Твердость металла по бринеллю

Обновлено: 28.09.2024

Метод Бриннеля — один из основных методов определения твёрдости.

Этот метод относится к методам вдавливания. Испытание проводится следующим образом: вначале дают небольшую предварительную нагрузку для установления начального положения индентора на образце, затем прилагается основная нагрузка, образец выдерживают под её действием, измеряется глубина внедрения, после чего основная нагрузка снимается. При определении твёрдости методом Бринелля, в отличие от метода Роквелла, измерения производят до упругого восстановления материала. Индентор (полированный закалённый стальной шарик) вдавливают в поверхность испытуемого образца (толщиной не менее 4 мм) с регламентированным усилием. Через 30 с после приложения нагрузки измеряют глубину отпечатка. В другом варианте усилие прилагается до достижения регламентированной глубины внедрения.

Твёрдость по Бринеллю HB рассчитывается как «приложенная нагрузка», делённая на «площадь поверхности отпечатка»:

где

Нормативными документами определены диаметры индентора, время экспозиции, глубина внедрения индентора.

  • В России регламентированные нагрузки 49 Н, 127 Н, 358 Н, 961 Н, диаметр шарика 5 мм, глубины внедрения от 0,13 до 0,35 мм. В разных спецификациях эти значения различны.
  • Наиболее распространённые диаметры шарика — 10, 5, 2,5 и 1 мм и нагрузки 187,5 кгс, 250 кгс, 500 кгс, 1 000 кгс и 3 000 кгс.
  • Для выбора диаметра шарика обычно используют следующее правило: диаметр отпечатка должен лежать в пределах 0,2—0,7 диаметра шарика.
  • В методиках ISO и ASTM объединены метод с одним шариком и разными нагрузками и метод с применением разных шариков, а также дана формула вычисления твёрдости, не зависящей от нагрузки.

Твёрдость по шкале Бринелля выражают в кгс/мм². Для определения твёрдости по методу Бринелля используют различные твердометры, как автоматические, так и ручные.

Таблица: Типичные значения твёрдости бринелль для различных материалов

МатериалТвёрдость
Мягкое дерево, например сосна1,6 HBS 10/100
Твёрдое деревоот 2,6 до 7,0 HBS 10/100
Алюминий15 HB
Медь35 HB
Дюраль70 HB
Мягкая сталь120 HB
Нержавеющая сталь250 HB
Стекло500 HB
Инструментальная сталь650—700 HB

Преимущества и недостатки

Недостатки

  • Метод можно применять только для материалов с твердостью до 450 HB, если применять стальной закаленный шарик. Как альтернатива, применяют шарики из твёрдого сплава на основе карбида вольфрама (WC), это позволяет повысить верхний предел измерения твёрдости до 600 HBW.
  • Твёрдость по Бринеллю зависит от нагрузки, так как изменение глубины вдавливания не пропорционально изменению площади отпечатка.
  • При вдавливании индентора по краям отпечатка из-за выдавливания материала образуются навалы и наплывы, что затрудняет измерение как диаметра, так и глубины отпечатка.
  • Из-за большого размера тела внедрения (шарика) метод неприменим для тонких образцов.

Преимущества

  • Зная твёрдость по Бринеллю, можно быстро найти предел прочности и текучести материала, что важно для прикладных инженерных задач:
    Для стали
    где где Для алюминиевых сплавов
    Для медных сплавов
  • Так как метод Бринелля — один из самых старых, накоплено много технической документации, где твёрдость материалов указана в соответствии с этим методом.
  • Данный метод является более точным по сравнению с методом Роквелла на более низких значениях твёрдости (ниже 30 HRC).
  • Также метод Бринеля менее критичен к чистоте подготовленной под замер твёрдости поверхности.

Перевод результатов измерения твёрдости различными методами

Результаты измерения твёрдости по методу Бринелля могут быть переведены с помощью таблиц в единицы твёрдости по методам Виккерса и Роквелла. В свою очередь, измерения твёрдости двумя последними методами могут быть переведены в единицы твёрдости по методу Бринелля. Следует отметить, что таблицы перевода в разных нормативных документах отличаются.

Твердость металла по бринеллю


Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно

МЕТАЛЛЫ И СПЛАВЫ

Метод измерения твердости по Бринеллю переносными твердомерами статического действия

Metals and alloys. Method of measuring Brinell hardness by static action portable hardness meters

Дата введения 1979-01-01

Постановлением Государственного комитета стандартов Совета Министров СССР от 31 октября 1977 г. N 2554 дата введения установлена 01.01.79

Ограничение срока действия снято по протоколу N 3-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 5-6-93)

ПЕРЕИЗДАНИЕ. Апрель 2003 г.

Твердость по Бринеллю характеризуется средним напряжением в лунке при вдавливании шара нагрузкой, пропорциональной квадрату диаметра шара.

1.1. В качестве испытательной аппаратуры применяют переносные приборы статического действия, дающие возможность:

плавного возрастания нагрузки;

обеспечения постоянства приложенной нагрузки в течение требуемого времени. Погрешность прибора по значениям испытательной нагрузки не должна превышать ±1%;

приложения действующего усилия перпендикулярно к поверхности испытуемого изделия (образца).

1.2. Применяемые при измерении твердости по Бринеллю шары должны соответствовать следующим требованиям:

материал для шаров - термически обработанная сталь с твердостью по Виккерсу не менее 850 единиц - при измерении твердости по Бринеллю до 4410 МПа (450 кгс/мм) и карбид вольфрама - при измерении твердости по Бринеллю от 4413 до 5884 МПа (450-600 кгс/мм);

диаметр применяемых шаров - 1 и 2,5 мм. Допускается применять шары диаметром 5 и 10 мм, если это позволяет конструкция прибора;

предельные отклонения по диаметру стального шара должны соответствовать группе В ГОСТ 3722-81, а по диаметру шара из карбида вольфрама не должны превышать ±0,0035 мм. При использовании шара из карбида вольфрама диаметром 5 и 10 мм предельные отклонения не должны превышать соответственно ±0,0040 и ±0,0045 мм;

параметр шероховатости поверхности шара должен быть не более 0,040 мкм по ГОСТ 2789-73.

1.3. Стальной шар, показавший после измерения твердости остаточную деформацию, превышающую указанное в ГОСТ 3722-81 предельное отклонение для группы В, или какой-либо поверхностный дефект, а также шар из карбида вольфрама, показавший после измерения остаточную деформацию, превышающую предельное отклонение, указанное в п.1.2, должны быть заменены другими, а соответствующее измерение должно считаться недействительным.

1.4. Диаметр отпечатка измеряют с помощью микроскопа с погрешностью, не превышающей:

±0,003 мм - при измерении твердости шаром диаметром 1 мм;

±0,006 мм - при измерении твердости шаром диаметром 2,5 мм.

2. ПОДГОТОВКА К КОНТРОЛЮ

2.1. Параметр шероховатости поверхности изделия (образца) в месте испытания должен быть не более =0,32 мкм по ГОСТ 2789-73.

2.2. При подготовке поверхности испытуемого изделия (образца) необходимо принять меры, предотвращающие возможное изменение твердости испытуемого изделия (образца) вследствие нагрева или наклепа поверхности при механической обработке.

2.3. Испытуемое изделие (образец) не должно смещаться при измерении твердости.

2.5. Выбор диаметра шара , нагрузки , минимальной толщины изделия (образца) и продолжительности выдержки производится исходя из материала изделия, ожидаемой твердости и толщины изделия в месте измерения твердости с соблюдением условия

Соответствие твердости и прочности Таблица / Hardness equivalent table

Для определения твердости используют прибор, составленный из измерительного блока и пресса. Наконечник пресса – стальной шарик. Его именуют индентором. Диаметр шарика соответствует ГОСТу 9012 – 59 (ИСО 6506-81, ИСО 410-82), установленному в 1990-лм году. Разрешены 3 показателя: 2,5, 5 и 10 миллиметров.

Нужный индентор выбирают так, чтобы отпечаток от него лежал в пределах 0,2-0,7 диаметра шарика. Измерение твердости по Бринеллю производится либо стальным шариком, либо шариком из карбида вольфрама. Последний, позволяет узнать твердость материалов, превышающих показатель обычной стали.

Карбидный индентор, как правило, нужен для инструментальных сплавов. Шарик из обычной стали используют, измеряя твердость древесины, меди, алюминия, дюраля, нержавейки, стекла. То есть, твердомер применяют не только к металлам.

Твердость-по-Бринеллю-Особенности-и-суть-метода-3

Метод измерения твердости по Бринеллю состоит из 2-х нагрузок. Сначала, пресс опускают для пробной. Небольшим надавливанием устанавливают начальное положение индентора. После, сообщают уже солидный вес, держат определенное время, потом, измеряют диаметр следа. Звучит «стройно», но есть сложность.

По краям отпечатка образуются навалы и наплывы материала. Из-за них диаметр, глубина могут быть неточными. Твердость по методу Бринелля измеряют до упругого восстановления, то есть до возвращения материала в первоначальную форму. Это возвращение может быть неполным. Тогда, фиксируется его степень.

В схожем методе Роквелла упругого восстановления не дожидаются, да и в качестве индентора используют не только металлические шары, но и алмазные конусы. Это стоит учитывать, замеряя твердость по Бринеллю и Роквеллу. Для чистоты эксперимента можно добавить еще один метод, главное, соблюсти нюансы исследований и уметь соотнести их результаты. Об этом и поговорим.

Измерение твёрдости по Бринеллю (метод Бринелля)

Метод измерения твёрдости по Бринеллю

[по имени шведского инженера Ю.А.Бринелля (J.A.Brinell)] — это способ определения твёрдости материалов вдавливанием в испытываемую поверхность стального закалённого шарика диаметром 1; 2; 2,5; 5 и 10 мм пр нагрузке
P
от 625 H до 30 кН. Стальной шарик должен иметь твёрдость не менее 850 HV10. Шарик из твёрдого сплава должен иметь твёрдость не менее 1500 HV10. Измерение твёрдости по Бринеллю возможно для металлов и сплавов с твёрдостью не более 650 единиц.

Число твёрдости по Бринеллю HB

— отношение нагрузки (кгс) к площади (мм2) поверхности отпечатка. Для получения сопоставимых результатов относительной твёрдости материалы (HB свыше 130) испытывают при отношении
P
:
D2
=30, материалы средней твёрдости (HB 30-130) — при
P
:
D2
=10, мягкие (HBP:
D2
=2,5. Испытания по методу Бринелля проводят на стационарных твердомерах —
прессах Бринелля
, обеспечивающих плавное приложение заданной нагрузки к шарику и постоянство её при выдержке в течение установленного времени (обычно 10-15 или 30 секунд).

Метод измерения твердости металлов по Бринеллю регламентирует ГОСТ 9012-59. Металлы. Метод измерения твердости по Бринеллю

: Стандарт устанавливает метод измерения твердости по Бринеллю металлов с твердостью не более 650 единиц. Сущность метода заключается во вдавливании шарика (стального или из твердого сплава) в образец (изделие) под действием усилия, приложенного перпендикулярно к поверхности образца, в течение определенного времени, и измерении диаметра отпечатка после снятия усилия. ГОСТ 9012-59, в частности, определяет требования, предъявляемые к отбору образцов металла для измерения твёрдости по Бринеллю — размер образцов, шероховатость поверхности и др.

Твёрдость сталей по Бринеллю

Поскольку, как было описано выше, при определении твёрдости по Бринеллю используется стальной закалённый шарик, можно сделать вывод, что использование этого способа для измерения твёрдости сталей не всегда целесообразно. Поэтому в технической литературе чаще встречается обозначения твёрдости сталей не по Бринеллю, а по Роквеллу или по Виккерсу. Тем не менее измерять твёрдость сталей по Бринеллю иногда можно.

Автор: Корниенко А.Э. (ИЦМ)

  1. ГОСТ 9012-59. Металлы. Метод измерения твердости по Бринеллю.
  2. ГОСТ 23677-79. Твердомеры для металлов. Общие технические требования.
  3. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил.

Определение твердости по Бринеллю – о цифрах и буквах

Результаты исследований выражаются в буквенно-цифровой записи. Из букв в ней присутствуют либо HB, либо HBW. Первое обозначение актуально для стального шарика. Вторая запись указывает на то, что вдавливали сферу из карбида вольфрама. К буквам добавляют 2 или 3 числа. Первое – показатель твердости. Максимально возможный по Бринеллю – 650. Такой показатель измеряется карбидным индентором. Стальной вдавливается в материалы твердостью до 450-ти единиц.

Второе число в записи – диаметр шарика-наконечника. Он не указывается лишь в том случае, если максимальный, то есть равен 10-ти миллиметрам. Третье число в обозначении – сила, с которой давили на испытуемый образец. Рассмотрим такой перевод твердости по Бринеллю: 500 HBW 5/800. Запись HBW свидетельствует о применение карбидного шарика. Его диаметр составил 5 миллиметров.

Сила давления была равна 800-от килограммов силы (кгс). 500- итоговая твердость материала. Вычисляется она по формуле отношения приложенного усилия к площади отпечатка. Интересно, что со значениями шкалы Бринелля совпадает еще одна – Виккерса. Обе начинаются со 100 единиц. Правда наивысшая твердость по Виккерсу и Бринеллю разнится.

Твердость-по-Бринеллю-Особенности-и-суть-метода-1

У Виккерса значения доходят до 1 200-от. Записи результатов отличаются лишь буквами. Шкала Виккерса обозначается HV. Стоит учитывать это, выбирая товары с указанием твердости. То, что по Бринеллю тверже стали, по Виккерсу – материал весьма податливый.

Кстати, согласно большинству словарей, твердость – это свойства пластичности, упругости и сопротивления деформациям, или иным разрушениям, при вдавливании в верхний слой испытуемого образца другого, более твердого вещества. Ну, вот, уточнили о чем речь. Пора разобраться, какая твердость и для каких материалов считается приемлемой.

Твердость по Бринеллю — что это такое и для чего ее нужно знать

При выборе паркета покупатель сталкивается со множеством характеристик, ранее ему не знакомых. Одной из них является Твердость по Бринеллю, которая чаще всего используется для оценки твердости полов из разных пород древесины. Иногда в тех же целях применяются и другие методы, например, шкала Янка (широко используется в США).

Автор метода — шведский ученый Юхан Андерс Бринелль, предложивший в 1900 году измерять твердость металлов с помощью вдавливания с определенной силой в их поверхность металлического шарика. Позже метод был применен для определения твердости древесины. По диаметру оставленного шариком отпечатка оценивают степень твердости образца.

В качестве индентора используется шарик из твердого сплава диаметром от 1 до 10 мм, в зависимости от материала исследуемого образца. От него же зависит и степень прилагаемой нагрузки. Для образцов из древесины используется нагрузка в 100 кг и шарик диаметром 10 мм.

Твердость по Бринеллю обозначают HB (BHN, HBS, HBW). Она рассчитывается по формуле:

Где F — приложенная сила;

S — площадь квадрата, в который вписана окружность полученного отпечатка.

Ниже приведены породы древесины и их показатели HB (чем выше число, тем тверже древесина):

Нетрудно заметить, что у хвойных и быстрорастущих лиственных пород твердость гораздо ниже, чем у медленно растущих лиственных пород, например, дуба. Кроме того, показатель твердости древесины зависит от климатических условий, в которых дерево росло, так что у одной и той же породы твердость может варьироваться. К примеру:

  • Вишня — от 3,0 до 3,2
  • Ясень — от 3,3 до 4,1
  • Клен — от 3,2 до 4,2
  • Дуб — от 2,9 до 3,7
  • Бук — от 2,7 до 4,0
  • Береза ​​- от 2,2 до 2,7
  • Сосна — от 1,3 до 1,8

Почему нужно знать твердость древесины по Бринеллю?

Эта информация важна, т. к. позволяет судить о прочности и потенциальной износостойкости конкретного продукта, будь то массивная доска, штучный паркет или инженерные конструкции. Чем мягче слой износа паркета, тем легче он будет повреждаться от твердых предметов (например, ножек мебели, каблуков и т. п.) и быстрее изнашиваться с годами.

Особенно это актуально для мест высокой проходимости: прихожих, детских, кухонь. В таких помещениях рекомендуют укладывать паркет, сделанный из пород высокой и средней твердости. Например, бамбуковый паркет для детской.

Обычно производители широко применяют в изготовлении паркета древесину пород средней твердости (дуб, ясень), реже — древесину сверхтвердых пород (ятоба, сукупира, ярра, венге и др.). При этом стоимость массивной доски тем выше, чем тверже древесина, из которой она сделана. Исключение — паркет из бамбука, сверхпрочный, но при этом доступный по цене. Пример: массивная доска из Бамбука от Amigo.

Для паркетной доски твердость древесины тоже имеет значение, однако нужно иметь в виду, что чем тоньше слой ценной древесины, тем меньшую нагрузку принимает он на себя. Поэтому при производстве шпонированной паркетной доски (ценный слой — 0,5-1,5 мм) в качестве промежуточного слоя используется сверхтвердая HDF-плита, выдерживающая высокие нагрузки.

Определение твердости по Бринеллю

Определение твердости по Бринеллю (ГОСТ 9012-59, 22761-77) состоит в том, что при использовании специального пресса (пресса Бринелля) в испытуемый материал в течение определенного времени вдавливается нагрузкой Р

стальной закаленный шарик диаметра
D
.

Схема испытания на твердость по Бринеллю дана на рис. 1.

В результате вдавливания шарика на поверхности образца получается отпечаток (лунка).

Диаметр отпечатка измеряют специальным отсчетным микроскопом МПБ-2, на окуляре которого нанесена шкала с делениями, соответствующими десятым долям миллиметра (рис. 2).

Отношение давления Р

к поверхности полученного отпечатка (шарового сегмента) дает число твердости обозначаемое
НВ
:

Рис. 1. Схема определения твердости методом Бринелля

Рис. 2. Измерение диаметра отпечатка

Так как удобнее измерять не глубину отпечатка, а его диаметр, то, выражая глубину отпечатка через его диаметр d

и диаметр шарика, получаем:

Подставив значение F

Таким образом, зная диаметр шарика и нагрузку, замерив диаметр отпечатка, легко определить твердость.

Для получения одинаковых значений твердости металла при разных диаметрах шариков и различных нагрузках необходимо соблюдать закон подобия P/D

2 = const. В этом случае угол j = const, где j – угол вдавливания. Поэтому при испытании по Бринеллю, учитывая закон подобия, а также то обстоятельство, что диаметр шарика подбирается в зависимости от толщины испытуемого образца металла, и что для металлов разных твердостей нужно прилагать разные нагрузки, применяют соотношения по ГОСТ 9012-59. Кроме того, продолжительность выдержки образца под нагрузкой должна быть строго определенной, чтобы деформация образца шариком полностью завершилась.

Перед испытанием поверхность образца, в которую будет вдавливаться шарик, обрабатывают наждачным камнем или напильником, чтобы она была ровной, гладкой и не было окалины и других дефектов. При обработке поверхности образец не должен нагреваться выше 100–150°С. Подготовка поверхности образца необходима для получения правильного отпечатка и отчетливой видимости его краев для измерения.

При выборе диаметра шарика D

, нагрузки
P
, продолжительности выдержки под нагрузкой и минимальной толщины испытуемого образца следует руководствоваться нормами ГОСТа для испытаний по Бринеллю (табл. 1).

Соотношение диаметров шарика и нагрузки при испытании металлов по методу Бринелля

МатериалЧисло твердостиТолщина образца, ммДиаметр шарика, ммНагрузка, кгсВыдержка под нагрузкой, с
Черные металлы140–450Более 6 От 6 до 3 Менее 32,5187,5

Окончание табл. 1

Черные металлыДо 140Более 6 От 6 до 3 Менее 32,5187,5
Цветные металлы и сплавы (медь, латунь, бронза, магниевые сплавы и др.)31,8–130Более 6 От 6 до 3 Менее 32,562,5
Цветные металлы и сплавы (алюминий, подшипниковые сплавы и др.)3–35Более 6 От 6 до 3 Менее 32,562,5 15,6

При указании твердости НВ

иногда отмечают, при каких условиях измерялась твердость, например:
НВ
140 (10/3000/10) означает, что испытание производилось шариком диаметром 10 мм под нагрузкой 3000 кгс (30000 Н) в течение 10 секунд.

При измерении твердости шариком определенного диаметра и с установленными нагрузками расчет числа твердости по формуле НВ=Р/F

почти не выполняют, а пользуются заранее составленными таблицами, указывающими число
НВ
, в зависимости от диаметра отпечатка
d
и соотношения между нагрузкой
Р
и
D
2 (согласно табл. 2).

Твердость по Бринеллю

Диаметр отпечатка, мм d
10, или 2
d
5, или 4
d
2,5
Число твердости при нагрузке Р
, кгс
Диаметр отпечатка, мм d
10, или 2
d
5, или 4
d
2,5
Число твердости при нагрузке Р
, кгс
30D
2
10D
2
2,5D
2
30D
2
10D
2
2,5D
2
2,078,83,623,7
2,171,43,722,4
2,265,03,821,2
2,359,43,920,0
2,454,44,019,1

Окончание табл. 2

2,550,24,118,0
2,646,34,217,2
2,742,94,316,4
2,839,84,415,5
2,937,94,514,9
3,034,64,614,2
3,132,34,713,6
3,230,34,813,0
3,328,54,912,4
3,426,75,012,4
3,525,25,111,4

Существует примерная количественная зависимость между числами твердости и пределом прочности:

для стали с твердостью НВ

120–175……………………sв=0,34
НВ;
для стали с твердостью НВ

175–450..………………….sв=0,35
НВ;
для меди, латуни и бронзы отожженной..……………..sв=0,55 НВ;

для меди, латуни и бронзы наклепанной..……….…….sв=0,40 НВ;

для алюминия и алюминиевых сплавов

с твердостью НВ

20–45…………………………………….sв=(0,33÷0,36)
НВ;
для дуралюминия отожженного…………………………sв=0,36 НВ;

для дуралюминия после закалки и старения………..…sв=0,35 НВ.

Измерение твердости вдавливанием стального шарика не является универсальным способом. Этот способ не позволяет: а) испытывать материал с твердостью более НВ

450; б) измерять твердость тонкого поверхностного слоя (толщиной менее 1–2 мм), так как стальной шарик продавливает этот слой.

Практика определения твердости по Бринеллю

1. Пользуясь табл. 1 для заданного образца определить диаметр шарика, величину нагрузки Р

и время выдержки образца под нагрузкой.

2. Закрепить шарик в держателе 15 (рис. 3).

3. Установить необходимую нагрузку Р

на приборе. Минимальная нагрузка 187,5 кгс обеспечивается только массой подвески и рычажной системы.

4. Перемещением чашки 8 (см. рис. 3) по отношению шкалы, расположенной на станине прибора, установить время выдержки образца под нагрузкой.

5. Установить испытуемый образец на столик 14 так чтобы центр отпечатка располагался от края образца и от центра соседнего отпечатка на расстоянии не менее двух диаметров шарика.

Рис. 3. Схема пресса Бринелля:

– станина;
2
– рычаг большой;
3
– микропереключатель;
4
– подвеска;

– грузы;
6
– шатун;
7
– кривошип;
8
– чашка;
9
– червячная пара;
10
– электродвигатель;
11
– кнопка пусковая;
12
– маховик;
13
– контактная группа;

– стол сменный;
15
– держатель шариковой оправки;
16
– ограничитель;

– втулка шпинделя;
18
– шпиндель;
19
– лампа сигнальная.

6. Подвести образец к шарику, вращая маховик 12 до упора в ограничитель 16.

7. Нажатием кнопки 11 включить электродвигатель 10, который через червячный редуктор 9, кривошип 7, шатун 6 отведет вниз рычаг 2 и соединенную с ним подвеску 4 с грузами 5. Тогда нагрузка через систему рычагов, шпиндель 18 и втулку сообщается шариковому наконечнику. Этот момент фиксируется загоранием лампочки. После соответствующей выдержки груза вращение электродвигателя автоматически переключается на обратное и нагрузка с образца снимается. Когда подвеска с грузами достигнет, исходного положения, автоматически выключается электродвигатель.

8. Отвести столик прибора с образцом от шарика вращением маховика 12 против часовой стрелки.

9. Снять образец и с помощью микроскопа измерить диаметр отпечатка в двух взаимно-перпендикулярных направлениях. Значение диаметра отпечатка принимается как среднее арифметическое из указанных двух измерений.

10. По измеренному диаметру отпечатка, известной нагрузке и диаметру шарика определить твердость по Бринеллю НВ

Твёрдость по Бринеллю



Твердость-по-Бринеллю-Особенности-и-суть-метода-3



Шкала твердости Мооса

Шкала Мооса (минералогическая шкала твёрдости) представляет собой качественную порядковую шкалу, характерезующую стойкость различных минералов к царапанию. Используется для определения относительной твердости образцов минералов.

Основана на способности более твердого материала царапать более мягкий материал.

Шкала содержит 10 минералов в качестве эталонных, упорядочивая их в порядке возрастания твердости от очень мягкого (тальк) до очень твердого (алмаз).

Все минералы из таблицы, кроме алмаза, относительно распространены и их легко или недорого получить.

Шкала Мооса

  1. — Тальк
  2. — Гипс
  3. — Кальцит
  4. — Флюорит
  5. — Апатит
  6. — Ортоклаз
  7. — Кварц
  8. — Топаз
  9. — Корунд
  10. — Алмаз

Если минерал царапет эталон, значит его твердость — выше, если он царапается эталоном — ниже.

Шкала Мооса создана в 1812 году и названа в честь изобретателя немецкого геолога и минеролога Фридриха Мооса. С тех пор было изобретено множество различных методов определения твердости: метод Бринеля, Кнупа, Роквелла, Шора, Виккерса.

Определение твердости по Моосу — это относительное целочисленное сравнение устойчивости к царапинам.

Другие методы измерения твердости оперируют устойчивостью к вдавливанию. Для испытаний используется «Индентор» который вдавливается в исследуемый образец с тщательно измеренной силой. Затем размер или глубина выемки на образце и величина силы используются для расчета значения твердости. Поскольку в каждом из этих тестов используются разные аппараты и разные расчеты, их нельзя сравнивать напрямую друг с другом.

Шкала Мооса получила широкое распространение т.к. метод определения твердости прост в исполнении, недорог и люди быстро его понимают.

Несмотря на недостаточную точность, шкала актуальна для полевых геологов, которые используют её для грубой идентификации минералов когда исследуются легко идентифицируемые образцы или когда нет возможности использовать более сложные тесты.

Некоторые используют легкодоступные предметы для быстрого испытания. Например геолог может иметь карманный нож, которым можно определить является ли образец тверже или мягче чем значение 5-6,5 по Моосу.

  • 1 — Карандаш
  • 2 — Повареная соль
  • 2-2,5 — Можно поцарапать ногтем
  • 2,5-3 — Золото, серебро
  • 3 — Медная манета
  • 4-4,5 — Гвоздь
  • 4-5 — Железо
  • 5 — Стекло
  • 5-6,5 — Лезвие ножа
  • 6,5 — Стальной напильник
  • 7 — Легко царапает стекло
  • 7+ — Напильник из закаленной стали
  • 8 — Наждачная бумага, минерал очень легко царапает стекло
  • 9 — Минерал режет стекло
  • 10 — Используется как стеклорез

Ниже представлена расширенная таблица веществ, минералов, драгоценных камней:

Вещество или минералТвердость по Моосу
Пирофиллит, молибденит1-2
Боксит, уголь1-3
Лимонит1-5
Лед, сахар, галлий, стронций, индий, олово, барий, таллий, свинец, графит1,5
Гипс, кальций1,5-2
Сера1,5-2,5
Сильвит, глауконит, кадмий, селен2
Каменная соль, киноварь, хлорит, висмут, янтарь2-2,5
Мусковит2-3
Серебро, золото, галенит, медь, биотит, слюда2,5-3
Алюминий, известняк, кальцит, борная кислота, нитрофоска3
Арагонит, витерит, ангидрит3-3,5
Жемчуг, латунь, мышьяк3-4
Серпентин3-5
Сфалерит, родохрозит, малахит, доломит, куприт, халькопирит, азурит, барит3,5-4
Сидерит, пирротин, доломит3,5-4,5
Флюорит, бронза фосфористая4
Мрамор4-5
Зубная эмаль, асбест, апатит, марганец, цирконий , палладий , обсидиан5
Титанит, монацит5-5,5
Нефрит, уранинит, ильменит, энстатит, керамогранит (полированный)5-6
Магнетит5-6,5
Нефелин, авгит, арсенопирит, актинолит, бустамит, кобальтит5,5-6
Родонит, диопсид, опал, железняк красный5,5-6,5
Титан, германий , ниобий , родий , уран6
Рутил, пирит, пренит, плагиоклаз, ортоклаз, амазонит, андезин, анортоклаз, бенитоит, гельвин, иридий6-6,5
Кремний6,5
Яшма6,5-7
Агат, цоизит, эпидот, касситерит, пиролюзит6-7
Марказит6-7,5
Гранит, танзанит, сподумен, оливин, жадеит, аксинит, хризопраз, жадеит6,5-7
Силлиманит, гранат6,5-7,5
Кварц, каменная галька, аметист, авантюрин, форстерит, осмий, силикон, рений , ванадий7
Турмалин, кордиерит, альмандин, борацит, кордиерит, данбурит7-7,5
Циркон, андалузит, эвклаз, гамбергит, сапфирин7,5
Изумруд , закаленная сталь, вольфрам, шпинель, берилл, бериллий, аквамарин, красный берилл, ганит, пейнит7,5-8
Топаз, Фианит8
Хризоберилл, александрит, холтит8,5
Керамогранит (неполированный)8,5
Корунд, рубин, сапфир, алунд, хром9
Муассанит, бор9,5
Карборунд9-10
Алмаз, карбонадо10


Твердость-по-Бринеллю-Особенности-и-суть-метода-1

Твердость металлов

Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:

  • износостойкость металла;
  • возможность обработки резанием, шлифованием;
  • сопротивляемость местному давлению;
  • способность резать другой материал и прочие.

На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.

Понятие твердости

Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).

Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.

После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.

В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.

Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.

Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.

Прилагаемая нагрузка может прилагаться:

  • вдавливанием;
  • царапанием;
  • резанием;
  • отскоком.

Машиностроительные предприятия на данный момент для определения твердости материалов используют методы Бринелля, Роквелла, Виккерса, а также метод микротвердости.

На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.

Единицы измерения твердости

Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.

Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.

Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:

  • сплавы железа – 30 кгс/мм2;
  • медь и никель – 10 кгс/мм2;
  • алюминий и магний – 5 кгс/мм2.

Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.

Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.

В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.

Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.

Методика отображает тип индентора и прилагаемую к нему нагрузку.

Тип шкалыИнструментПрилагаемая нагрузка, кгс
АКонус из алмаза, угол вершины которого 120°50-60
ВШарик 1/16 дюйма90-100
СКонус из алмаза, угол вершины которого 120°140-150

В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.

Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.

Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.

К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:

Читайте также: