Тяжелые металлы курсовая работа

Обновлено: 05.07.2024

Формы нахождения тяжелых металлов в окружающей среде.


Тяжёлые металлы уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы, в прогнозе же они должны стать самыми опасными, более опасными, чем отходы АЭС и твердые отходы.

Загрязнение тяжёлыми металлами связано с их широким использованием в промышленном производстве вкупе со слабыми системами очистки, в результате чего тяжёлые металлы попадают в окружающую среду, в том числе и почву, загрязняя и отравляя её.

Почва являются основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу более высокоорганизованным животным [19, 24, 25].

В почвах тяжелые металлы содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическим комплексными соединениями. Кроме того, ионы тяжелых металлов могут быть связаны с минералами как часть кристаллической решетки.

В атмосферном воздухе тяжелые металлы присутствуют в форме органических и неорганических соединений в виде пыли и аэрозолей, а также в газообразной элементной форме (ртуть). При этом аэрозоли свинца, кадмия, меди и цинка состоят преимущественно их субмикронных частиц диаметром 0,5-1 мкм, а аэрозоли никеля и кобальта - из крупнодисперсных частиц (более 1 мкм), которые образуются в основном при сжигании дизельного топлива [28].

В водных средах металлы присутствуют в трех формах: взвешенные частицы, коллоидные частицы и растворенные соединения. Последние представлены свободными ионами и растворимыми комплексными соединениями с органическими (гуминовые и фульвокислоты) и неорганическими (галогениды, сульфаты, фосфаты, карбонаты) лигандами. Большое влияние на содержание этих элементов в воде оказывает гидролиз, во многом определяющий форму нахождения элемента в водных средах. Значительная часть тяжелых металлов переносится поверхностными водами во взвешенном состоянии [21, 27].

Сорбция тяжелых металлов донными отложениями зависит от особенностей состава последних и содержания органических веществ. В конечном итоге тяжелые металлы в водных экосистемах концентрируются в донных отложениях и биоте [3, 7].

Источники поступления тяжелых металлов в окружающую среду.


Главным природным источником тяжелых металлов являются породы (магматические и осадочные) и породообразующие минералы. Многие минералы в виде высокодисперсных частиц включаются в качестве акцессорных (микропримесей) в массу горных пород. Примером таких минералов являются минералы титана (брусит, ильменит, анатаз), хрома (FeCr2O4). Многие элементы поступают в атмосферу с космической и метеоритной пылью, с вулканическими газами, горячими источниками, газовыми струями.

Поступление тяжелых металлов в биосферу вследствие техногенного рассеивания осуществляется разнообразными путями. Важнейшим из них является выброс при высокотемпературных процессах в черной и цветной металлургии, при обжиге цементного сырья, сжигании минерального топлива. Кроме того, источником загрязнения биоценозов могут служить орошение водами с повышенным содержанием тяжелых металлов, внесение осадков бытовых сточных вод в почвы в качестве удобрения. Вторичное загрязнение происходит также вследствие выноса тяжелых металлов из отвалов рудников или металлургических предприятий водными или воздушными потоками, поступления больших количеств тяжелых металлов при постоянном внесении высоких доз органических, минеральных удобрений и пестицидов, содержащих тяжелые металлы [11].

Часть техногенных выбросов тяжелых металлов, поступающих в атмосферу в виде аэрозолей, переносится на значительное расстояние и вызывает глобальное загрязнение [28]. Другая часть с гидрохимическим стоком попадает в бессточные водоемы, где накапливается в водах и донных отложениях и может стать источником вторичного загрязнения. Соединения тяжелых металлов сравнительно быстро распространяются по объемам водного объекта. Частично они выпадают в осадок в виде карбонатов, сульфатов, частично адсорируются на минеральных и органических осадках [21, 27]. В результате содержание тяжелых металлов в отложениях постоянно растет, и когда абсорбционная способность осадков исчерпывается и тяжелые металлы поступают в воду, возникает особо напряженная ситуация. Этому способствует повышение кислотности воды, сильное зарастание водоемов, интенсификация выделения СО2 в результате деятельности микроорганизмов. Значительное загрязнение тяжелыми металлами, особенно свинцом, а также цинком и кадмием обнаружено вблизи автострад. Ширина придорожных аномалий свинца в почве достигает 100 м и более.

Добыча и переработка, на сегодняшний день, не являются самым мощным источником загрязнения среды металлами. Валовые выбросы от этих предприятий значительно меньше выбросов от предприятий теплоэнергетики. Не металлургическое производство, а именно процесс сжигания угля является главным источником поступления в биосферу многих металлов. В угле и нефти присутствуют все металлы. Значительно больше, чем в почве, токсичных химических элементов, включая тяжелые металлы, в золе электростанций, промышленных и бытовых топок. Выбросы в атмосферу при сжигании топлива имеют особое значение. Например, количество ртути, кадмия, кобальта, мышьяка в них в 3-8 раз превышает количество добываемых металлов. Известны данные о том, что только один котлоагрегат современной ТЭЦ, работающий на угле, за год выбрасывает в атмосферу в среднем 1-1,5 т паров ртути.

Тяжелые металлы содержатся и в минеральных удобрениях [19, 24, 25].

Наряду со сжиганием минерального топлива важнейшим путем техногенного рассеяния металлов является их выброс в атмосферу при высокотемпературных технологических процессах (металлургия, обжиг цементного сырья и др.), а также транспортировка, обогащение и сортировка руды.

Техногенное поступление тяжелых металлов в окружающую среду происходит в виде газов и аэрозолей (возгона металлов и пылевидных частиц) и в составе сточных вод.

Металлы сравнительно быстро накапливаются в почве и крайне медленно из нее выводятся: период полуудаления цинка - до 500 лет, кадмия - до 1100 лет, меди - до 1500 лет, свинца - до нескольких тысяч лет.

Существенный источник загрязнения почвы металлами - применение удобрений из шламов, полученных из промышленных и канализационных очистных сооружений.

В выбросах металлургических производств тяжелые металлы находятся, в основном, в нерастворимой форме. По мере удаления от источника загрязнения наиболее крупные частицы оседают, доля растворимых соединений металлов увеличивается, и устанавливаются соотношения между растворимой и нерастворимыми формами. Аэрозольные загрязнения, поступающие в атмосферу, удаляются из нее путем естественных процессов самоочищения. Важную роль при этом играют атмосферные осадки. В итоге выбросы промышленных предприятий в атмосферу, сбросы сточных вод создают предпосылки для поступления тяжелых металлов в почву, подземные воды и открытые водоемы, в растения, донные отложения и животных [13, 23, 26].

Дальность распространения и уровни загрязнения атмосферы зависят от мощности источника, условий выбросов и метеорологической обстановки. Однако в условиях промышленно-городских агломераций и городской застройки параметры распространения металлов в воздухе еще плохо прогнозируются. С удалением от источников загрязнения уменьшение концентраций аэрозолей металлов в атмосферном воздухе чаще происходит по экспоненте, вследствие чего зона их интенсивного воздействия, в которой имеет место превышение ПДК, сравнительно невелика [28].

В условиях урбанизированных зон суммарный эффект от регистрируемого загрязнения воздуха является результирующей сложения множества полей рассеяния и обусловлен удалением от источников выбросов, градостроительной структурой и наличием необходимых санитарно-защитных зон вокруг предприятий.

Естественное (фоновое) содержание тяжелых металлов в незагрязненной атмосфере составляет тысячные и десятитысячные доли микрограмма на кубический метр и ниже. Такие уровни в современных условиях на сколько-нибудь обжитых территориях практически не наблюдается. Фоновое содержание свинца принято равным 0,006 мкг/м3, ртути - 0,001-0,8 мкг/м3 (в городах - на несколько порядков выше). К основным отраслям, с которыми связано загрязнение окружающей среды ртутью, относят горнодобывающую, металлургическую, химическую, приборостроительную, электровакуумную и фармацевтическую. Наиболее интенсивные источники загрязнения окружающей среды кадмием - металлургия и гальванопокрытия, а также сжигание твердого и жидкого топлива. В незагрязненном воздухе над океаном средняя концентрация кадмия составляет 0,005 мкг/м3, в сельских местностях - до 0,05 мкг/м3, а в районах размещения предприятий, в выбросах которых он содержится (цветная металлургия, ТЭЦ, работающие на угле и нефти, производство пластмасс и т.п.), и промышленных городах - до 0,3-0,6 мкг/м3.

Атмосферный путь поступления химических элементов в окружающую среду городов является ведущим. Однако уже на небольшом удалении, в частности, в зонах пригородного сельского хозяйства, относительная роль источников загрязнения окружающей среды тяжелыми металлами может измениться и наибольшую опасность будут представлять сточные воды и отходы, накапливаемые на свалках и применяемые в качестве удобрений [19, 24, 25, 28].

Максимальной способностью концентрировать тяжелые металлы обладают взвешенные вещества и донные отложения, затем планктон, бентос и рыбы [3, 13, 23, 26].

Осадки. Зона максимальных концентраций металлов в воздухе распространяется до 2 км от источника. В ней содержание металлов в приземном слое атмосферы в 100-1000 раз выше местного геохимического фона, а в снеге - в 500-1000 раз. На удалении 2-4 км располагается вторая зона, где содержание металлов в воздухе приблизительно в 10 раз ниже, чем в первой. Намечается третья зона протяженностью 4-10 км, где лишь отдельные пробы показывают повышенное содержание металлов. По мере удаления от источника соотношения разных форм рассеивающихся металлов меняются. В первой зоне водорастворимые соединения составляют всего 5-10 %, а основную массу выпадений образуют мелкие пылевидные частицы сульфидов и оксидов. Относительное содержание водорастворимых соединений возрастает с расстоянием.

Тяжелые металлы, поступающие на поверхность почвы, накапливаются в почвенной толще, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии. Первый период полуудаления (т.е. удаления половины от начальной концентрации) тяжелых металлов значительно варьируется у различных элементов и занимает весьма продолжительный период времени: для цинка - от 70 до 510 лет; кадмия от 13 до 110 лет, меди - от 310 до 1500 лет, свинца - от 770 до 5900 лет.

Кроме антропогенных источников загрязнения среды обитания тяжелыми металлами существуют и другие, естественные, например вулканические извержения: кадмий обнаружили сравнительно недавно в продуктах извержения вулкана Этна на острове Сицилия в Средиземном море. Увеличение концентрации металлов-токсикантов в поверхностных водах некоторых озер может происходить в результате кислотных дождей, приводящих к растворению минералов и пород, омываемых этими озерами. Все эти источники загрязнения вызывают в биосфере или ее составляющих (воздухе, воде, почвах, живых организмах) увеличение содержания металлов-загрязнителей по сравнению с естественным, так называемым фоновым уровнем.

Хотя, как было упомянуто выше, попадание металла-токсиканта может происходить и путем аэрозольного переноса, в основном они проникают в живой организм через воду.

Тяжелые металлы способны образовывать сложные комплексные соединения с органическими веществами почвы, поэтому в почвах с высоким содержанием гумуса они менее доступны для поглощения. Избыток влаги в почве способствует переходу тяжелых металлов в низшие степени окисления и в растворимые формы. Анаэробные условия повышают доступность тяжелых металлов растениям. Поэтому дренажные системы, регулирующие водный режим, способствуют преобладанию окисленных форм тяжелых металлов и тем самым снижению их миграционных характеристик. Растения могут поглотать из почвы микроэлементы, в том числе тяжелые металлы, аккумулируя их в тканях или на поверхности листьев, являясь, таким образом, промежуточным звеном в цепи "почва - растение - животное - человек" [13, 23, 26].

Различные растения сосредоточивают в себе разное число микроэлементов: в большинстве случаев - избирательно. Так, медь усваивают растения семейства гвоздичных, кобальт - перцы. Высокий коэффициент биологического поглощения цинка характерен для березы карликовой и лишайников, никеля и меди - для вероники и лишайников. Тяжелые металлы являются протоплазматическими ядами, токсичность которых возрастает по мере увеличения атомной массы. Их токсичность проявляется по-разному. Многие металлы при токсичных уровнях концентраций ингибируют деятельность ферментов (медь, ртуть). Некоторые из них образуют хелатоподобные комплексы с обычными метаболитами, нарушая нормальный обмен веществ (железо). Такие металлы, как кадмий, медь, железо, взаимодействуют с клеточными мембранами, изменяя их проницаемость [19, 24, 25].

Особый интерес представляет изучение животных, являющихся чувствительным индикатором начальных стадий загрязнения тяжелыми металлами. Они аккумулируют элементы в доступных биологически активных формах и отражают фактический уровень загрязнения экосистем. Почвенные животные, особенно сапрофитные группы, благодаря тесной связи с почвенными условиями и ограниченной территорией обитания могут быть хорошими индикаторами химического загрязнения биосферы. Среди животных такими индикаторами могут быть европейский крот, бурый медведь, лось, рыжая полевка. Располагая сведениями о содержании тяжелых металлов у млекопитающих, можно прогнозировать их влияние на организм человека.

Нужно отметить, что успехи в развитии методов анализа позволили решить такие глобальные проблемы, как обнаружение основных источников загрязнения биосферы, установление динамики загрязнения и трансформации загрязнителей, их перенос и миграцию. При этом тяжелые металлы были классифицированы как одни из важнейших объектов анализа. Поскольку их содержание в природных материалах может колебаться в широких пределах, то и методы их определения должны обеспечивать решение поставленной задачи. В результате усилий ученых-аналитиков многих стран были разработаны методы, позволяющие определять тяжелые металлы на уровне фемтограммов (10-15 г) или в присутствии в анализируемом объеме пробы одного (!) атома, например никеля в живой клетке.

К сложной и многогранной проблеме, которую представляют собой химические загрязнения окружающей среды тяжелыми металлами и которая охватывает различные дисциплины и уже превратилась в самостоятельную междисциплинарную область знаний, профессиональный интерес проявляют не только химики-аналитики, биологи и экологи (их деятельность традиционно связана с этой проблемой), но и медики. В потоке научной и научно-популярной информации, а также в средствах массовой информации все чаще появляются материалы о влиянии тяжелых металлов на состояние здоровья человека. Так, в США обратили внимание на проявление агрессивности у детей в связи с повышенным содержанием в их организме свинца. В других регионах планеты рост числа правонарушений и самоубийств также связывают с повышением содержания этих токсикантов в окружающей среде. Представляет интерес обсуждение некоторых химических и эколого-химических аспектов проблемы распространения тяжелых металлов в окружающей среде, в частности в поверхностных водах [6, 7, 8, 10, 12, 16, 20].

Методы определения содержания тяжелых металлов в различных пищевых продуктах

При этом весьма важным вопросом является также определение среднего и предельно допустимого содержания концентраций металлов в пищевых продуктах.
Целью курсовой работы является:
рассмотрение методов определения содержания тяжёлых металлов в различных пищевых продуктах
отрицательное влияние тяжелых металлов на организм человека и животных
отрицательное влияние тяжелых металлов на окружающие среду и растения
болезни, возникающие от переизбытка тяжелых металлов в организме человека
поведение тяжелых металлов в воздухе, в воде, в почве

Содержание работы

ВВЕДЕНИЕ 7
Теоретические аспекты загрязнения пищевых продуктов 9
Источники загрязнения пищевых продуктов тяжёлыми металлами 9
Загрязнение химическими элементами продовольственного сырья 13
1.2.1 Ртуть 14
1.2.2 Свинец 15
1.2.3 Кадмий 17
1.2.4 Алюминий 18
1.2.5 Мышьяк 19
1.2.6 Медь 20
1.2.7 Цинк 21
1.2.8 Олово 22
1.2.9 Железо 24
Классификация и методы определения тяжелых металлов в пищевых продуктах 26
Понятие и методы качественного и количественного анализа 26
Качественный анализ 26
Количественный анализ 29
Классификация и характеристика методов исследования пищевых продуктов 33
Физические и физико-химические методы 33
Химические и биохимические методы 37
Микробиологические методы 38
Физиологические методы 38
Технологические методы 39
Методы определения тяжёлых металлов в пищевых продуктах 40
4.1 Методы определения мышьяка 40
4.2 Методы определения кадмия 41
4.3 Методы определения свинца 45
4.4 Методы определения ртути 45
4.5 Методы определения цинка 48
4.6 Методы определения железа 49
ЗАКЛЮЧЕНИЕ 52
СПИСОК ЛИТЕРАТУРЫ 54

Файлы: 1 файл

Kursovaya_Metody_opredelenia_soderzhania_tyzhellyж.docx

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Тверской государственный технический университет»

Кафедра Биотехнологии и химии

по теме: «Методы определения содержания тяжелых металлов в различных пищевых продуктах»

Выполнил: студент 3курса

группы СМ – 1101

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ 6

  1. Теоретические аспекты загрязнения пищевых продуктов 9
    1. Источники загрязнения пищевых продуктов тяжёлыми металлами 9
    2. Загрязнение химическими элементами продовольственного сырья 13

    1.2.4 Алюминий 18

    1. Классификация и методы определения тяжелых металлов в пищевых продуктах 26
      1. Понятие и методы качественного и количественного анализа 26
      2. Качественный анализ 26
      3. Количественный анализ 29
      1. Физические и физико-химические методы 33
      2. Химические и биохимические методы 37
      3. Микробиологические методы 38
      4. Физиологические методы 38
      5. Технологические методы 39

      4.1 Методы определения мышьяка 40

      4.2 Методы определения кадмия 41

      4.3 Методы определения свинца 45

      4.4 Методы определения ртути 45

      4.5 Методы определения цинка 48

      4.6 Методы определения железа 49

      СПИСОК ЛИТЕРАТУРЫ 54

      В данной курсовой работе применяются следующие термины с соответствующими определениями:

      Антагония – это противостояние, непримиримое отвержение.

      Возгон – это оксиды легко возгоняемых металлов, образующиеся при высоких температурах в некоторых металлургических процессах.

      Гальванизация – это метод покрытия одного металла каким-либо другим путем электролиза.

      Гипотония – это пониженный тонус сосудов или мышц.

      Инактивация – это частичная или полная потеря биологически активным веществом или агентом своей активности.

      Инсектициды – это химические препараты для уничтожения вредных насекомых.

      Интоксикация – это отравление организма образовавшимися в нём самом или поступившими извне токсическими веществами.

      Кофактор – это вещества, необходимые для каталитического действия того или иного фермента.

      Озоление – это химическая операция, состоящая в разрушении органического субстрата (обычно посредством сжигания).

      Пестициды – это химические средства, используемые для борьбы с вредителями и болезнями растений, сорняками, вредителями зерна и зернопродуктов, древесины, изделий из хлопка, шерсти, кожи, с эктопаразитами домашних животных, а также с переносчиками опасных заболеваний человека и животных.

      Сидеоз – это заболевание человека, вызываемое осаждением в лёгких пыли, содержащей железо.

      Тяжелые металлы – это группа химических элементов со свойствами металлов(в том числе и полуметаллы) и значительным атомным весом либо плотностью.

      Фунгициды – это химические вещества для борьбы с грибковыми болезнями растений, а так же для протравливания семян с целью освобождения их от спор паразитных грибов.

      ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

      В данной курсовой работе применяются следующие обозначения и сокращения:

      АПДК – ООО ПКФ "Агропромдоркомплект-Урал"

      ВОЗ – всемирная организация здравоохранения

      МИБК – метил изобутил кетон

      ДСД – допустимая суточная доза

      ПДК – предельно-допустимые концентрации

      ТЭЦ – тепловая электростанция

      ФАО – продовольственная и сельскохозяйственная организация

      За последнее время большое значение приобрела проблема, связанная с загрязнением пищевых продуктов тяжёлыми металлами и другими химическими веществами. В атмосферу идет огромный выброс токсичных веществ со всевозможных производств: фабрик, заводов и т.д. Попадая в атмосферу и воду, тем самым они загрязняют и почву, а с ней и растения. Растения, в свою очередь, это основа всех пищевых продуктов.

      Тяжелые металлы также попадают в мясо, молоко, так как животные, употребляя растения, употребляют тем самым и токсичные элементы, то есть тяжелые металлы, которые накапливаются в растениях. Завершающим звеном в этой цепочке, является человек, который потребляет большое разнообразие пищевых продуктов.

      Тяжелые металлы способны накапливаться и трудно выводиться из организма. Они пагубно влияют на организм человека и здоровья в целом.

      Поэтому важной задачей является разработка методов определения токсичных веществ в пищевых продуктах.

      При этом весьма важным вопросом является также определение среднего и предельно допустимого содержания концентраций металлов в пищевых продуктах.

      Целью курсовой работы является:

      • рассмотрение методов определения содержания тяжёлых металлов в различных пищевых продуктах
      • отрицательное влияние тяжелых металлов на организм человека и животных
      • отрицательное влияние тяжелых металлов на окружающие среду и растения
      • болезни, возникающие от переизбытка тяжелых металлов в организме человека
      • поведение тяжелых металлов в воздухе, в воде, в почве

      1. Теоретические аспекты загрязнения пищевых продуктов

      1.1 Источники загрязнения пищевых продуктов тяжёлыми металлами

      Термин "тяжелые металлы" связан с высокой относительной атомной массой. Эта характеристика обычно сравниваются с представлением о высокой токсичности. Одним из признаков, которые позволяют относить металлы к тяжелым, является их плотность.

      Согласно сведениям, представленным в "Справочнике по элементарной химии" под ред. А.Т.Пилипенко (1977), к тяжелым металлам относятся элементы, плотность которых более 5 г/см3. Таким образом, к тяжелым металлам относят более 40 химических элементов с относительной плотностью более 6. Число же опасных загрязнителей, если учитывать токсичность, стойкость и способность накапливаться во внешней среде, а также масштабы распространения указанных металлов, значительно меньше.

      Прежде всего, представляют интерес те металлы, которые наиболее широко и в значительных объемах используются в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят: свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.

      В атмосферном воздухе тяжелые металлы присутствуют в форме органических и неорганических соединений в виде пыли и аэрозолей, а также в газообразной элементной форме (ртуть). При этом аэрозоли свинца, кадмия, меди и цинка состоят преимущественно их субмикронных частиц диаметром 0,5–1 мкм, а аэрозоли никеля и кобальта – из крупнодисперсных частиц (более 1 мкм), которые образуются в основном при сжигании дизельного топлива. В водных средах металлы присутствуют в трех формах: взвешенные частицы, коллоидные частицы и растворенные соединения. Последние представлены свободными ионами и растворимыми комплексными соединениями с органическими (гуминовые и фульвокислоты) и неорганическими (галогениды, сульфаты, фосфаты, карбонаты) лигандами. Большое влияние на содержание этих элементов в воде оказывает гидролиз, во многом определяющий форму нахождения элемента в водных средах. Значительная часть тяжелых металлов переносится поверхностными водами во взвешенном состоянии.

      В почвах тяжелые металлы содержатся в водорастворимой, ионообменной и непрочно адсорбированной формах. Водорастворимые формы, как правило, представлены хлоридами, нитратами, сульфатами и органическим комплексными соединениями. Кроме того, ионы тяжелых металлов могут быть связаны с минералами как часть кристаллической решетки.

      Методы определения содержания тяжелых металлов в различных пищевых продуктах

      При этом весьма важным вопросом является также определение среднего и предельно допустимого содержания концентраций металлов в пищевых продуктах.
      Целью курсовой работы является:
      рассмотрение методов определения содержания тяжёлых металлов в различных пищевых продуктах
      отрицательное влияние тяжелых металлов на организм человека и животных
      отрицательное влияние тяжелых металлов на окружающие среду и растения
      болезни, возникающие от переизбытка тяжелых металлов в организме человека
      поведение тяжелых металлов в воздухе, в воде, в почве

      Содержание работы

      ВВЕДЕНИЕ 7
      Теоретические аспекты загрязнения пищевых продуктов 9
      Источники загрязнения пищевых продуктов тяжёлыми металлами 9
      Загрязнение химическими элементами продовольственного сырья 13
      1.2.1 Ртуть 14
      1.2.2 Свинец 15
      1.2.3 Кадмий 17
      1.2.4 Алюминий 18
      1.2.5 Мышьяк 19
      1.2.6 Медь 20
      1.2.7 Цинк 21
      1.2.8 Олово 22
      1.2.9 Железо 24
      Классификация и методы определения тяжелых металлов в пищевых продуктах 26
      Понятие и методы качественного и количественного анализа 26
      Качественный анализ 26
      Количественный анализ 29
      Классификация и характеристика методов исследования пищевых продуктов 33
      Физические и физико-химические методы 33
      Химические и биохимические методы 37
      Микробиологические методы 38
      Физиологические методы 38
      Технологические методы 39
      Методы определения тяжёлых металлов в пищевых продуктах 40
      4.1 Методы определения мышьяка 40
      4.2 Методы определения кадмия 41
      4.3 Методы определения свинца 45
      4.4 Методы определения ртути 45
      4.5 Методы определения цинка 48
      4.6 Методы определения железа 49
      ЗАКЛЮЧЕНИЕ 52
      СПИСОК ЛИТЕРАТУРЫ 54

      Файлы: 1 файл

      Kursovaya_Metody_opredelenia_soderzhania_tyzhellyж.docx

      Токсичные элементы (в частности, некоторые тяжелые металлы) составляют обширную и весьма опасную в токсикологическом отношении группу веществ. К ним относятся: ртуть, свинец, кадмий, цинк, мышьяк, алюминий, медь, железо, стронций и другие.

      Разумеется, не все перечисленные элементы являются ядовитыми, некоторые из них необходимы для нормальной жизнедеятельности человека и животных. Поэтому часто трудно провести четкую границу между биологически необходимыми и вредными для здоровья человека веществами.

      В большинстве случаев реализация того или иного эффекта зависит от концентрации. При повышении оптимальной физиологической концентрации элемента в организме может наступить интоксикация, а дефицит многих элементов в пище и воде может привести к достаточно тяжелым и трудно распознаваемым явлениям недостаточности.

      Загрязнение водоемов, атмосферы, почвы, сельскохозяйственных растений и пищевых продуктов токсичными металлами происходит за счет:

      • выбросов промышленных предприятий (особенно угольной, металлургической и химической промышленности);
      • выбросов городского транспорта (имеется в виду загрязнение свинцом от сгорания этилированного бензина);
      • применения в консервном производстве некачественных внутренних покрытий, технологии припоев;
      • контакта с оборудованием (для пищевых целей допускается весьма ограниченное число сталей и других сплавов).

      Для большинства продуктов установлены ПДК токсичных элементов, к детским и диетическим продуктам предъявляются более жесткие требования.

      Наибольшую опасность из вышеназванных элементов представляют ртуть, свинец, кадмий.

      Ртуть – один из самых опасных и высокотоксичных элементов, обладающих способностью накапливаться в растениях и в организме животных и человека, т. е. является ядом кумулятивного действия.

      Токсичность ртути зависит от вида ее соединений, которые по–разному всасываются, метаболизируются и выводятся из организма.

      Наиболее токсичны алкилртутные соединения с короткой цепью – метилртуть, этилртуть, диметилртуть. Механизм токсичного действия ртути связан с ее взаимодействием с сульфгидрильными группами белков. Блокируя их, ртуть изменяет свойства или инактивирует ряд жизненно важных ферментов. Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция меди, цинка, селена; органические – обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена. Защитным эффектом при воздействии ртути на организм человека обладают цинк и, особенно, селен. Предполагают, что защитное действие селена обусловлено диметилированием ртути и образованием нетоксичного соединения – селено– ртутного комплекса. О высокой токсичности ртути свидетельствуют и очень низкие значения ПДК: 0,0003мг/м 3 в воздухе и 0,0005 мг/л в воде.

      В организм человека ртуть поступает в наибольшей степени с рыбопродуктами (80–600 мкг/кг), в которых ее содержание может многократно превышать ПДК. Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, поскольку активно аккумулирует их из воды и корма, в который входят различные гидробионты, богатые ртутью. Организм рыб способен синтезировать метилртуть, которая накапливается в печени. У некоторых рыб в мышцах содержится белок – металлотионеин, который с различными металлами, в том числе и с ртутью, образует комплексные соединения, способствуя тем самым накапливанию ртути в организме и передаче ее по пищевым цепям.

      Из других пищевых продуктов характерно содержание ртути: в продуктах животноводства: мясо, печень, почки, молоко, сливочное масло, яйца (от 2 до 20 мкг/кг); в съедобных частях сельскохозяйственных растений: овощи, фрукты, бобовые, зерновые в шляпочных грибах (6–447 мкг/кг), причем в отличие от растений в грибах может синтезироваться метилртуть. При варке рыбы и мяса концентрация ртути в них снижается, при аналогичной обработке грибов остается неизменной. Это различие объясняется тем, что в грибах ртуть связана с аминогруппами азотсодержащих соединений, в рыбе и мясе – с серосодержащими аминокислотами.

      Свинец – один из самых распространенных и опасных токсикантов. История его применения очень древняя, что связано с относительной простотой его получения и большой распространенностью в земной коре (%). Соединения свинца – Рb3O4 и PbSO4 – основа широко применяемых пигментов: сурика и свинцовых белил. Глазури, которые используются для покрытия керамической посуды, также содержат соединения Pb. Металлический свинец со времен Древнего Рима применяют при прокладке водопроводов. В настоящее время перечень областей его применения очень широк: производство аккумуляторов, электрических кабелей, химическое машиностроение, атомная промышленность, производство эмалей, лаков, хрусталя, пиротехнических изделий, спичек, пластмасс и т.п. Мировое производство свинца составляет более т в год. В результате производственной деятельности человека в природные воды ежегодно попадает 500 – 600 тыс. т, а в атмосферу в переработанном и мелкодисперсном состоянии выбрасывается около 450 тыс.т, подавляющее большинство которого оседает на поверхности Земли. Основным источниками загрязнения атмосферы свинцом являются выхлопные газы автотранспорта (260 тыс. т) и сжигание каменного угля (около 30 тыс. т). В тех странах, где использование бензина с добавлением тетраэтилсвинца сведено к минимуму, содержание свинца в воздухе удалось многократно снизить. Следует подчеркнуть, что многие растения накапливают свинец, который передается по пищевым цепям и обнаруживается в мясе и молоке сельскохозяйственных животных, особенно активное накопление свинца происходит вблизи промышленных центров и крупных автомагистралей.

      Ежедневное поступление свинца в организм человека с пищей – 0,1 – 0,5 мг; с водой – 0,02 мг. Содержание свинца в мг/кг в различных продуктах составляет от 0,01 до 3,0.

      В организме человека усваивается в среднем 10 % поступившего свинца, у детей – 30 – 40 %. Из крови свинец поступает в мягкие ткани и кости, где депонируется в виде трифосфата. Механизм токсического действия свинца имеет двойную направленность. Во–первых, блокада SH – групп белков и, как следствие, инактивация ферментов, во-вторых, проникновение Pb в нервные и мышечные клетки, образование лактата свинца, затем фосфата свинца, которые создают клеточный барьер для проникновения ионов Са 2+ .

      Основными мишенями при воздействии свинца являются кроветворная, нервная и пищеварительная системы, а также почки. Свинцовая интоксикация может приводить к серьезным нарушениям здоровья, проявляющихся в частых головных болях, головокружениях, повышенной утомляемости, раздражительности, ухудшениях сна, гипотонии, а наиболее тяжелых случаях к параличам, умственной отсталости. Неполноценное питание, дефицит в рационе кальция, фосфора, железа, пектинов, белков, увеличивает усвоение свинца, а следовательно – его токсичность. Допустимая суточная доза (ДСД) свинца составляет 0,007 мг/кг; величина ПДК в питьевой воде – 0,05 мг/л.

      Мероприятия по профилактике загрязнения свинцом сырья и пищевых продуктов должны включать государственный и ведомственный контроль за промышленными выбросами свинца в атмосферу, водоемы и почву. Необходимо существенно снизить или полностью исключить применение тетраэтилсвинца в бензине, красителях, упаковочных материалах и т.п.

      Кадмий широко применяется в различных отраслях промышленности. В воздух кадмий поступает вместе со свинцом при сжигании топлива на ТЭЦ, с газовыми выбросами предприятий, производящих или использующих кадмий. Загрязнение почвы кадмием происходит при оседании кадмий – аэрозолей из воздуха и дополняется внесением минеральных удобрений (суперфосфата, фосфата калия, селитры).

      В некоторых странах соли кадмия применяют в качестве антисептических и антигельминтных препаратов в ветеринарии. Все это определяет основные пути загрязнения кадмием окружающей среды, а следовательно, продовольственного сырья и пищевых продуктов.

      Содержание кадмия (в мкг/кг) в различных продуктах следующее. Растительные продукты: зерновые – 28–95; горох – 15–19; картофель – 12–50; капуста – 2–26; фрукты – 9–42; грибы – 100–500; в продуктах животноводства: молоко – 2,4; творог – 6,0; яйца – 23–250.

      Установлено, что приблизительно 80 % кадмия поступает в организм человека с пищей, 20 % – через легкие из атмосферы и при курении. С рационом взрослый человек получает до 150 мкг/кг и выше кадмия в сутки. В одной сигарете содержится 1,5 – 2,0 мкг Cd.

      Подобно ртути и свинцу, кадмий не является жизненно необходимым металлом. Попадая в организм, кадмий проявляет сильное токсическое действие, главной мишенью которого являются почки.

      Механизм токсического действия кадмия связан с блокадой сульфгидрильных групп белков; кроме того он является антагонистом цинка, кобальта, селена, ингибирует активность ферментов, содержащих указанные металлы.

      Известна способность кадмия нарушать обмен железа и кальция. Все это может привести к широкому спектру заболеваний: гипертоническая болезнь, анемия, ишемическая болезнь сердца, почечная недостаточность и другие.

      Отмечены канцерогенный, мутагенный и тератогенный эффекты кадмия. По рекомендациям ВОЗ допустимая суточная доза (ДСД) кадмия – 1 мкг/кг массы тела.

      Большое значение в профилактике интоксикации кадмием имеет правильное питание (включение в рацион белков, богатых серосодержащими аминокислотами, аскорбиновой кислоты, железа, цинка, селена, кальция), контроль за содержанием кадмия и исключение из рациона продуктов, богатых кадмием.

      Первые данные о токсичности алюминия были получены в 70–х годах прошлого века, и это явилось неожиданностью для человечества. Будучи третьим, по распространенности элементом земной коры и обладая ценными качествами, Al нашел широкое применение в технике и быту. Поставщиками алюминия в организм человека является алюминиевая посуда, если она контактирует с кислой или щелочной средой, вода которая обогащается ионами Al 3+ при обработке ее сульфатом алюминия на водоочистительных станциях.

      Существенную роль в загрязнении окружающей среды ионами Al 3+ играют и кислотные дожди. Не следует злоупотреблять содержащими гидроксид алюминия лекарствами: противогеморроидальными, противоартритными, понижающими кислотность желудочного сока. Как буферную добавку вводят гидроксид алюминия и в губную помаду. Среди пищевых продуктов наивысшей концентрацией алюминия (до 20 мг/г) обладает чай.

      Поступающие в организм человека ионы Al 3+ в форме нерастворимого фосфата выводятся с фекалиями, частично всасываются в кровь и выводятся почками. При нарушении деятельности почек происходит накапливание алюминия, которое приводит к нарушению метаболизма Ca, Mg, P, F, сопровождающееся ростом хрупкости костей, развитием различных форм анемии. Кроме того, были обнаружены: нарушение речи, ориентации, провалы в памяти, и т.п. Все это позволяет приблизить «безобидный», считавшийся нетоксичным до недавнего времени алюминий к «мрачной тройке» супертоксикантов: ртуть, свинец, кадмий.

      Мышьяк как элемент в чистом виде ядовит только в высоких концентрациях. Он принадлежит к тем микроэлементам, необходимость которых для жизнедеятельности организма человека не доказана, за исключением его стимулирующего действия на процесс кроветворения. Соединения же мышьяка, такие как мышьяковистый ангидрид, арсениты и арсенаты, сильно токсичны.

      Мышьяк содержится во всех объектах биосферы (в земной коре – 2 мг/кг, в морской воде – 5 мкг/кг).

      Известными источниками загрязнения окружающей среды мышьяком являются электростанции, использующие бурый уголь, медеплавильные заводы. Мышьяк используется при производстве полупроводников, стекла, красителей, инсектицидов, фунгицидов и т.д.

      Нормальный уровень содержания мышьяка в продуктах питания не должен превышать 1 мг/кг. Так, например, фоновое содержание мышьяка (мг/кг): в овощах и фруктах 0,01–0,2; в зерновых 0,006–1,2; в говядине 0,005–0,05; в печени 2,0; яйцах 0,003–0,03.

      Повышенное содержание мышьяка отмечается в рыбе и других гидробионтах, в частности в ракообразных и моллюсках. По данным ФАО/ВОЗ, в организм человека с суточным рационом поступает в среднем 0,05 – 0,45мг мышьяка. ДСД – 0,05 мг/кг массы тела. В зависимости от дозы мышьяк может вызывать острое и хроническое отравление. Разовая доза мышьяка 30 мг – смертельна для человека. Механизм токсического действия мышьяка связан с блокированием SH – групп белков и ферментов, выполняющих в организме самые разнообразные функции.

      Медь. Содержание в земной коре составляет 4,5 мг/кг, морской воде – 1–25 мкг/кг, в организме взрослого человека – около 100 мг/кг.

      Медь является жизненно важным элементом, который входит в состав многих витаминов, гормонов, ферментов, дыхательных пигментов, участвует в процессах обмена веществ, в тканевом дыхании и т.д. Медь имеет большое значение для поддержания нормальной структуры костей, хрящей, сухожилий (коллаген), эластичности стенок кровеносных сосудов, легочных альвеол, кожи (эластин). Медь входит в состав миелиновых оболочек нервов. В организме взрослого человека половина от общего количества меди содержится в мышцах и костях и 10% – в печени.

      Некоторые соединения меди могут быть токсичны при превышении ПДК в пище и воде. Содержание меди в питьевой воде не должно превышать 2 мг/л (средняя величина за период из 14 суток), однако недостаток меди в питьевой воде также нежелателен.

      Содержание меди в пищевых продуктах составляет, мг/кг: печень животных – 30-40, морепродукты – 4 – 8, орехи – 5– 12, мука – 5– 8, зерновые – 2– 8.

      Медь, в отличие от ртути и мышьяка, принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность - 0,9 мг. Дефицит меди приводит к анемии, недостаточности роста, ряду других заболеваний, в отдельных случаях – к смертельному исходу.

      В организме присутствуют механизмы биотрансформации меди. При длительном воздействии высоких доз меди наступает «поломка» механизмов адаптации, переходящая в интоксикацию и специфическое заболевание. В этой связи является актуальной проблема охраны окружающей среды и пищевой продукции от загрязнения медью и ее соединениями. Основная опасность исходит от промышленных выбросов, передозировки инсектицидами, другими токсичными солями меди, потребления напитков, пищевых продуктов, соприкасающихся в процессе производства с медными деталями оборудования или медной тары.

      Методы определения содержания тяжелых металлов в различных пищевых продуктах

      При этом весьма важным вопросом является также определение среднего и предельно допустимого содержания концентраций металлов в пищевых продуктах.
      Целью курсовой работы является:
      рассмотрение методов определения содержания тяжёлых металлов в различных пищевых продуктах
      отрицательное влияние тяжелых металлов на организм человека и животных
      отрицательное влияние тяжелых металлов на окружающие среду и растения
      болезни, возникающие от переизбытка тяжелых металлов в организме человека
      поведение тяжелых металлов в воздухе, в воде, в почве

      Содержание работы

      ВВЕДЕНИЕ 7
      Теоретические аспекты загрязнения пищевых продуктов 9
      Источники загрязнения пищевых продуктов тяжёлыми металлами 9
      Загрязнение химическими элементами продовольственного сырья 13
      1.2.1 Ртуть 14
      1.2.2 Свинец 15
      1.2.3 Кадмий 17
      1.2.4 Алюминий 18
      1.2.5 Мышьяк 19
      1.2.6 Медь 20
      1.2.7 Цинк 21
      1.2.8 Олово 22
      1.2.9 Железо 24
      Классификация и методы определения тяжелых металлов в пищевых продуктах 26
      Понятие и методы качественного и количественного анализа 26
      Качественный анализ 26
      Количественный анализ 29
      Классификация и характеристика методов исследования пищевых продуктов 33
      Физические и физико-химические методы 33
      Химические и биохимические методы 37
      Микробиологические методы 38
      Физиологические методы 38
      Технологические методы 39
      Методы определения тяжёлых металлов в пищевых продуктах 40
      4.1 Методы определения мышьяка 40
      4.2 Методы определения кадмия 41
      4.3 Методы определения свинца 45
      4.4 Методы определения ртути 45
      4.5 Методы определения цинка 48
      4.6 Методы определения железа 49
      ЗАКЛЮЧЕНИЕ 52
      СПИСОК ЛИТЕРАТУРЫ 54

      Файлы: 1 файл

      Kursovaya_Metody_opredelenia_soderzhania_tyzhellyж.docx

      Все еще широко применяется дитизон-колориметрический метод для качественного и количественного определения цинка. Окрашенный комплекс экстрагируют органическим растворителем и сравнивают со стандартами аналогично приготовленным раствором цинка. Предел определения составляет 0,7 мг/л.

      Наиболее широко в настоящие время применяется метод атомно-абсорбционный спектрофотомерии. Метод чувствителен, и при этом другие элементы практически не мешают определению.

      Также определяю цинк согласно стандартной методики определения по ГОСТ 26У34–86.

      Средне содержание и ПДК цинка в пищевых продуктах приведены в таблице 3.

      Таблица 3.Среднее содержание и ПДК цинка в пищевых продуктах

      Среднее содержание, мг/кг

      Какао–порошок и шоколад

      Маргарины и жиры

      Грибы свежие, консервированные

      4.6 Методы определения железа

      Железо – необходимый элемент в жизнедеятельности человека, однако при повышенных содержаниях оно токсично. Установлено, что при потреблении железа >200 мг в день наступает гепатический сидероз. Железо является еще более сильным окислителем, чем медь, и вызывает такие же нежелательные явления. Поэтому часто железо в продуктах нормируют на более низком уровне, чем это необходимо по токсикологическим показателям (например, в жирах и маслах 1,5—5 мг/кг). Много содержится в бобовых растениях и в печени и почках животных (250—400 мг/кг). В напитках при хранении в металлической незащищенной таре из черного металла содержание железа может достигать 7мг/кг и выше.

      Озоление образцов, содержащих железо, проводят при температуре (500–600) ºС, иногда – до 800 ºС. Окислители обычно не добавляют, однако азотная кислота и нитриты ускоряют окисление. При озолении образцов, содержащих хлориды, теряется некоторое количества железа [11, c. 95–97].

      Железо в биологических материалах легко определяют колориметрическими, спектрофотометрическими и другими инструментальными методами. Способность переходных металлов образовывать окрашенные комплексы используются во многих колориметрических методах. Низкие концентрации железа легко определить методами пламенной и беспламенной атомно-абсорбционной спектрофотометрии. Наиболее эффективными обычно бывает воздушно–ацетиленовое пламя, при этом другие неорганические вещества не создают помех. Перед анализом образцы подвергаются либо кислотной минерализации, либо озоляются с последующим растворением в разбавленной кислоте. Однако при непосредственном анализе жидких пищевых продуктов возникают трудности, связанные с вязкостью и поверхностным натяжением жидкости (растительного масла), а также с наличием в них растворенной углекислоты (пиво). Для решения этих проблем можно использовать метод добавок, а также дегазацию напитков, содержащих углекислый газ.

      Имеются данные, что при атомно-абсорбционном определении присутствие в растворе лимонной кислоты в концентрации 200 мг/л снижает абсорбцию более чем на 50 %. Увеличение высоты пламени и добавление фосфорной кислоты позволяют устранить это действие. Было установлено, что применение пламени закись азота-ацетилена позволяет устранить практически все помехи.

      На сегодняшний день самыми современными и точными методами анализа пищевых продуктов являются колориметрический метод с использованием различных соединений, пламенная и беспламенная атомно-абсорбционная спектрометрия, вольтамперометрия, нейтронно-активационный анализ, а также пламенная фотометрия. Эти методы анализа позволяют определить такие тяжёлые металлы, как железо, свинец, кадмий, ртуть, цинк и др.

      На организм человека и животных физиологическое действие металлов различно и зависит от природы металла, типа соединения, в котором он существует в природной среде, а также его концентрации. Многие тяжелые металлы проявляют выраженные комплексообразующие свойства. Так, в водных средах ионы этих металлов гидратированы и способны образовывать различные гидроксокомплексы, состав которых зависит от кислотности раствора. Если в растворе присутствуют какие-либо анионы или молекулы органических соединений, то ионы этих металлов образуют разнообразные комплексы различного строения и устойчивости. В ряду тяжелых металлов одни крайне необходимы для жизнеобеспечения человека и других живых организмов и относятся к так называемым биогенным элементам. Другие вызывают противоположный эффект и, попадая в живой организм, приводят к его отравлению или гибели.

      Курсовая работа Тяжелые металлы, как один из важных социальных и медицинских аспектов окружающей среды

      Кадмий, цинк и медь являются наиболее важными металлами при изучении проблемы загрязнений, так они широко распространены в мире и обладают токсичными свойствами. Кадмий и цинк (так же как свинец и ртуть) обнаружены в основном в сульфидных осадках. В результате атмосферных процессов эти элементы легко попадают в океаны. В почвах содержится приблизительно 4,5х10 –4 %. Растительность содержит различное количество обоих элементов, но содержание цинка в золе растений относительно высоко –0,14;, так как этот элемент играет существенную роль в питании растений. 17

      Тяжелые металлы как биогенные элементы 26

      Отравление ртутью 32

      Разлитие ртути 35

      Ртуть: влияние на клинико-биологические свойства человеческого организма 35

      Отравление свинцом 41

      Свинцовая интоксикация 42

      Отравление кадмием 45

      Отравление никелем 47

      Отравление таллием 48

      Отравление висмутом 49

      Отравление кобальтом 50

      Отравление мышьяком 51

      Отравление стронцием 53

      Отравление барием 54

      Отравление медью 54

      Природное содержание марганца в растениях, животных и почвах очень высоко. Основные области производства марганца – производство легированных сталей, сплавов, электрических батарей и других химических источников тока. Присутствие марганца в воздухе сверх нормы (среднесуточная ПКД марганца в атмосфере – воздухе населённых мест – составляет 0,01 мг/м3) вредно влияет на организм человека, что выражается в прогрессирующем разрушении центральной нервной системы. Марганец относится ко II классу опасности. 56

      Список литературы 60

      Введение


      При кажущейся ясности понятия "тяжелые металлы" его значение следует определить более четко из-за встречающихся в литературе неоднозначных оценок. Термин "тяжелые металлы" связан с высокой относительной атомной массой. Эта характеристика обычно отождествляется с представлением о высокой токсичности. Одним из признаков, которые позволяют относить металлы к тяжелым, является их плотность. В современной цветной металлургии различают тяжелые цветные металлы - плотность 7,14-21,4 г/см3 (цинк, олово, медь, свинец, хром и др.) и легкие цветные металлы - плотность 0,53-3,5 г/см3 (литий, бериллий и др.).

      Согласно одной классификации, к группе тяжелых металлов принадлежит более 40 элементов с высокой относительной атомной массой и относительной плотностью больше 6. По другой классификации, в эту группу включают цветные металлы с плотностью большей, чем у железа (свинец, медь, цинк, никель, кадмий, кобальт, олово, сурьма, висмут, ртуть).

      Согласно сведениям, представленным в "Справочнике по элементарной химии" под ред. А.Т.Пилипенко (1977), к тяжелым металлам отнесены элементы, плотность которых более 5 г/см3. Если исходить их этого показателя, тяжелыми следует считать 43 из 84 металлов Периодической системы элементов. Среди этих 43 металлов 10 обладают наряду с металлическими свойствами признаками неметаллов (представители главных подгрупп VI, V, IV, III групп Периодической системы, являющиеся р-элементами), поэтому более строгим был бы термин "тяжелые элементы", но в данной публикации мы будем пользоваться общепринятым в литературе термином "тяжелые металлы".

      Таким образом, к тяжелым металлам относят более 40 химических элементов с относительной плотностью более 6. Число же опасных загрязнителей, если учитывать токсичность, стойкость и способность накапливаться во внешней среде, а также масштабы распространения указанных металлов, значительно меньше.

      Термин тяжелые металлы, характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы. В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

      В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение, активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg.

      Формально определению тяжелые металлы соответствует большое количество элементов. Тяжелыми металлами являются хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьма, теллур, вольфрам, ртуть, таллий, свинец, висмут. Употребляемый иногда термин "токсические элементы" здесь неудачен, так как любые элементы и их соединения могут стать токсичными для живых организмов при определенной концентрации и условиях окружающей среды.

      Однако, по мнению исследователей, занятых практической деятельностью, связанной с организацией наблюдений за состоянием и загрязнением окружающей среды, соединения этих элементов далеко не равнозначны как загрязняющие вещества. Поэтому во многих работах происходит сужение рамок группы тяжелых металлов, в соответствии с критериями приоритетности, обусловленными направлением и спецификой работ. Так, в ставших уже классическими работах Ю.А. Израэля в перечне химических веществ, подлежащих определению в природных средах на фоновых станциях в биосферных заповедниках, в разделе тяжелые металлы указаны Pb, Hg, Cd, As. С другой стороны, согласно решению Целевой группы по выбросам тяжелых металлов, работающей под эгидой Европейской Экономической Комиссии ООН и занимающейся сбором и анализом информации о выбросах загрязняющих веществ в европейских странах, только Zn, As, Se и Sb были отнесены к тяжелым металлам. По определению Н. Реймерса отдельно от тяжелых металлов стоят благородные и редкие металлы, соответственно, остаются только Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg. В прикладных работах к числу тяжелых металлов чаще всего добавляют Pt, Ag, W, Fe, Au, Mn.

      Немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов [3, 6, 8, 10, 12, 16, 20 ].

      Прежде всего, представляют интерес те металлы, которые наиболее широко и в значительных объемах используются в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.

      Читайте также: