Тепловое расширение металлов это

Обновлено: 04.05.2024

Определение и формула коэффициента теплового расширения

Тепловым расширением называют изменение размеров тела при изменении его температуры. Тепловое расширение (сжатие) характеризуют при помощи соответствующего коэффициента. Различают линейное и объемное тепловое расширения. Эти процессы характеризуют коэффициентами теплового расширения: — средний коэффициент линейного теплового расширения, средний коэффициент объемного теплового расширения.

Коэффициент теплового расширения — это физическая величина, которая характеризует изменение линейных размеров твердого тела с ростом или уменьшением его температуры.

Обозначим начальную длину тела , — его удлинение при увеличении температуры тела на , тогда будет равен:

Коэффициент линейного теплового расширения является характеристикой относительного удлинения ( ), которое происходит при увеличении температуры тела на 1К.

При увеличении температуры увеличивается объем тела. Для твердых тел и жидкостей можно считать справедливой формулу:

где — начальный объем тела, — изменение температуры тела.

Коэффициент объемного расширения тела — это физическая величина, характеризующая относительное изменение объема тела ( ), происходящее при нагревании тела на 1 K давление должно быть постоянным. Коэффициент можно определить как:

Тепловое расширение твердого тела связывают с ангармоничностью тепловых колебаний частиц, составляющих кристаллическую решетку тела. В результате данных колебаний при увеличении температуры тела увеличивается равновесное расстояние между соседними частицами этого тела.

Изменение объема тела ведет к изменению его плотности:

где — начальная плотность, — плотность вещества при новой температуре. Так как величина то выражение (4) иногда записывают как:

Коэффициенты теплового расширения зависят от вещества. В общем случае они будут зависеть от температуры. Коэффициенты теплового расширения считают независимыми от температуры в небольшом интервале температур.

Существует ряд веществ, имеющих отрицательный коэффициент теплового расширения. При повышении температуры такие материалы сжимаются. Обычно это происходит в узком интервале температур. Есть вещества, у которых коэффициент теплового расширения почти равен нулю в некотором определенном интервале.

Связь коэффициентов теплового расширения

В первом приближении можно считать, что коэффициенты линейного и объемного расширения изотропного тела связаны соотношением:

Единицы измерения

Основной единицей измерения коэффициентов температурного расширения в системе СИ является:

Примеры решения задач

Задание Каков коэффициент теплового расширения некоторого металла, если при его нагревании от до плотность данного металла уменьшается в n раз? При решении задачи считайте, что коэффициент линейного расширения является постоянным в рассматриваемом интервале температур.
Решение Плотность металла при температуре может быть найдена как:

\[{\rho }_1=\frac{m}{V_1}\to V_1=\frac{m}{{\rho }_1}\left(1.1\right)\]

Плотность металла при температуре :

\[{\rho }_2=\frac{m}{V_2}\to V_2=\frac{m}{{\rho }_2}\left(1.2\right)\]

Определим, каким будет относительное изменение объема металла ( ), учитывая выражения (1.1) и (1.2):

\[\frac{\Delta V}{V_1}=\frac{V_2-V_1}{V_1}=\frac{\frac{m}{\rho_2}-\frac{m}{\rho_1}}{\frac{m}{\rho_1}}=\frac{{\rho }_1}{{\rho }_2}-1\left(1.3\right)\]

Используя определение коэффициента объемного теплового расширения:

Для изотропного вещества мы знаем, что:

Значит выражение (1.5) перепишем как:

Сравниваем выражения (1.3) и (1.7), имеем:

\[\frac{{\rho }_1}{{\rho }_2}-1={3\alpha }_l\Delta T\to {\alpha }_l=\frac{\frac{{\rho }_1}{{\rho }_2}-1}{3\Delta T}=\frac{n-1}{3(t_2-t_1)}\left(1.8\right),\]

где =( ).

Задание К проволоке радиуса r подвешен груз. Под действием его проволока получает удлинение равное удлинению при нагревании ее на K. Какова масса груза? Модуль Юнга для этой проволоки равен E, линейный коэффициент теплового расширения материала проволоки равен
Решение Сделаем рисунок.

Формула коэффициента теплового расширения

На груз действует сила тяжести ( ) и реакция опоры ( ). В соответствии с третьим законом Ньютона реакция опоры равна по модулю силе упругости ( ), которая действует на проволоку и по закону Гука равна:

По второму закону Ньютона для груза имеем:

В проекции на ось Y выражение (2.2) имеет вид:

\[mg=N\to F_{upr}=mg\left(2.3\right)\]

Учитывая выражение (2.1) получим:

\[ES\frac{\Delta l}{l_0}=mg\to \frac{\Delta l}{l_0}=\frac{mg}{ES}=\frac{mg}{E\pi r^2}\to \Delta l=\frac{mgl_0}{E\pi r^2}\left(2.4\right)\]

Увеличение температуры ведет к увеличении длины проволоки в соответствии с выражением:

Процессы, происходящие в металлах и сплавах при нагревании. Динамика изменения механических и теплофизических свойств.

Известно, что все металлы
при нагревании
расширяются,
а при охлаждении
сжимаются.
Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется
коэффициентом линейного расширения.
Таким образом, длина l какой-то детали после нагрева на температуру

— коэффициент линейного расширения.

При наблюдении за изменением объема детали используют коэффициент объемного расширения,

который определяется как утроенный коэффициент линейного расширения.

Материалы, имеющие большой коэффициент расширения, применяются в приборостроении для деталей автоматически действующих механизмов. При определенной температуре такие детали, удлиняясь, могут включать либо размыкать электрическую цепь.

Минимальный коэффициент линейного расширения имеет сплав Fe — Ni, называемый инваром.

Его коэффициент расширения в 8 раз меньше железа.

Теплопроводность металлов

Различные детали теплотехнической аппаратуры — радиаторы автомобилей и самолетов, внутренние стенки рабочих камер холодильных установок, стенки котлов и т.д. — должны обладать способностью хорошо проводить тепло.

Детали и инструменты, подвергающиеся в процессе работы местным разогревай, также должны быстро отдавать это тепло, чтобы не (наступало оплавление.

Способность проводить тепло называется теплопроводностью.

Лучшей теплопроводностью обладают чистые металлы, такие, как:

При какой температуре сужается металл

При охлаждении металл сжимается, его объем уменьшается, но удерживается расположенным вокруг металлом, длина и ширина которого не изменялась. Необходимо, чтобы дополнительное утолщение, полученное при растяжении металла, было восстановлено после охлаждения. Но так как металл имеет температуру, не соответствующую максимальной пластичности, то, сжимаясь, он поглощает небольшую часть удлинения окружающего металла.

Усиление осаживания металла осуществляется различными способами:

уменьшением скорости распространения теплоты путем создания кольца вокруг нагретой части металла из мокрой ветоши;

противодействием деформации путем нажатия на металл ручкой молотка или другим предметом около нагретой точки;

выстукиванием границ точки металла, нагретого докрасна, а затем и самой нагретой точки киянкой или рихтовочным молотком.

Наибольшее применение имеет последний способ.

Рассмотрим порядок выполнения технологических операций рихтовки различными способами.

При рихтовке нагреванием и выстукиванием горелку быстро подводят к центру пузыря, прогревают его и горелку отводят, когда разогретое докрасна пятно достигнет диаметра, равного максимум 12 мм.

При нагреве необходимо следить, чтобы металл не начал плавиться. Если нагретое пятно будет большего диаметра, это вызовет гораздо большую усадку, чем надо. Если работа выполняется в одиночку, то горелку откладывают, под лист (почти под дефект) помещают наковаленку. Быстро выстукивают не покрасневший металл вокруг нагретой точки, а затем и нагретую точку, пока металл еще остается темно-красным.

Обработку предпочтительнее вести деревянной киянкой. При рихтовке молотком-гладилкой сила удара должна быть небольшой, чтобы не создать растяжения металла вместо усаживания.

Если пузырь небольшой, то достаточно провести обработку одной точки.

Работу можно считать завершенной только тогда, когда металл остынет до температуры окружающей среды. Для ускорения охлаждения применяют мокрую ветошь или пропитанную водой губку. Если необходимы дополнительные точечные нагревы, то их делают не более двух-трех между каждым охлаждением. Их располагают вокруг центральной точки.

После охлаждения нагретого листа проводят легкую рихтовку прогретого сектора, чтобы выровнять поверхность металла, которая имела до этого деформацию.

Расположение точек усадки зависит от формы пузыря. Если пузырь круглый, то точки располагаются по радиусу. Если пузырь длинный и узкий, то точки нагрева располагают узкими рядами.

Коэффициенты температурного расширения металлов

В таблице представлены значения коэффициента температурного расширения металлов (коэффициент линейного расширения металлов) в зависимости от температуры.
Значения коэффициента температурного расширения металлов даны для следующих металлов: алюминий Al, бериллий Be, висмут Bi, вольфрам W, галлий Ga, железо Fe, золото Au, иридий Ir, кадмий Cd, кобальт Co, магний Mg, марганец Mn, медь Cu, молибден Mo, никель Ni, олово Sn, платина Pt, родий Rh, свинец Pb, серебро Ag, сурьма Sb, титан Ti, хром Cr, цинк Zn.

Коэффициент линейного теплового расширения металлов в таблице приведен со множителем 10 6 . Например, значение коэффициента температурного расширения металлов в таблице для алюминия при 0°С указано 22,8, а с учетом множителя 10 6 , это значение составляет 22,8·10 -6 1/град.

Следует отметить, что к металлам с низким коэффициентом расширения относятся такие металлы, как вольфрам, молибден, сурьма, титан и хром. Наименьшее линейное удлинение при нагревании испытывает вольфрам — коэффициент линейного расширения этого металла составляет величину от 4,3·10 -6 при 0°С до 5,8·10 -6 1/град при температуре 2100°С.

Металлом, который максимально хорошо расширяется при нагреве, является цинк — его коэффициент температурного расширения имеет значение от 22·10 -6 до 34·10 -6 1/град. Также хорошо расширяются при нагревании такие металлы, как алюминий, кадмий и магний.


Примечание: температурные коэффициенты линейного расширения сталей (более 300 марок) представлены в этой статье.

Учебные материалы

Около 10…15 % всей энергии, затраченной на пластическую деформацию, поглощается металлом и накапливается в нем. Остальная часть энергии идет на нагрев металла.

Деформированный металл находится в неравновесном, неустойчивом состоянии, и в нем могут протекать процессы, направленные на достижение устойчивого состояния. Этот переход связан с уменьшением искажений в кристаллической решетке и снятием напряжений, что в свою очередь определяется возможностью перемещения атомов.

С повышением температуры подвижность атомов увеличивается и начинают развиваться процессы, приводящие металл к равновесному состоянию. По мере нагрева деформированный металл проходит стадии возврата и рекристаллизации, в результате чего изменяются его структура и свойства (рисунок 20).

В области возврата (при нагреве до 0,3 Тпл) происходит повышение структурного совершенства металла в результате уменьшения плотности дефектов строения. При этом не наблюдается заметных изменений структуры, видимой в оптический микроскоп. Механические свойства металла изменяются незначительно, порядка на 5…7 %.

При низких температурах (ниже 0,2 Тпл) протекает первая стадия возврата — отдых, когда происходит уменьшение точечных дефектов (вакансий) и перераспределение дислокаций без образования субграниц. При нагреве вакансии поглощаются дислокациями, которые двигаются к границам зерен. Часть дислокаций противоположного знака уничтожается.

Рисунок 20 — Изменение структуры и свойств деформированного металла при нагреве

Вторая стадия возврата — полигонизация, под которой понимают дробление (фрагментацию) кристаллов на субзерна (полигоны). При нагреве беспорядочно распределенные дислокации одного знака выстраиваются в дислокационные стенки, что приводит к образованию в монокристалле или в зерне поликристалла субзерен (полигонов), свободных от дислокаций и отделенных дислокационными границами (рисунок 21).

Этот процесс протекает обычно при небольших деформациях при температуре (0,25…0.3)Тпл, и им создаются условия для образования в структуре металла зародышей новых зерен.

Рисунок 21 — Схема процесса полигонизации

Стадия первичной рекристаллизации в деформированном металле происходит при его нагреве выше 0,3Тпл. При высоких температурах подвижность атомов возрастает и образуются новые равноосные зерна.

Образование новых, равноосных зерен вместо ориентированной волокнистой структуры деформированного металла называется первичной рекристаллизацией.

В деформированном металле на участках с повышенной плотностью дислокаций образуются и растут зародыши. Образуется совершенно новое зерно, по размерам отличающееся от исходного до деформации. Наклеп практически полностью снимается, и свойства приближаются к их исходным значениям.

Температура, при которой начинается процесс рекристаллизации называется температурным порогом рекристаллизации.

Температурный порог рекристаллизации (Тр) связан с температурой плавления металла зависимостью А.А.Бочвара:

где Тпл — абсолютная температура плавления, К;

а — коэффициент, зависящий от чистоты металла.

Для металлов высокой чистоты а = 0,1…0,2; для технически чистых металлов а=0,4; для сплавов твердых растворов а = 0,5…0,6.

Для некоторых металлов значение температурного порога рекристаллизации приведено в таблице 2.

Рекристаллизационный отжиг малоуглеродистых сталей проводят при 600…700 0С, латуней и бронз при 560…700 0С, алюминиевых сплавов при 350…450 0С, титановых сплавов при 550…750 0С.

Собирательная рекристаллизация проходит после завершения первичной рекристаллизации в процессе дальнейшего нагрева. Она заключается в росте образовавшихся новых зерен. Движущей силой собирательной рекристаллизации является поверхностная энергия зерен. При укрупнении зерен общая протяженность их границ становится меньше, что соответствует переходу металла в более равновесное состояние.

Таблица 2 — Температура начала рекристаллизации технически чистых металлов

МеталлТемпература плавления, 0СТемпература рекристаллизации, 0С
Вольфрам34001200
Молибден2625900
Железо1539450
Медь1083200
Алюминий660100

Особенность собирательной рекристаллизации состоит в том, что рост происходит не в результате слияния нескольких мелких зерен в одно более крупное зерно, а одни зерна растут за счет других зерен, ”поедая” их вследствие перехода атомов через границы раздела. Зерна с вогнутыми границами растут за счет зерен с выпуклыми границами (рисунок 22). Атом на вогнутой поверхности имеет большее число соседей и, следовательно, меньшую энергию, по сравнению с атомами на выпуклой поверхности. Малые зерна постепенно исчезают. Собирательная рекристаллизация, вызывающая образование крупного зерна и разнозернистости, способствует снижению механических свойств металлов и поэтому чаще всего недопустима для наклепанного металла.

Рисунок 22 — Схема роста зерен при собирательной рекристаллизации

На свойства металла большое влияние оказывает размер зерен, получившихся при рекристаллизации. Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень производительной пластической деформации (рисунок 23).

Величина зерна возрастает с повышением температуры нагрева и времени выдержки. При температурах Т1 и Т2 (выше Тр) образование рекристаллизованного зерна происходит не сразу, а через некоторый отрезок времени t1 и t2, который называется инкубационным.

Рисунок 23 — Влияние температуры (а), продолжительности нагрева (б) и степени деформации (в) на величину рекристаллизованного зерна

Наиболее крупные зерна образуются после незначительной предварительной деформации, обычно порядка 3…15 %, такую степень деформации называют критической.

Критической называют такую минимальную степень деформации, выше которой при нагреве становится возможной первичная рекристаллизации.

Коэффициент теплового расширения

Коэффициент линейного расширения

Определение и формула коэффициента линейного расширения

При увеличении температуры происходит расширение твердого тела, которое называют тепловым расширением. Его делят на линейное и объемное тепловое расширение.

Коэффициентом линейного расширения называют физическую величину характеризующую изменение линейных размеров твердого тела при изменении его температуры. Оперируют, обычно средним коэффициентом линейного расширения. Обозначают его Коэффициент линейного расширения относят к характеристикам теплового расширения материала.

Допустим, что изначальная длина тела равна — его удлинение при увеличении температуры тела на , в таком случае определен формулой:

Коэффициент линейного удлинения является характеристикой относительного удлинения ( ), которое происходит при увеличении температуры тела на 1К.

Применение коэффициента линейного расширения

Коэффициент линейного расширения используют для нахождения длины тела ( ), после нагревания , она считается равной:

Формулу (2) можно использовать и для нахождения длины тела при его охлаждении.

Величина зависит от вещества, из которого изготовлено тело. В большом количестве случаев .

Величина в общем случае зависит от температуры. Эмпирически установлено, что одно и то же тело при высоких температурах испытывает большее тепловое расширение, чем при низких температурах. Но в большинстве случаев этим пренебрегают и считают, что изменение размеров тела пропорционально температуре.

Для нахождения величины коэффициента линейного расширения измеряют длину стержня ( ) из изучаемого материала. При этом температура стержня поддерживается одинаковой по всей длине. Температуру увеличивают на некоторую величину и измеряют удлинение стержня которое вызвало повышение температуры. Для изменения малой величины удлинения применяют, например, микроскоп. При этом один конец стержня закрепляют и в микроскоп наблюдают за перемещением другого конца при нагревании.

Следует отметить, что коэффициент линейного расширения можно считать постоянной величиной, не зависящей от температуры только при небольших изменениях температур. Так, для железа при температуре, равной o C ; при 0 o C ; при 600 o C . Следовательно, формулу (2) применяют для небольшой величины , используя значение коэффициента линейного расширения для соответствующего интервала температур.

Основной единицей измерения коэффициента линейного расширения в системе СИ является:

Формула коэффициента линейного расширения

\[l_{Zn}=l_0\left({\alpha }_{lZn}\Delta T+1\right)\left(1.1\right);\]

\[l_{Fe}=l_0\left({\alpha }_{lFe}\Delta T+1\right)\left(1.2\right)\]

где длины каждого из стрежней при температуре 0 o , — длина стержня из цинка при 100 o C, — длина стержня из железа при 100 o C.

Вычтем из (1.1) выражение (1.2), получим:

\[l_{Zn}-l_{Fe}=l_0\left({\alpha }_{lZn}\Delta T+1\right)-l_0\left({\alpha }_{lFe}\Delta T+1\right)=d\left(1.4\right)\]

Из формулы (1.4) выразим искомую длину , получим:

{\alpha }_{lZn}=3\cdot {10}^{-5}K^{-1};\ {\alpha }_{lFe}=1,2\cdot {10}^{-5}K^{-1}.

Значения коэффициентов линейного расширения возьмем для соответствующих материалов из справочных таблиц: Переведем в систему СИ d=1мм= м. Проведем вычисления:

\[l_0=\frac{{10}^{-3}}{(3-1,2)\cdot {10}^{-5}\cdot 100}\approx 0,555\ \left(m\right)\]

Задание Длина металлического стержня ( при температуре К) при температуре равна . Каково удлинение этого стержня при температуре .
Решение В качестве основы для решения задачи используем закон линейного расширения:

\[l_1=l_0\left({\alpha }_l\left(T_1-T_0\right)+1\right)\to l_0=\frac{l_1}{{\alpha }_l\left(T_1-T_0\right)+1}\left(2.1\right),\]

\[l_2=l_0\left({\alpha }_l\left(T_2-T_0\right)+1\right)\left(2.2\right),\]

где — длина стержня при его температуре , — длина стержня при его температуре . .

Удлинение стержня можно найти, если из вычесть получим:

Подставим в формулу (2.3) выражение для из (2.1):

\[\Delta l=\frac{l_1\alpha \left(T_1-T_2\right)}{\alpha \left(T_1-T_0\right)+1}\left(2.4\right)\]

Примем во внимание, что величина , зная, что порядок Значит, что формулу (2.4) можно преобразовать к виду:

Большая Энциклопедия Нефти и Газа

Тепловое расширение металла характеризуется коэффициентами линейного и объемного расширения металла. Коэффициент линейного расширения есть отношение приращения его длины при нагревании на 1 С к первоначальной длине. [2]

Тепловое расширение металла характеризуется коэффициентами линейного и объемного расширения металла. Коэффициент линейного расширения есть отношение приращения его длины при нагревании на 1 к первоначальной дли - не. [3]

Согласование теплового расширения металла и эмали имеет большое техническое значение, поскольку оно определяет появление растягивающих или сжимающих напряжений в эмалевом покрытии. Температурные коэффициенты длины эмалей варьируются в зависимости от металла основы в широких пределах, но и между эмалями одного типа имеются существенные различия. [5]

Как учитывают тепловое расширение металлов при монтажных работах. [6]

Согласованность коэффициентов теплового расширения металла и стекла позволяет избежать образования в спае внутренних напряжений или, по крайней мере, ограничить величину этих напряжений величиной, не представляющей опасности для целостности спая. Это может быть выполнено с помощью как согласованных, так и несогласованных спаев. [7]

Независимо от теплового расширения металла при конструировании корпуса нужно учитывать ползучесть металла, вызывающую с течением времени существенные пластические деформации, а также явление роста чугуна, которое не позволяет применять чугун при определенных температурах. [8]

Коэффициенты сжимаемости и теплового расширения металлов , построенных по типу плотнейшей упаковки ( структурный тип меди иди магния), значительно меньше, чем в щелочных металлах, кристаллизующихся в структурном типе а-вольфрама. [9]

Неисправности, вызываемые тепловым расширением металла , проявляются только в начальный период эксплуатации систем в связи со значительными отклонениями фактических температур от расчетных, в результате которых наблюдается смещение трубопроводов или возникновение больших напряжений в них. [10]

При нагреве паропровода вследствие теплового расширения металла он удлиняется. Величина удлинения может быть оценена следующим образом: на каждые 100 С нагрева 1 м паропровода удлиняется на 1 2 мм. [11]

В реаультате различных коэффициентов теплового расширения металла и ржевчины последняя разрыхляется и отслаивается. Посге этого поверхность металла тщательно очищается и грунтуется, пока металл еще не успел остыть. Термический способ является самим производительным. Недостатком является возможная деформация металла, особенно в случае тонкостенных изделий. [12]

Благодаря действию FOB и тепловому расширению металла легко устраняется зазор между деталями. [14]

Проплавлением соединяемых кромок и тепловым расширением металла при его сжатии роликами зазоры между торцами завариваются. Накладка подается роликами из бухты симметрично оси стыка - Ширина роликов с цилиндрической поверхностью на 1 - 2 мм больше ширины накладки. [15]

Читайте также: