Свойства металлов в ряду напряжений

Обновлено: 17.05.2024

Li. Rb. K. Ba. Sr. Ca. Na. Mg. Al. Mn. Zn. Cr. Fe. Cd. Co.

Ni. Sn. Pb. H... Sb. Bi. Cu. Hg. Ag. Pb. Pt. Au.

В соответствии с этим металлы подразделяются на три группы:

– активные, имеющие значения стандартных окислительно-восстановительных потенциалов от наиболее отрицательного (у лития) до потенциала алюминия (Li-Аl);

– средней активности (Аl-Н2);

– малоактивные (Н2-Аu).

Чем левее расположен металл в ряду напряжений, тем выше его восстановительная способность и тем слабее окислительная способность его катиона в растворе.

Металл способен вытеснять из растворов солей только те металлы (т.е. окисляться их катионом), которые стоят в этом ряду правее него.

Металлы, расположенные левее водорода, способны вытеснять его из растворов кислот, т.е. окисляться катионом водорода кислоты.

Наиболее распространенные окислители металлов:

– катион водорода (протон) в молекулах воды и «кислотах – неокислителях»: разбавленной H2SO4, галогеноводородных кислотах, Н3РО4, Н2S, НСΝ, органических кислотах и некоторых других;

– вода в щелочной среде;

– элементы в высших степенях окисления, входящие в состав «кислот – окислителей»: S +6 в концентрированной H2SO4, N +5 в HNO3 любой концентрации.

– катион менее активного металла в растворе его соли.

Реакции металлов с окислителями сопровождается образованием продуктов восстановления окислителей, состав которых зависит от природы реагирующих веществ (см. ниже таблицу 8.2. и раздел "Влияние на ОВР металлов поверхностных пленок").

При окислении металлов концентрированной H2SO4 и HNO3 любой концентрации образуется смесь продуктов восстановления частиц S +6 и N +5 , среди которых имеются преобладающие вещества (таблица 8.2).

Таблица 8.2 – Состав преобладающих продуктов восстановления окислителя в зависимости от природы металла и окислителя

Активность металла Окислитель Преобладающие продукты восстановления окислителя
Активные металлы H2O (при pH=7) H2
С водой взаимодействуют только Li,K,Rb,Cs,Ba,Sr,Ca,Na, Mg (при нагр.)
Be, Al, Zn H2O (при pH>7) в щелочной среде H2
Mg, Be, Al, Мn Zn (при норм. условиях)

H + в составе кислот-неоки-

H2
N +5 в конц.HNO3 NO2
N +5 в разб HNO3 N2
N +5 в очень разб. HNO3 NH3 (NH4NO3)
S +6 в конц. H2SO4 H2S
Металлы средней активности а H2O (при pH>7) в щелочной среде H2
Sn, Pb, Ge
Fe, Ni, Cr , Sn, Pb, Zn (при нагревании) H + в кислотах-неокисли-телях H2
конц. HNO3 NO2
разб.HNO3 N2O
очень разб.HNO3 N2
конц. H2SO4 S
Неактивные металлы конц. HNO3 разб. HNO3 очень. разб. HNO3 конц. H2SO4 NO2 NO NO SO2
Взаимодействуют только Cu, Hg, Ag Взаимодействуют только Cu и Hg

Металлы со стабильной высшей степенью окисления при окислении конц. HNO3 могут в качестве преобладающих продуктов реакции давать кислоты с высшей степенью окисления металла, например:

Общая схема реакции металлов с кислотами – окислителями:

Me + HNO3 → Me(NO3)x + H2O + преобладающий продукт восстановления

кислоты в зависимости от ее концентрации

Влияние на ОВР металлов поверхностных пленок:

1. В конц. H2SO4 устойчивы Al, Cr и Fe вследствие пассивации (реакция начинается, а затем прекращается из-за образования на поверхности инертного слоя).

2. В конц. HNO3 при нормальной температуре устойчивы из-за пассивации Al, Fe, Cо, Ni, Cr (они начинают реагировать, а затем окисление прекращается из-за образования на поверхности инертного слоя).

3. Не окисляется HNO3 любой концентрации:

– Au, Ru, Os, Pd, Pt, Rh, Jr вследствие их термодинамической устойчивости;

– Ti, Ta, Zr, Hf, Νb из-за пассивации (Ti не окисляется ни разб., ни конц. HNO3).

4. Разбавленная H2SO4 и HCl не окисляют Pb из-за пассивации нерастворимыми солями (реакция начинается, а затем прекращается).

5. На поверхности ряда металлов (Be, Al, Sn, Zn, Pb ) образуются нерастворимые амфотерные оксиды, поэтому они не окисляются H2O в нейтральной среде. Однако в щелочной среде эти металлы реагируют с водой, т.к. у образующихся амфотерных оксидов, а затем и гидроксидов преобладают кислотные свойства, вследствие чего они взаимодействуют со щелочью, образуя растворимые соли.

Урок №48. Химические свойства металлов. Ряд активности (электрохимический ряд) металлов

Химические свойства металлов определяются их активностью. Простые вещества – металлы в химических реакциях всегда являются восстановителями . Положение металла в ряду активности характеризует то, насколько активно данный металл способен вступать в химические реакции (т. е. то, насколько сильно у него проявляются восстановительные свойства).

Среди металлов традиционно выделяют несколько групп.

благородные металлы (серебро, золото, платина, иридий);

щелочные металлы – I(A) группа ;

щелочноземельные металлы – II(A) группа , кроме Be, Mg.

Металлы встпают в реакции с простыми веществами – неметаллами (кислород, галогены, сера, азот, фосфор и др.) и сложными веществами (вода, кислоты, растворы солей)

Взаимодействие с простыми веществами-неметаллами

1. Металлы взаимодействуют с кислородом, образуя оксиды:

4Li + O 2 = обыч. усл . = 2Li 2 O

2Mg + O 2 = t, °C = 2MgO

Серебро, золото и платина с кислородом не реагируют

2. Металлы взаимодействуют с галогенами (фтором, хлором, бромом и йодом), образуя галогениды – Ме +n Г -1 n

2Na + Cl 2 = 2NaCl

3. Металлы взаимодействуют с серой, образуя сульфиды.

4. Активные металлы при нагревании реагируют с азотом, фосфором и некоторыми другими неметаллами.

3Na + P = t, °C = Na 3 P

Взаимодействие со сложными веществами

I. Взаимодействие воды с металлами

1). Взаимодействие с самыми активными металлами, находящимися в периодической системе в I(А) и II(А) группах (щелочные и щелочноземельные металлы) и алюминий . В результате образуются основание и газ водород .

Me + H 2 O = Me(OH) n + H 2 (р. замещения)

Внимание! Алюминий и магний ведут себя также:

Магний (в горячей воде):

2) Взаимодействие воды с менее активными металлами, которые расположены в ряду активности от алюминия до водорода.

Металлы средней активности, стоящие в ряду активности до (Н 2 ) – Be, Fe, Pb, Cr, Ni, Mn, Zn – реагируют с образованием оксида металла и водорода

Me + Н 2 О = Ме х О у + Н 2 (р. замещения)

Бериллий с водой образует амфотерный оксид:

Be + H 2 O = t°C = BeO + H 2

Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe 3 O 4 и водород:

3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.

Cu + H 2 O ≠ нет реакции

II. Взаимодействие растворов кислот с металлами

Металлы, стоящие в ряду активности металлов левее водорода, взаимодействуют с растворами кислот ( раствор азотной кислоты – исключение ), образуя соль и водород.

Кислота (раствор) + Me до (Н2) = Соль + H 2

III. Взаимодействие кислот-окислителей с металлами

Металлы особо реагируют с серной концентрированной и азотной кислотами:

H 2 SO 4 (конц.) + Me = Сульфат + H 2 O + Х

HNO 3 + Me = Нитрат + H 2 O + Х

4Zn + 10HNO 3 (раствор горячий) = t˚C = 4Zn(NO 3 ) 2 + N 2 O + 5H 2 O

4Zn + 10HNO 3 (оч. разб. горячий) = t˚C = 4Zn(NO 3 ) 2 + NH 4 NO 3 + 3H 2 O

IV. С растворами солей менее активных металлов

Ме + Соль = Новый металл + Новая соль

Активность металла в реакциях с кислотами, водными растворами солей и др. можно определить, используя электрохимический ряд, предложенный в 1865 г русским учёным Н. Н. Бекетовым: от калия к золоту восстановительная способность (способность отдавать электроны) уменьшается, все металлы, стоящие в ряду левее водорода, могут вытеснять его из растворов кислот; медь, серебро, ртуть, платина, золото, расположенные правее, не вытесняют водород.

Электрохимический ряд напряжений металлов (ряд Бекетова)

Первоначально Бекетов предполагал, что способность одних металлов вытеснять из растворов солей другие металлы связана с их плотностью: более лёгкие металлы способны вытеснять металлы более тяжелые. Но опыты говорили о ином. Непонятно было и то, как связан “вытеснительный ряд” с рядом напряжений Алессандро Вольта. Со временем накапливалось всё больше экспериментальных данных того, что некоторые правила вытеснения нарушаются при определенных условиях. Бекетов обнаружил, что водород под давлением 10 атмосфер вытесняет серебро из раствора нитрата серебра. Английский химик Уильям Одлинг (1829-1921) описал множество случаев подобных аномалий. Например, медь вытесняет олово из концентрированного подкисленного раствора хлорида олова (II) и свинец – из кислого раствора хлорида свинца (II). Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора хлорид кадмия.

Теоретическую основу ряда активности (и ряда напряжений) заложил немецкий физикохимик Вальтер Нернст (1864-1941). Вместо качественной характеристики – “склонности” металла и его иона к тем или иным реакциям – появилась точная количественная величина. Такой величиной стал стандартный электродный потенциал металла, а соответствующий ряд, выстроенный в порядке изменения потенциалов, называется рядом стандартных электродных потенциалов.

Электрохимический ряд напряжений металлов (ряд Бекетова) это последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод, электродный потенциал которого условно принимается равным нулю.

Восстановленная форма Число отданных електронов Окисленная форма Стандартный электродный потенциал, В
Li 1e Li + -3,05
K 1e K + -2,925
Rb 1e Rb + -2,925
Cs 1e Cs + -2,923
Ba 2e Ba 2+ -2,91
Sr 2e Sr 2+ -2,89
Ca 2e Ca 2+ -2,87
Na 1e Na + -2,71
Mg 2e Mg 2+ -2,36
Al 3e Al 3+ -1,66
Mn 2e Mn 2+ -1,18
Zn 2e Zn 2+ -0,76
Cr 3e Cr 3+ -0,74
Fe 2e Fe 2+ -0,44
Cd 2e Cd 2+ -0,40
Co 2e Co 2+ -0,28
Ni 2e Ni 2+ -0,25
Sn 2e Sn 2+ -0,14
Pb 2e Pb 2+ -0,13
Fe 3e Fe 3+ -0,04
H2 2e 2H + 0,00
Cu 2e Cu 2+ 0,34
Cu 1e Cu + 0,52
2Hg 2e Hg2 2+ 0,79
Ag 1e Ag + 0,80
Hg 2e Hg 2+ 0,85
Pt 2e Pt 2+ 1,20
Au 3e Au 3+ 1,50

Место каждого элемента в ряду напряжений условно, т.к. величина электродного потенциала зависит от температуры и состава раствора, в который погружены электроды, в частности от концентрации ионов. Большое значение также имеет состояние поверхности электрода (гладкая, шероховатая). Стандартный электродный потенциал относится к водным растворам при температуре 25 °С, давлении газов 1 атмосфера и концентрации ионов 1 моль/л.

Из электрохимического ряда напряжений металлов вытекает ряд важных следствий:

  1. Каждый металл способен вытеснять (замещать) из растворов солей все другие металлы, стоящие правее данного металла;
  2. Все металлы, расположенные левее водорода, способны вытеснять его из кислот;
  3. Чем дальше расположены друг от друга два металла в ряду напряжений, тем большее напряжение может давать созданный из них гальванический элемент.

Восстановление водородом из оксидов

Металлы, которые водород не восстанавливает из их оксидов

Химические свойства металлов


Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Взаимодействие с кислотами

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Взаимодействие с солями

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Таблица «Химические свойства металлов»

Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb

Cu, Hg, Ag, Pt, Au

Восстановительная способность металлов в свободном состоянии

Возрастает справа налево

Взаимодействие металлов с кислородом

Быстро окисляются при обычной температуре

Медленно окисляются при обычной температуре или при нагревании

Взаимодействие с водой

Выделяется водород и образуется гидроксид

При нагревании выделяется водород и образуются оксиды

Водород из воды не вытесняют

Взаимодействие с кислотами

Вытесняют водород из разбавленных кислот (кроме HNO3)

Не вытесняют водород из разбавленных кислот

Реагируют с концентрированными азотной и серной кислотами

С кислотами не реагируют, растворяются в царской водке

Взаимодействие с солями

Не могут вытеснять металлы из солей

Более активные металлы (кроме щелочных и щелочноземельных) вытесняют менее активные из их солей

Взаимодействие с оксидами

Для металлов (при высокой температуре) характерно восстановление неметаллов или менее активных металлов из их оксидов

Ряд напряжения металлов

Каждая такая полуреакция характеризуется стандартным окислительно-восстановительным потенциалом Е0, (размерность - вольт, В). Чем больше Е0, тем сильнее окислительная форма как окислитель и тем слабее восстановленная форма как восстановитель, и наоборот.

За точку отсчета потенциалов принята полуреакция: 2H+ + 2ē ® H2, для которой Е0 =0

Для полуреакций Mn+ + nē ® M0, Е0 называется стандартным электродным потенциалом. По величине этого потенциала металлы принято располагать в ряд стандартных электродных потенциалов (ряд напряжений металлов):

Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H , Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au

Ряд напряжений характеризует химические свойства металлов:

1. Чем левее расположен металл в ряду напряжений, тем сильнее его восстановительная способность и тем слабее окислительная способность его иона в растворе (т.е. тем легче он отдает электроны (окисляется) и тем труднее его ионы присоединяют обратно электроны).

2. Каждый металл способен вытеснять из растворов солей те металлы, которые стоят в ряду напряжений правее его, т.е. восстанавливает ионы последующих металлов в электронейтральные атомы, отдавая электроны и сам превращаясь в ионы.

3. Только металлы, стоящие в ряду напряжений левее водорода (Н), способны вытеснять его из растворов кислот (например, Zn, Fe, Pb, но не Сu, Hg, Ag).

Каждые два металла, будучи погруженными в растворы их солей, которые сообщаются между собой посредством сифона, заполненного электролитом, образуют гальванический элемент. Пластинки металлов, погруженные в растворы, называются электродами элемента.

Если соединить наружные концы электродов (полюсы элемента) проволокой, то от металла, у которого величина потенциала меньше, начинают перемещаться электроны к металлу, у которого она больше (например, от Zn к Pb). Уход электронов нарушает равновесие, существующее между металлом и его ионами в растворе, и вызывает переход в раствор нового количества ионов – металл постепенно растворяется. В то же время электроны, переходящие к другому металлу, разряжают у его поверхности находящиеся в растворе ионы - металл выделяется из раствора. Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом. В свинцово-цинковом элементе цинковый электрод является анодом, а свинцовый – катодом.

Таким образом, в замкнутом гальваническом элементе происходит взаимодействие между металлом и раствором соли другого металла, не соприкасающимися непосредственно друг с другом. Атомы первого металла, отдавая электроны, превращаются в ионы, а ионы второго металла, присоединяя электроны, превращаются в атомы. Первый металл вытесняет второй из раствора его соли. Например, при работе гальванического элемента, составленного из цинка и свинца, погруженных соответственно в растворы Zn(NO3)2 и Pb(NO3)2 у электродов происходят следующие процессы:

Суммируя оба процесса, получаем уравнение Zn + Pb2+ → Pb + Zn2+, выражающее происходящую в элементе реакцию в ионной форме. Молекулярное уравнение той же реакции будет иметь вид:

Zn + Pb(NO3)2 → Pb + Zn(NO3)2

Электродвижущая сила гальванического элемента равна разности потенциалов двух его электродов. При определении его всегда вычитают из большего потенциала меньший. Например, электродвижущая сила (Э.д.с.) рассмотренного элемента равна:

Э.д.с. = -0,13 (-0,76) = 0,63 v
EPb EZn

Такую величину она будет иметь при условии, что металлы погружены в растворы, в которых концентрация ионов равна 1 г-ион/л. При других концентрациях растворов величины электродных потенциалов будут несколько иные. Их можно вычислить по формуле:

E = E0 + (0,058 / n) • lgC

где E - искомый потенциал металла (в вольтах)

E0 - его нормальный потенциал

n - валентность ионов металла

С - концентрация ионов в растворе (г-ион/л)

Найти электродвижущую силу элемента (э. д. с.) образованного цинковым электродом, опущенным в 0,1 М раствор Zn(NO3)2 и свинцовым электродом, опущенным в 2 М раствор Pb(NO3)2.

Читайте также: