферат по химии на тему "Металлы и Металлургия"

Наиболее динамичный период развития человечества обусловлено открытием человеком металлов и их сплавов. В природе в чистом виде встречаются небольшое количество металлов, таких как: золото, серебро и медь. К тому же, золото и серебро являются драгоценными металлами и использовались в ювелирных целях и чеканки монет. В тоже время самородная медь необладала необходимыми прочностными характеристиками, что требовало нахождение других материалов. Выше указанные причины стимулировли человечество в поиске новых металлов. В процессе изучению окружающего мира человек осознал, что в рудах содержится другие металлы с более востребованными характеристиками столь необходимыми человечеству. В результате этого человечество вынуждено было находить способы получение металлов из руд. Поэтому появилась металлургия, что дало огромные возможности для развитию человечеству.

Металлургия— область науки и техники, охватывающая процессы получения металлов из руд или других материалов, а также процессы, связанные с изменением химического состава, структуры и свойств металлических сплавов. В первоначальном, узком значении — искусство извлечения металлов из руд. В настоящее время металлургия является также отраслью промышленности.

Металлы — группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск.

Во многих странах мира идет интенсивный научный поиск по применению различных микроорганизмов в металлургии, то есть применение биотехнологии (биовыщелачивание, биоокисление, биосорбция, биоосаждение и очистка растворов). К настоящему времени наибольшее применение биотехнические процессы нашли для извлечения таких цветных металлов, как медь, золото, цинк, уран, никель из сульфидного сырья. Особое значение имеет реальная возможность использования методов биотехнологии для глубокой очистки сточных вод металлургических производств.

К металлургии относятся:

производство металлов из природного сырья и других металлосодержащих продуктов;
получение сплавов;
обработка металлов в горячем и холодном состоянии;
сварка;
нанесение покрытий из металлов;
область материаловедения, изучающая физическое и химическое поведение металлов, интерметаллидов и сплавов.
К металлургии примыкает разработка, производство и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности. На условной границе между металлургией и горным делом находятся процессы окускования (подготовка обогащённого сырья к дальнейшей пирометаллургической переработке). С точки зрения академической науки их относят к металлургическим дисциплинам. С металлургией тесно связаны коксохимия, производство огнеупорных материалов, и химия (когда речь идёт о металлургии редкоземельных металлов, например).

Распространение и сферы применения

Из наиболее ценных и важных для современной техники металлов лишь немногие содержатся в земной коре в больших количествах: алюминий (8,9 %), железо (4,65 %), магний (2,1 %), титан (0,63 %). Природные ресурсы некоторых весьма важных металлов измеряются сотыми и даже тысячными долями процента. Особенно бедна природа благородными и редкими металлами.

Производство и потребление металлов в мире постоянно растёт. За последние 20 лет ежегодное мировое потребление металлов и мировой металлофонд удвоились и составляют, соответственно, около 800 млн тонн и около 8 млрд тонн. Изготовленная с использованием черных и цветных металлов доля продукции в настоящее время составляет 72—74 % валового национального продукта государств. Металлы в XXI веке остаются основными конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из 800 млн т ежегодно потребляемых металлов более 90 % (750 млн т) приходится на сталь, около 3 % (20—22 млн т) на алюминий, 1,5 % (8—10 млн т) — медь, 5—6 млн т — цинк, 4—5 млн т — свинец (остальные — менее 1 млн т).

Масштабы производства таких цветных металлов, как алюминий, медь, цинк, свинец, измеряются в млн т/год; таких как магний, титан, никель, кобальт, молибден, вольфрам- в тыс. т, таких как селен,

теллур, золото, платина — в тоннах, таких как иридий, осмий и т. п. — в килограммах.

Благодаря своим физическим свойствам (твёрдость, высокая плотность, температура плавления, электропроводность, звукопроводность, внешний вид и другим) они находят применение в различных областях. Применение металлов зависит от их индивидуальных свойств:

Сплавы и их применение

В чистом виде металлы применяются незначительно. Гораздо большее применение находят сплавы металлов, так как они обладают особыми индивидуальными свойствами. Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.

Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.

Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.

Взаимодействие металлов с простыми веществами

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

Реакции с простыми веществами

С кислородом реагируют все металлы, кроме золота и платиновых металлов. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:


Чтобы получить из пероксида оксид, пероксид восстанавливают металлом: Со средними и малоактивными металлами реакция происходит при нагревании: С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды: С серой реагируют все металлы, кроме золота и платины.
Железо взаимодействует с серой при нагревании, образуя сульфид:

С водородом реагируют металлы IA и IIA групп, кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:

С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.


Взаимодействие кислот с металлами

С кислотами металлы реагируют по-разному. Металлы, стоящие в электрохимическом ряду активности металлов (ЭРАМ) до водорода, взаимодействуют практически со всеми кислотами.

Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода
Происходит реакция замещения, которая также является окислительно-восстановительной:


Взаимодействие концентрированной серной кислоты H2SO4 с металлами.
Окисляющие кислоты могут взаимодействовать и с металлами, стоящими в ЭРАМ после водорода: Очень разбавленная кислота реагирует с металлом по классической схеме:


При увеличении концентрации кислоты образуются различные продукты:

Реакции для азотной кислоты (HNO3)


При взаимодействии с активными металлами вариантов реакций ещё больше:


Библиография

Герасимов Я. И. Химическая термодинамика в цветной металлургии. Т. 1-7. / Я.И.Герасимов, А.Н.Крестовников, А.С.Шахов и др.— М.: Металлургиздат, 1960—1973.— 2108 с.

Павленко Н. И. История металлургии в России XVIII века. Заводы и заводовладельцы. М.: Издательство АН СССР, 1962.— 566 с.

Юсфин Ю. С., Пашков Н. Ф. Металлургия железа: Учебник для вузов.— Москва: Академкнига, 2007.— 464с.

Воскобойников В.Г., Кудрин В.А., Якушев А.М. Общая металлургия / Под ред..— Учебник для вузов. - 6-изд., перераб. и доп..— М.: Академкнига, 2005.— 768с.

Металловеды / Составитель С.С.Черняк— Иркутск: Изд-во ИрГУ, 2000.— 532 с.

Читайте также: