Технеций металл или неметалл

Обновлено: 05.10.2024

ТЕХНЕ́ЦИЙ -я; м. [от греч. technetos - искусственный] Химический элемент (Tc), серебристо-серый радиоактивный металл, получаемый из отходов атомной промышленности.

(лат. Technetium), химический элемент VII группы периодической системы. Радиоактивен, наиболее устойчивые изотопы 97 Тс и 99 Тс (период полураспада соответственно 2,6·10 6 и 2,12·10 5 лет). Первый искусственно полученный элемент; синтезирован итальянскими учёными Э. Сегре и К. Перрье (С. Perriez) в 1937 бомбардировкой ядер молибдена дейтронами. Назван от греческого technētós — искусственный. Серебристо-серый металл; плотность 11,487 г/см 3 , tпл 2200°C. В природе найден в незначительных количествах в урановых рудах. Спектрально обнаружен на Солнце и некоторых звёздах. Получают из отходов атомной промышленности. Компонент катализаторов. Изотоп 99m Тс используют в диагностике опухолей головного мозга, при исследованиях центральной и периферической гемодинамики.

Энциклопедический словарь . 2009 .

Полезное

Смотреть что такое "технеций" в других словарях:

Технеций-99 — Таблица нуклидов Общие сведения Название, символ Технеций 99, 99Tc Нейтронов 56 Протонов 43 Свойства нуклида Атомная масса 98,9062547(21) … Википедия

ТЕХНЕЦИЙ — (символ Тс), серебристо серый металл, РАДИОАКТИВНЫЙ ЭЛЕМЕНТ. Впервые был получен в 1937 г. бомбардировкой ядер МОЛИБДЕНА дейтронами (ядрами атомов ДЕЙТЕРИЯ) и был первым элементом, синтезированным в циклотроне. Технеций обнаружен в продуктах… … Научно-технический энциклопедический словарь

ТЕХНЕЦИЙ — искусственно синтезированный радиоактивный хим. элемент, символ Тс (лат. Technetium), ат. н. 43, ат. м. 98,91. Т. получают в достаточно больших количествах при делении урана 235 в ядерных реакторах; удалось получить около 20 изотопов Т. Один из… … Большая политехническая энциклопедия

ТЕХНЕЦИЙ — (Technetium), Tc, искусственный радиоактивный элемент VII группы периодической системы, атомный номер 43; металл. Получен итальянскими учеными К. Перрье и Э. Сегре в 1937 … Современная энциклопедия

ТЕХНЕЦИЙ — (лат. Technetium) Тс, химический элемент VII группы периодической системы, атомный номер 43, атомная масса 98,9072. Радиоактивен, наиболее устойчивые изотопы 97Тс и 99Тс (период полураспада соответственно 2,6.106 и 2,12.105 лет). Первый… … Большой Энциклопедический словарь

ТЕХНЕЦИЙ — (лат. Technetium), Tc радиоакт. хим. элемент VII группы периодич. системы элементов Менделеева, ат. номер 43, первый из искусственно полученных хим. элементов. Наиб. долгоживущие радионуклиды 98Tc (T1/2 = 4,2·106 лет) и доступный в заметных кол… … Физическая энциклопедия

технеций — сущ., кол во синонимов: 3 • металл (86) • экамарганец (1) • элемент (159) Словарь синонимо … Словарь синонимов

Технеций — (Technetium), Tc, искусственный радиоактивный элемент VII группы периодической системы, атомный номер 43; металл. Получен итальянскими учеными К. Перрье и Э. Сегре в 1937. … Иллюстрированный энциклопедический словарь

Технеций — 43 Молибден ← Технеций → Рутений … Википедия

Технеций — (лат. Technetium) Те, радиоактивный химический элемент VII группы периодической системы Менделеева, атомный номер 43, атомная масса 98, 9062; металл, ковкий и пластичный. Существование элемента с атомным номером 43 было… … Большая советская энциклопедия

ТЕХНЕЦИЙ

(лат. Technetium), Tc - радиоакт. хим. элемент VII группы периодич. системы элементов Менделеева, ат. номер 43, первый из искусственно полученных хим. элементов. Наиб. долгоживущие радионуклиды 98 Tc (T 1/2 = 4,2·10 6 лет) и доступный в заметных кол-вах 99 Tc (2,13·10 5 лет). Ат. масса 99 Tc 98,9062. Впервые синтезирован К. Перрье (С. Perrier) и Э. Сегре (E. Segre) (1937) бомбардировкой ядер Mo дейтронами. В ничтожных кол-вах обнаружен в урановых рудах, где T. образуется при делении ядер урана. Электронная конфигурация внеш. оболочек 4s 2 p 6 d 6 5s 1 . Энергия последоват. ионизации 7,28, 15,26, 29,54 эВ. Кристаллохим. радиус атома Tc 0,136 нм, радиусы ионов Tc 7+ 0,057 HM, Tc 4+ 0,072 нм, Tc 2+ 0,095 нм. Значение электроотрицательности 1,9. Работа выхода электронов 4,4 эВ.

В свободном виде-серебристо-серый металл, обладает гексагональной плотноупакованной кристаллич. решёткой с параметрами а =273,5 пм, с= 439,1 пм (в тонких слоях T. известна модификация с кубич. гранецентрированной кристаллич. решёткой). Плотн. 11,5 кг/дм 3 , t пл = 2172 o C, t кип =4877 o C, теплоёмкость с р =24Дж/(моль·К), теплота плавления 24 кДж/моль, теплота сублимации 650 кДж/моль. Парамагнитен, магн. восприимчивость +2,7·10 -9 (при 298 К). Уд. o C), теплопроводность 49,8 Вт/(м·К) (при 300 К). Коэф. линейного теплового расширения (7,2-8,9)·10 -6 K -1 .

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

технеций — я; м. [от греч. technetos искусственный] Химический элемент (Tc), серебристо серый радиоактивный металл, получаемый из отходов атомной промышленности. ◁ Технециевый, ая, ое. * * * технеций (лат. Technetium), химический элемент VII группы… … Энциклопедический словарь

Техне́ций — элемент побочной подгруппы седьмой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 43. Обозначается символом Tc (лат. Technetium ). Простое вещество технеций (CAS-номер: 7440-26-8) — радиоактивный переходный металл серебристо-серого цвета. Самый лёгкий элемент, не имеющий стабильных изотопов. Первый из синтезированных химических элементов.

Содержание

История

Технеций был предсказан Менделеевым как эка-марганец на основе Периодического закона. Начиная с 1846 г., когда элемент был «открыт» под именем ильмений, периодически производились ошибочные «открытия» элемента 43 (как люций, ниппоний и мазурий).

C развитием ядерной физики стало понятно, почему технеций никак не удаётся обнаружить в природе: в соответствии с правилом Маттауха-Щукарева этот элемент не имеет стабильных изотопов. Технеций был синтезирован из молибденовой мишени, облучённой на ускорителе-циклотроне ядрами дейтерия, 13 июля 1937 года К.Перрье и Э.Сегре в Национальной лаборатории им. Лоуренса в Беркли в США, а затем был выделен в чистом виде химически в Палермо в Италии.

Происхождение названия

От др.-греч. τεχνητός — искусственный, отражая пионерское открытие элемента путём синтеза.

Нахождение в природе

На Земле встречается в следовых количествах в урановых рудах, 5·10 −10 г на 1 кг урана. Методами спектроскопии выявлено содержание технеция в спектрах некоторых звёзд созвездий Андромеды и Кита.

Получение

Технеций получают из радиоактивных отходов химическим способом.

Кроме того, технеций образуется при делении нуклидов 232 Th, 233 U, 238 U, 239 Pu и может накапливаться в реакторах килограммами за год.

Физические и химические свойства

Изотопы

Радиоактивные свойства некоторых изотопов технеция [2] :

Массовое число Период полураспада Тип распада
92 4,3 мин β + , электронный захват
93 43,5 мин Электронный захват (18%), изомерный переход (82%)
93 2,7 ч Электронный захват (85%), β + (15%)
94 52,5 мин Электронный захват (21%), изомерный переход (24%), β + (55%)
94 4,9 ч β + (7%), электронный захват (93%)
95 60 сут Электронный захват, изомерный переход (4%), β +
95 20 час Электронный захват
96 52 мин Изомерный переход
96 4,3 сут Электронный захват
97 90,5 сут Электронный захват
97 2,6·10 6 лет Электронный захват
98 1,5·10 6 лет β −
99 6,04 ч Изомерный переход
99 2,12·10 6 лет β −
100 15,8 с β −
101 14,3 мин β −
102 4,5 мин / 5 с β − / γ/β −
103 50 с β −
104 18 мин β −
105 7,8 мин β −
106 37 с β −
107 29 с β −

Применение

Используется в медицине для контрастного сканирования желудочно-кишечного тракта при диагностике ГЭРБ и рефлюкс-эзофагита посредством меток.

Пертехнетаты (соли технециевой кислоты HTcO4) обладают антикоррозионными свойствами, так как ион TcO4 − , в отличие от ионов MnO4 − и ReO4 − , является самым эффективным ингибитором коррозии для железа и стали.

Биологическая роль

С химической точки зрения технеций и его соединения малотоксичны. Опасность технеция вызывается его радиотоксичностью.

Технеций при введении в организм попадает почти во все органы, но в основном задерживается в желудке и щитовидной железе. Поражение органов вызывается его β-излучением с дозой до 0,1 р/(час·мг).

При работе с технецием используются вытяжные шкафы с защитой от его β-излучения или герметичные боксы.

Примечания

  1. 12Редкол.:Зефиров Н. С. (гл. ред.) Химическая энциклопедия: в 5 т. — М .: Советская энциклопедия, 1995. — Т. 4. — С. 560. — 639 с. — 20 000 экз. — ISBN 5—85270—039—8
  2. ↑Ссылки
  • Химические элементы
  • Соединения технеция
  • Радиоактивные элементы
  • Металлы
  • Радиобиология
  • Элементы, предсказанные Дмитрием Менделеевым
  • Синтезированные химические элементы
  • Технеций

Wikimedia Foundation . 2010 .

ТЕХНЕЦИЙ – технеций (лат. Technetium, символ Tc) – элемент 7 (VIIb) группы периодической системы, атомный номер 43. Технеций является самым легким из тех элементов периодической системы, у которых отсутствуют стабильные изотопы и первым элементом, полученным искусственно. К настоящему времени синтезировано 33 изотопа технеция с массовыми числами 86–118, наиболее стабильные из них – 97 Tc (период полураспада 2,6·10 6 лет), 98 Tc (1,5·10 6 ) и 99 Tc (2,12·10 5 лет).

История открытия элемента.

Еще в 1920-х сотрудник Ленинградского университета С.А.Щукарев заметил определенную закономерность в распределении радиоактивных изотопов, которую окончательно сформулировал в 1934 немецкий физик Г.Маттаух. Согласно правилу Маттауха – Щукарева в природе не могут существовать два стабильных изотопа с одинаковыми массовыми числами и ядерными зарядами, отличающимися на единицу. По крайней мере один из них должен быть радиоактивным. Элемент № 43 расположен между молибденом (атомная масса 95,9) и рутением (атомная масса 101,1), но все массовые числа от 96 до 102 заняты стабильными изотопами: Mo-96, Mo-97, Mo-98, Ru-99, Mo-100, Ru-101 и Ru-102. Следовательно, элемент № 43 не может иметь нерадиоактивных изотопов. Впрочем, это не означает, что его нельзя найти на Земле: ведь уран и торий тоже радиоактивны, но сохранились до нашего времени из-за большого периода полураспада. И все же их запасы за время существования земли (около 4,5 млрд. лет) уменьшились в 100 раз. Несложные расчеты показывают, что радиоактивный изотоп может в ощутимых количествах остаться на нашей планете лишь если его период полураспада превышает 150 млн. лет. После провала поисков группы Ноддака надежда обнаружить такой изотоп практически угасла. Сейчас известно, что наиболее стабильный изотоп технеция имеет период полураспада 2,6 миллиона лет, поэтому для изучения свойств элемента № 43 необходимо было создать его заново. За эту задачу взялся в 1936 молодой итальянский физик Эмилио Джино Сегре. Принципиальная возможность искусственного получения атомов была показана еще в 1919 великим английским физиком Эрнестом Резерфордом.

После окончания Римского университета и прохождения четырехлетней воинской службы Сегре работал в лаборатории Энрико Ферми пока не получил предложение возглавить кафедру физики в университете Палермо. Конечно, отправляясь туда, он надеялся продолжить работы по ядерной физике, но лаборатория, в которой ему предстояло работать, была очень скромной и не располагала к научным подвигам. В 1936 он отправился в командировку в США, в город Беркли, где в радиационной лаборатории Калифорнийского университета уже в течение нескольких лет действовал первый в мире ускоритель заряженных частиц – циклотрон. Во время работы в Беркли ему пришла в голову мысль проанализировать молибденовую пластину, которая служила для отклонения пучка ядер дейтерия – тяжелого изотопа водорода. «У нас были веские основания думать, – писал Сегре, – что молибден после бомбардировки его дейтронами должен превратиться в элемент с номером 43. » Действительно, в ядре атома молибдена 42 протона, а в ядре дейтерия – 1. Если бы эти частицы могли объединиться, то получилось бы ядро 43-го элемента. Природный молибден состоит из шести изотопов, значит, в облученной пластинке могли присутствовать несколько изотопов нового элемента. Сегре надеялся, что хотя бы некоторые из них являются достаточно долгоживущими, чтобы сохраниться в пластинке после возвращения в Италию, где он намеревался заняться поиском элемента № 43. Задача осложнялась еще и тем, что молибден, использованный для изготовления мишени, не был специально очищен, и в пластинке могли протекать ядерные реакции с участием примесей.

Руководитель радиационной лаборатории Эрнест Лоуренс разрешил Сегре забрать пластинку с собой, и 30 января 1937 в Палермо, Эмилио Сегре и минералог Карло Перье приступили к работе. Вначале они установили, что привезенный образец молибдена испускал бета-частицы, значит, в нем действительно присутствовали радиоактивные изотопы, но был ли среди них элемент № 43, ведь источниками обнаруженного излучения могли быть изотопы циркония, ниобия, рутения, рения, фосфора и самого молибдена? Для ответа на этот вопрос часть облученного молибдена растворили в царской водке (смеси соляной и азотной кислот), и химическим путем удалили радиоактивный фосфор, ниобий и цирконий, а затем осадили сульфид молибдена. Оставшийся раствор все еще был радиоактивен, в нем оставался рений и, возможно, элемент № 43. Теперь оставалось самое сложное – разделить эти два близких по свойствам элемента. Сегре и Перье справились с этой задачей. Они установили, что при осаждении сероводородом сульфида рения из концентрированного солянокислого раствора, часть активности оставалась в растворе. После контрольных опытов по отделению изотопов рутения и марганца стало ясно, что бета-частицы могут излучаться только атомами нового элемента, который назвали технецием от греческого слова tecnh ó s – «искусственный». Это название было окончательно утверждено на съезде химиков, состоявшемся в сентября 1949 в Амстердаме. Вся работа продолжалась более четырех месяцев и закончилась в июне 1937, в результате нее было получено всего лишь 10 –10 грамма технеция.

Хотя в руках Сегре и Перье оказались ничтожные количества элемента № 43, они все же смогли определить некоторые его химические свойства и подтвердили предсказанное на основе периодического закона сходство технеция и рения. Понятно, что им хотелось больше узнать о новом элементе, но чтобы его изучать, нужно было иметь весовые количества технеция, а облученный молибден содержал слишком мало технеция, поэтому требовалось найти более подходящую кандидатуру на роль поставщика этого элемента. Ее поиски увенчались успехом в 1939, когда О.Ган и Ф.Штрассман обнаружили, что в «осколках», образующихся при делении урана-235 в ядерном реакторе под действием нейтронов, содержится довольно значительные количества долгоживущего изотопа 99 Tc. В следующем году Эмилио Сегре и его сотрудница Ву Цзяньсюн смогли выделить его в чистом виде. На каждый килограмм таких «осколков» приходится до десяти граммов технеция-99. Поначалу технеций, получаемый из отходов ядерного реактора, стоил очень дорого, в тысячи раз дороже золота, но атомная энергетика развивалась очень бурно и к 1965 цена на «синтетический» металл упала до 90 долл. за грамм, его мировое производство исчислялось уже не миллиграммами, а сотнями граммов. Располагая такими количествами этого элемента, ученые смогли всесторонне изучить физические и химические свойства технеция и его соединений.

Нахождение технеция в природе. Несмотря на то, что период полураспада (T1/2) наиболее долгоживущего изотопа технеция – 97 Tc составляет 2,6 млн. лет, что, казалось бы, полностью исключает возможность обнаружить этот элемент в земной коре, технеций может непрерывно образовываться на Земле в результате ядерных реакций. В 1956 Бойд и Ларсон предположили, что в земной коре присутствует технеций вторичного происхождения, образующийся при активации молибдена, ниобия и рутения жестким космическим излучением.

Есть и другой путь образования технеция. Ида Ноддак-Таке в одной из своих публикаций предсказала возможность спонтанного деления ядер урана, а в 1939 немецкие радиохимики Отто Ган и Фриц Штрассман подтвердили ее экспериментально. Одним из продуктов спонтанного деления являются атомы элемента № 43. В 1961 Курода, переработав около пяти килограммов урановой руды, смог убедительно доказать присутствие в ней технеция в количестве 10 –9 грамма на килограмм руды.

В 1951 американский астроном Шарлотта Мур предположила, что технеций может присутствовать в небесных телах. Спустя год английский астрофизик Р.Мерилл при изучении спектров космических объектов обнаружил технеций в некоторых звездах из созвездий Андромеды и Кита. Его открытие в дальнейшем было подтверждено независимыми исследованиями, причем количество технеция на некоторых звездах мало отличается от содержания соседних стабильных элементов: циркония, ниобия, молибдена и рутения. Для объяснения этого факта предположили, что технеций образуется в звездах и в настоящее время в результате ядерных реакций. Это наблюдение опровергло все многочисленные теории дозвездного образования элементов и доказало, что звезды являются своеобразными «заводами» по производству химических элементов.

Получение технеция.

Сейчас время технеций получают либо из отходов переработки ядерного топлива, либо из облученной в циклотроне молибденовой мишени.

При делении урана, вызванном медленными нейтронами, образуются два ядерных осколка – легкий и тяжелый. У образующихся изотопов есть избыток нейтронов и в результате бета-распада или испускания нейтронов они переходят в другие элементы, давая начало цепочкам радиоактивных превращений. В некоторых таких цепочках образуются изотопы технеция:

235 U + 1 n = 99 Mo + 136 Sn + 1 n

99 Mo = 99m Tc + b – (T1/2 = 66 час)

99m Tc = 99 Tc (T1/2 = 6 час)

99 Tc = 99 Ru (стабильный) + 227 – (T1/2 = 2,12·10 5 лет)

В эту цепочку входит изотоп 99m Tc – ядерный изомер технеция-99. Ядра этих изотопов идентичны по своему нуклонному составу, но различаются по радиоактивным свойствам. Ядро 99m Tc имеет более высокую энергию, и, теряя ее в виде кванта g -излучения, переходит в ядро 99 Tc.

Технологические схемы концентрирования технеция и отделения его от сопутствующих элементов очень разнообразны. Они включают в себя комбинацию стадий дистилляции, осаждения, экстракции и ионообменной хроматографии. Отечественная схема переработки отработанных тепловыделяющих элементов (твэлов) ядерных реакторов предусматривает их механическое дробление, отделение металлической оболочки, растворение сердечника в азотной кислоте и экстракционное выделение урана и плутония. При этом технеций в форме пертехнетат-иона остается в растворе вместе с другими продуктами деления. При пропускании этого раствора через специально подобранную анионообменную смолу с последующей десорбцией азотной кислотой получают раствор пертехнециевой кислоты (HTcO4), из которого после нейтрализации осаждают сульфид технеция (VII) сероводородом:

Для более глубокой очистки технеция от продуктов деления сульфид технеция обрабатывают смесью пероксида водорода и аммиака:

Затем пертехнетат аммония экстрагируют из раствора и последующей кристаллизацией получают химически чистый препарат технеция.

Металлический технеций обычно получают восстановлением пертехнетата аммония или диоксида технеция в токе водорода при 800–1000° C или электрохимическим восстановлением пертехнетатов:

Выделение технеция из облученного молибдена раньше было основным способом промышленного получения металла. Сейчас этот способ используется для получения технеция в лаборатории. Технеций-99m образуется при радиоактивном распаде молибдена-99. Большая разница периодов полураспада 99m Tc и 99 Mo позволяет использовать последний для периодического выделения технеция. Подобные пары радионуклидов известны под названием изотопных генераторов. Максимальное накопление 99m Tc в генераторе 99 Mo/ 99m Tc происходит через 23 часа после каждой операции отделения изотопа от материнского молибдена-99, однако уже через 6 часов содержание технеция составляет половину от максимального. Это позволяет проводить выделение технеция-99m несколько раз в день. Известны 3 основных типа генераторов 99m Tc по способу отделения дочернего изотопа: хроматографические, экстракционные и сублимационные. В хроматографических генераторах используется различие коэффициентов распределения технеция и молибдена на различных сорбентах. Обычно молибден фиксируют на оксидном носителе в форме молибдат- (MoO4 2– ) или фосформолибдат-иона (H4[P(Mo2O7)6] 3– ). Накопившийся дочерний изотоп элюируют физиологическим раствором (из генераторов, используемых в ядерной медицине) или разбавленными растворами кислот. Для изготовления экстракционных генераторов облученную мишень растворяют в водном растворе гидроксида или карбоната калия. После экстракции метилэтилкетоном или другим веществом экстрагент удаляют выпариванием, а остающийся пертехнетат растворяют в воде. Действие сублимационных генераторов основано на большом различии летучестей высших оксидов молибдена и технеция. При прохождении нагретого газа-носителя (кислород) через нагретый до 700–800° C слой триоксида молибдена испарившийся гептаоксид технеция удаляется в холодную часть прибора, где и конденсируется. Каждому типу генераторов присущи свои характерные достоинства и недостатки, поэтому выпускаются генераторы всех вышеперечисленных типов.

Простое вещество.

Основные физико-химические свойства технеция изучены на изотопе с массовым числом 99. Технеций – пластичный парамагнитный металл серебристо-серого цвета. Температура плавления около 2150° C, температура кипения » 4700° C, плотность 11,487 г/см 3 . Технеций имеет гексагональную кристаллическую решетку, в пленках толщиной менее 150Å – кубическую гранецентрированную. При температуре 8К технеций становится сверхпроводником II рода ( см. также СВЕРХПРОВОДИМОСТЬ).

Химическая активность металлического технеция близка к активности рения – его соседа по подгруппе и зависит от степени измельченности. Так, компактный технеций медленно тускнеет во влажном воздухе и не изменяется в сухом, а порошкообразный быстро окисляется до высшего оксида:

При небольшом нагревании технеций реагирует с серой и галогенами с образованием соединений соединений в степени окисления +4 и +6:

Tc + 3F2 = TcF6 (золотисто-желтый)

Tc + 2Cl2 = TcCl4 (красно-коричневый)

а при 700° C взаимодействует с углеродом, образуя карбид ТсС. Технеций растворяется в кислотах-окислителях (азотной и концентрированной серной), бромной воде и перекиси водорода:

Соединения технеция.

Наибольший практический интерес представляют соединения семивалентного и четырехвалентного технеция.

Диоксид технеция TcO2 – важное соединение в технологической схеме получения технеция особой чистоты. TcO2 – порошок черного цвета с плотностью 6,9 г/см 3 , устойчивый на воздухе при комнатной температуре, сублимируется при 900–1100° С. При нагревании до 300° С диоксид технеция энергично реагирует с кислородом воздуха (с образованием Tc2O7), с фтором, хлором и бромом (с образованием оксогалогенидов). В нейтральных и щелочных водных растворах легко окисляется до технециевой кислоты или ее солей.

Оксид технеция (VII) Tc2O7 – желто-оранжевое кристаллическое вещество, легко растворимое в воде с образованием бесцветного раствора технециевой кислоты:

Температура плавления 119,5° С, температура кипения 310,5° С. Tc2O7 является сильным окислителем и легко восстанавливается даже парами органических веществ. Служит исходным веществом для получения соединений технеция.

Пертехнетат аммония NH4TcO4 – бесцветное вещество, растворимое в воде, промежуточный продукт при получении металлического технеция.

Сульфид технеция (VII) – труднорастворимое вещество темно-коричневого цвета, промежуточное соединение при очистке технеция, при нагревании разлагается с образованием дисульфида TcS2. Получают сульфид технеция (VII) осаждением сероводородом из кислых растворов соединений семивалентного технеция:

Применение технеция и его соединений. Отсутствие стабильных изотопов у технеция с одной стороны препятствует его широкому использованию, а с другой – открывает перед ним новые горизонты.

Огромный ущерб человечеству наносит коррозия, «съедая» до 10% всего выплавляемого железа. Хотя известны рецепты изготовления нержавеющей стали, ее использование не всегда целесообразно по экономическим и техническим причинам. Защитить сталь от ржавления помогают некоторые химические вещества – ингибиторы, которые делают поверхность металла инертной по отношению к корродирующим агентам. В 1955 Картледжем была установлена чрезвычайно высокая пассивирующая способность солей технециевой кислоты. Дальнейшие исследования показали, что пертехнетаты – самые эффективные ингибиторы коррозии железа и углеродистой стали. Их действие проявляется уже при концентрации 10 –4 –10 –5 моль/л и сохраняется до 250° С. Использование соединений технеция для защиты сталей ограничивается закрытыми технологическими системами во избежание попадания радионуклидов в окружающую среду. Вместе с тем, из-за высокой стойкости к g -радиолизу соли технециевой кислоты прекрасно подходят для предотвращения коррозии в ядерных реакторах с водяным охлаждением.

Многочисленные области применения технеция обязаны своим существованием его радиоактивности. Так, изотоп 99 Tc используется для изготовления стандартных источников b -излучения для дефектоскопии, ионизации газов и изготовления стандартных эталонов. Благодаря большому периоду полураспада (212 тысяч лет) они могут очень долго работать без существенного снижения активности. Сейчас изотоп 99m Tc занимает лидирующее положение в ядерной медицине. Технеций-99m – короткоживущий изотоп (период полураспада 6 часов). При изомерном переходе в 99 Tc он испускает только g -кванты, что обеспечивает достаточную проникающую способность и значительно меньшую дозу облучения пациента по сравнению с другими изотопами. Пертехнетат-ион не обладает ярко выраженной селективностью по отношению к определенным клеткам, что позволяет применять его для диагностики поражения большинства органов. Технеций очень быстро (в течение одного дня) выводится из организма, поэтому применение 99m Tc позволяет проводить повторное обследование одного и того же объекта через короткие промежутки времени, не допуская его переоблучения.

Юрий Крутяков

Котегов К.В., Павлов О.Н., Шведов В.П. Технеций. М., Атомиздат, 1965
Фигуровский Н.А. Открытие элементов и происхождение их названий. М., Наука, 1970
Спицын В.И., Кузина А.Ф. Технеций. М., Наука, 1981
Популярная библиотека химических элементов. М., Наука, 1983
Итоги науки и техники. Неорганическая химия, т. 9. М., ВИНИТИ, 1984
Третьяков Ю.Д., Мартыненко Л.И., Григорьев А.Н., Цивадзе А.Ю. Неорганическая химия, тт. 1, 2. М., «Химия», 2001

Технеций

Технеций — элемент седьмой группы (по устаревшей классификации — побочной подгруппы седьмой группы), пятого периода периодической системы химических элементов, атомный номер — 43. Обозначается символом Tc (лат. Technetium ). Простое вещество технеций — радиоактивный переходный металл серебристо-серого цвета. Самый лёгкий элемент, не имеющий стабильных изотопов. Первый из синтезированных химических элементов. Только около 18 000 тонн естественно образовавшегося технеция могут быть найдены в любой момент времени в земной коре. Природный технеций является продуктом самопроизвольного деления урановой руды и ториевой руды или продуктом захвата нейтронов в молибденовых рудах. Наиболее распространенным природным изотопом является Tc-99. Весь остальной технеций на Земле произведен синтетически как продукт деления урана-235 и других делящихся ядер в ядерных реакторах всех типов (энергетических, военных, исследовательских, пропульсационных и т.п.) и в случае переработки отработанного ядерного топлива извлекается из ядерных топливных стержней. Либо, при отсутствии переработки, обеспечивает их остаточную радиоактивность 2 млн и более лет.

  • 1 История
  • 2 Происхождение названия
  • 3 Нахождение в природе
  • 4 Получение
  • 5 Физические и химические свойства
  • 6 Изотопы
  • 7 Применение
  • 8 Биологическая роль

Поиски элемента 43

С 1860-х по 1871 год ранние формы периодической таблицы, предложенные Дмитрием Менделеевым, содержали разрыв между молибденом (элемент 42) и рутением (элемент 44). В 1871 году Менделеев предсказал, что этот недостающий элемент займет пустующее место под марганцем и будет иметь аналогичные химические свойства. Менделеев дал ему предварительное название ekamanganese (от eka-, санскритское слово для одного), потому что предсказанный элемент был на одно место ниже известного элемента марганец.

C развитием ядерной физики стало понятно, почему технеций никак не удаётся обнаружить в природе: в соответствии с правилом Маттауха-Щукарева этот элемент не имеет стабильных изотопов. Технеций был синтезирован из молибденовой мишени, облучённой на ускорителе-циклотроне ядрами дейтерия в Национальной лаборатории им. Лоуренса в Беркли в США, а затем был обнаружен в Палермо в Италии: 13 июня 1937 года датируется заметка итальянских исследователей К. Перрье и Э. Сегре в журнале «Nature», в которой указано, что в этой мишени содержится элемент с атомным номером 43. Название «технеций» новому элементу было предложено первооткрывателями в 1947 году. До 1947 года помимо предложенного Д. И. Менделеевым названия «эка-марганец» (т.е., «подобный марганцу») применялось также название «мазурий» (лат. Masurium, обозначение - Ma).

В 1952 году Пол Меррилл открыл набор линий поглощения (403,1 нм, 423,8 нм, 426,2 нм, и 429,7 нм), соответствующий технецию (точнее, изотопу 98 Tc), в спектрах некоторых звёзд S-типа, в частности, хи Лебедя, AA Лебедя, R Андромеды, R Гидры, омикроне Кита и особенно интенсивные линии — у звезды R Близнецов, это означало, что технеций присутствует в их атмосферах, и явилось доказательством происходящего в звёздах ядерного синтеза, ныне подобные звёзды называются технециевыми звёздами.

На Земле встречается в следовых количествах в урановых рудах, 5⋅10 −10 г на 1 кг урана. Методами спектроскопии выявлено содержание технеция в спектрах некоторых звёзд созвездий Андромеды и Кита (технециевые звезды).

Технеций получают из радиоактивных отходов химическим способом. В России первый технеций был получен в работах Анны Федоровны Кузиной совместно с работниками ПО «Маяк».

Кроме урана-235, технеций образуется при делении нуклидов 232 Th, 233 U, 238 U, 239 Pu. Суммарное накопление во всех действующих на Земле реакторах за год составляет более 10 тонн.

Радиоактивные свойства некоторых изотопов технеция:

Изотоп (m - изомер)Период полураспадаТип распада
924,3 минβ + , электронный захват
93m43,5 минЭлектронный захват (18%), изомерный переход (82%)
932,7 чЭлектронный захват (85%), β + (15%)
94m52,5 минЭлектронный захват (21%), изомерный переход (24%), β + (55%)
944,9 чβ + (7%), электронный захват (93%)
95m60 сутЭлектронный захват, изомерный переход (4%), β +
9520 часЭлектронный захват
96m52 минИзомерный переход
964,3 сутЭлектронный захват
97m90,5 сутИзомерный переход
972,6⋅10 6 летЭлектронный захват
984,2⋅10 6 летβ −
99m6,04 чИзомерный переход
992,12⋅10 5 летβ −
10015,8 сβ −
10114,3 минβ −
1024,5 мин / 5 сβ − / γ/β −
10350 сβ −
10418 минβ −
1057,8 минβ −
10637 сβ −
10729 сβ −

Широко используется в ядерной медицине для исследований мозга, сердца, щитовидной железы, лёгких, печени, жёлчного пузыря, почек, костей скелета, крови, а также для диагностики опухолей.

Не играет биологической роли.

Технеций при введении в организм попадает почти во все органы, но в основном задерживается в желудке и щитовидной железе. Поражение органов вызывается его β-излучением с дозой до 0,1 Р/(ч·мг).

  • Гексахлоротехнетат калия (K2[TcCl6])
  • Гидроксид технеция (IV) (Tc(OH)4)
  • Пертехнетат аммония (NH4TcO4)
  • Оксид технеция (IV) (TcO2)
  • Оксид технеция (VII) (Tc2O7)
  • Сульфид технеция (VII) (Tc2S7)
  • Технециевая кислота (HTcO4)
  • Триоксифторид технеция (TcO3F)
  • Триоксихлорид технеция (TcO3Cl)
  • Фторид технеция (VI) (TcF6)
  • Хлорид технеция (IV) (TcCl4)

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Читайте также: