Углекислый газ с металлами

Обновлено: 17.05.2024


Общие химические свойства углекислого газа: CO2 инертен, то есть химически не активен; при попадании в водный раствор легко вступает в реакции.
Большинство кислотных оксидов устойчивы к высоким температурам, но углекислота при их воздействии восстанавливается.

Взаимодействие с другими веществами:

1) Углекислота относится к кислотным оксидам, то есть в сочетании с водой образуется кислота. Однако угольная кислота неустойчива и распадается сразу. Эта реакция имеет обратимый характер:

Диоксид углерода + вода ↔ угольная кислота

Молекула угольной кислоты

Молекула угольной кислоты

2) При взаимодействии углекислого газа и соединений азота с водородом (аммиаком) в водном растворе происходит разложение до углеаммонийной соли.

Аммиак + углекислота = гидрокарбонат аммония

Углеаммонийная соль

Углеаммонийная соль

Полученное вещество часто используется в приготовлении хлеба и различных кондитерских изделий.

3) Ход некоторых реакций должен поддерживаться высокими температурами. Примером является производство мочевины при 130 °C и давлении 200 атм., схематически изображаемое так:

Аммиак + диоксид углерода → карбамид + вода

Также под воздействием температуры около 800 градусов протекает реакция образования оксида цинка:

Цинк + двуокись углерода → оксид цинка + оксид углерода

4) Возможно уравнение с гидроксидом бария, при котором выделяется средняя соль.

Гидроксид бария + углекислота = карбонат бария + оксид водорода.

Применяется для регулировки калориметров по теплоемкости. Также вещество используют в промышленности для производства красных кирпичей, синтетических тканей, фейерверков, гончарных изделий, плитки для ванн и туалетов.

5) Углекислый газ выделяется при реакциях горения.

Горение газа

Горение газа на плите

Метан + кислород = углекислота + вода (в газообразном состоянии) + энергия

Этилен + кислород = диоксид углерода + оксид водорода + энергия

Этан + кислород = двуокись углерода + вода + энергия

Молекула этанола

Молекула этанола

Этанол + кислород = вода + углекислота + энергия

6) Газ не поддерживает горения, этот процесс возможен только с некоторыми активными металлами, например, магнием.

Магний + углекислота = углерод + оксид магния.

MgO активно применяется при производстве косметических средств. Вещество используют в пищевой промышленности как пищевую добавку.

7) Двуокись углерода реагирует с гидроксидами с получением солей, которые существуют в двух формах, как карбонаты и бикарбонаты. Например, углекислый газ и гидроксид натрия, согласно формуле, образуют гидрокарбонат Na:

диоксид углерода + гидроксид натрия → гидрокарбонат натрия.

Или же при большем количестве NaOH образуется карбонат Na с образованием воды:

Диоксид углерода + гидроксид натрия → карбонат натрия + вода

Кислотно-щелочные реакции углекислоты используются на протяжении веков для затвердевания известкового раствора, что может быть выражено простым уравнением:

Гидроксид кальция + двуокись углерода → карбонат кальция + оксид водорода

Схема образования глюкозы

Образование глюкозы

Диоксид углерода + вода → глюкоза + кислород.

9) Химические свойства углекислоты используются в промышленности при производстве соды, суть этого процесса можно выразить суммарным уравнением:

Хлорид натрия + Диоксид углерода + аммиак + вода → гидрокарбонат натрия + хлорид аммония

10) Фенолят Na разлагается при взаимодействии с углекислым газом, при этом малорастворимый фенол выпадает в осадок:

Фенолят натрия + двуокись углерода + оксид водорода = фенол + гидрокарбонат натрия

11) Пероксид натрия и углекислый газ, взаимодействуя, образуют среднюю соль карбоната Na с выделением кислорода.

Пероксид натрия + углекислота → карбонат натрия + кислород

Колба с веществом

Колба с пероксидом натрия

Образование углекислоты происходит при растворении в воде кальцинированной соды (стиральной соды).

Гидрокарбонат натрия + вода → углекислота + вода + гидроксид натрия
При этой реакции (гидролиз по катиону) образуется сильнощелочная среда.

12) CO2 вступает в реакцию с гидроксидом калия, последний образуется путем электролиза хлористого калия.

Гидроксид калия + углекислота → карбонат калия + вода

13) Газ в силу своего строения не реагирует с благородными газами, то есть гелием, неоном, аргоном, криптоном, ксеноном, радоном, оганесоном.

Заключение

Мы привели большую часть химических реакций, в которых участвует CO2. Ученые всего мира пытаются решить проблему увеличения концентрации углекислоты в воздухе, не без помощи реакций с другими веществами, которые известны химикам. А какие химические формулы взаимодействия углекислого газа знаете вы?





Экологическая обстановка в мире давно уже перестала радовать земные экосистемы. Множество заводов, без которых



Углекислый газ, имея универсальные свойства, используется в промышленности, медицине, сельском хозяйстве. Сегодня CO2 –

Углекислый газ - взаимодействии его с атмосферой и природой.

Спасибо, что указали на ошибку. Исправили.

Скажите пожалуйста На производстве углекислоты мы заменили на комрессорном агрегате старый охладитель углекислого газа с трубками из нержавейки на новый, с латунными трубками. То есть в начале этих трубок охладителя Углекислый газ будет под давлением 16 бар и температурой 130 градусов, на выходе + 10 градусов, всё это с выделением конденсата. Не будет ли какой-то непредвиденной реакции в зоне взаимодействия уг. газа, латуни и воды? Охладитель работает хорошо, но не разрушаться ли трубки от коррозии?

Необходимо определиться для начала, откуда поступает к вам углекислый газ, какие еще газы поступают вместе с углекислым газом в охладитель. У нас, в энергетическом производстве, на определенном участке пароводяного тракта установлены латунные трубки, в которых происходит нагрев теплоносителя. Мы производим замеры растворенного кислорода в конденсате перед подачей его на подогреватели с трубками из латуни. В нашем случае большая концентрация кислорода в воде, при нагревании последней, приводит к коррозии латунных трубок.

Здравствуйте Вячеслав. Углекислый газ поступает с брожения пивного сусла. Углекислый газ (у.г.) сжимается компрессором и при t 130* подаётся на теплообменник (т.о.). хладоносителем t -4*. На латунных стенках т.о. образуется конденсат который отделяется от у.г. в конденсатоотводчике. Содержание кислорода в конденсате не должно быть большим, если вообще не минимальное. После установки нового т.о. конденсатоотводчик стал забиваться непонятной серой массой похожей на мокрый графит. Компрессор разбирали — проблема не в нём (думали одно из графитовых колец размолотило). Разбирать и осматривать т.о. более трудоёмкий процесс.

Затрудняюсь вам ответить на этот вопрос, надо изучать состав газа на входе в теплообменник. Возможно образование угольной кислоты в теплообменнике. А при наличии кислорода кислота может вызывать коррозию, но это не точно.

Углекислый газ и его физические свойства — объем, плотность, масса, формула


Молекула CO2

Молекула углекислого газа

Углекислый газ представляет собой бесцветный газ, без запаха,который относится к неорганическим веществам. Другие названия вещества — диоксид углерода, двуокись углерода, углекислота, диоксид карбона, угольный ангидрид. Молекула углекислого газа состоит из атома углерода, соединенного двойной ковалентной связью с двумя атомами кислорода.

электронная формула CO2

Электронная формула диоксида углерода

Химическая формула — CO2. Молярная масса углекислоты равна 44,01 г/моль. Расстояние от центра центрального атома углерода до каждого центра атома кислорода равно 116,3 пикометров (10 в -12 степени).

Структурная формула молекулы CO2

Структурная формула молекулы

CO2 при низких температурах и нормальном давлении замерзает и кристаллизуется в белую массу, похожую на снег — «Сухой лед». При превышении температуры (-78.5 °C) начинается его испарение (кипение), минуя фазу жидкостного состояния.

В жидкостное состояние газ преобразуется при высоком давлении (73.8 атм.) и средних температурах (+31.1 °C). Это критическая точка углекислоты. Подъем температуры или давления после нее приводит к образованию сверхкритической жидкости (Отсутствует различие между жидкостной и газовой фазой). При снижении температуры до -56.6 °C и давления до 5.2 атм. он остается в жидкостной фазе. Это предельные значения, при изменении которых углекислота переходит в газообразную или твердую фазу (тройная точка состояний).

Фазовые изменения углекислоты

CO2 не ядовит, но при превышении концентрации в десятки раз, он оказывает удушающее воздействие на живые организмы и вызывает кисловатый вкус и запах (реакция CO2 со слюной и слизистыми образует угольную кислоту).

Двуокись углерода превышает по плотности кислород на 37 процентов и равна 1,96 кг/м3 при нормальных условиях среды (температура — 273 К, давление — 101 кПа). Этим физическим свойством объясняется потеря сознания у животных в «Собачьей пещере», расположенной рядом с городом Поццуоли, Италия. Диоксид углерода скапливался из трещин кратеров в нижних слоях пещеры, тем самым достигая больших концентраций. Туристов приводили туда обычно с собакой, которая в пещере с течением времени теряла сознание. Человек обычно не подвергался воздействию CO2, так как дышал воздухом с более высокого уровня.

Плотность углекислоты, воздуха и кислорода.

Плотность углекислоты, воздуха и кислорода.

Объем углекислого газа в окружающем нас воздухе, составляет 0,04% (406 ppm – 406 частиц на миллион).

Углекислый газ в промышленности, его получение и применение


Углекислый газ, имея универсальные свойства, используется в промышленности, медицине, сельском хозяйстве. Сегодня CO2 – это удобрение в сельском хозяйстве, медицинский инструмент, регулятор температуры и источник новой энергии.

Получение в промышленности

Получение диоксида углерода в промышленности методологически разнообразно. Он находится в дымовых отходах, выпускаемых в атмосферу ТЭЦ и электростанциями, получается при брожении спирта и выступает как продукт реакции с природными карбонатами.

Электростанция

Индустрия получения двуокиси углерода широка. Газ можно абсорбировать несколькими способами из одного источника. Во всех случаях это поэтапный процесс очистки от примесей (для достижения требований ГОСТа) и достижения нужной консистенции, агрегатного состояния.

Получение газообразной двуокиси углерода

Газообразный CO2 извлекают из промышленных (нефтяных) дымов путем адсорбции моноэтаноламина (коммерчески выгодно) и карбонатом калия (редко). Принцип сбора частиц углерода одинаков для обоих веществ. Они направляются по трубопроводу к отходам и собирают в себя углекислый газ. После сбора, насыщенные углекислотой газы направляются на очистку.

В специальных емкостях происходит реакция в при повышенной температуре или заниженном давлении. В процессе высвобождается чистая углекислота и продукты распада (аммиак и другие).

Установка добычи CO2

Установка добычи углекислоты

Схематически процесс выглядит так:

  1. Отходящий дым смешивается с адсорбентами (газообразным карбонатом калия или моноэтаноламином);
  2. Накопившие в себе двуокись углерода газы поступают в специальный газгольдер для очистки;
  3. В реакции с высокой температурой или низким давлением происходит отделение углекислого газа от адсорбента.

В лаборатории извлечь много CO2 не получается. Но это возможно в реакции с гидрокарбонатами и кислотами. В отдельности CO2 можно выделить на промышленных станках для получения кислорода, аргона или азота. Углекислый газ здесь выступает как побочный продукт. Хранится он в специальных баллонах, поставляемых потребителю.

Получение жидкой углекислоты

Добыча жидкой углекислоты поэтапно связана с получением ее из газа. Из летучего газообразного состояния, при обработке водородом, раствором перманганата калия и углем, образуется жидкая двуокись.

Сжижение происходит из-за низкого давления, сопровождающего реакцию. После многоступенчатой очистки, жидкий диоксид углерода попадает в компрессор. Там он сжимается и подается для сушки в 2 адсорбера, поочередно перенимающие работу для восстановления. Параллельно сжатая жидкость очищается от запахов и переводится в конденсатор, а оттуда – на хранение.

Схема производства CO2

Этот метод сжижения применяется для газов спиртового брожения. Он актуален для пропана, бутана и т.д. Его используют на крупных пивоварнях, а получаемая очищенная углекислота имеет высокие показатели качества.

Получение твердого диоксида углерода

Твердый диоксид образуют из жидкого путем обработки низкой температурой (-56°). В промышленных условиях только 20% переходят в твердое состояние, а остальные – испаряются.

Порядок извлечения углекислотных кристаллов (сухого льда):

  1. Из емкости брожения газ переходит в емкость для промывки;
  2. В газгольдере после мытья он сжимается и сжижается;
  3. Многократно сжимаясь и нагреваясь, газообразный углерод охлаждается в специальных холодильниках;
  4. Жидкость очищается активированным углем;
  5. Поступает в холодильник, где охлаждается и дополнительно очищается от примесей;
  6. Охлажденный CO2 направляется на испарение и пресс, где комплектуется сухой лед.

Применение в промышленности

Применение углекислого газа в различных областях промышленности связано с химическими и физическими свойствами вещества. Он не горит, не опасен в минимальных концентрациях для человека и животных и является основным компонентом для жизнедеятельности растений.

Применение Диоксида углерода

Химическая промышленность:

  • Участвует в синтезе искусственных химикатов;
  • Регулирует температуру в реакциях;
  • Нейтрализует щелочи;
  • Очищает ткани животных и растений;
  • Может восстанавливаться до метана.

Металлургия:

  • Осаждение отходящего дыма;
  • Регулирует направления течения воды при отводе шахт;
  • Некоторые лазеры используют CO2 в качестве источника энергии (неон).

Производство бумаги:

  • Регулирует водородный показатель в древесной массе или целлюлозе;
  • Усиливает в мощности производственные машины.

Особую роль в промышленной и смежных индустриях играет сухой лед. Он применяется как:

  • Источник охлаждения в морозильных камерах при перевозках;
  • Охлаждение при затвердевании сплавов;
  • Очистка сухим льдом оборудования (криобластинг).

Применение в других сферах деятельности

Человек также использует углекислоту в других областях деятельности и в быту. Доступность диоксида обуславливает его широкую распространенность, а свойства – востребованность даже среди обывателей.


Схема применения углекислоты

Где еще применяется углекислота:

  • При сварке. Защищает металл от нагрева и окисления, обтекая электрическую дугу.
  • В сельском хозяйстве. Углекислый газ в купе с солнечным светом – идеальный способ удобрить любые культуры. Распыление газа в парнике или теплице увеличивает урожайность в 2-3 раза;
  • В медицине служит для создания атмосферы, близкой к реальной, при проведении искусственных операций на органах. Он применяется как стимулятор для восстановления дыхания пациента и при введении его в наркоз;
  • Фармацевтика. Создает идеальную среду для синтеза химии и низкотемпературной транспортировки вод;
  • Приборы и оборудование. Охлаждает оборудование и агрегаты без разбора на модули, выступает как абразивный элемент прочистки;
  • Защита окружающей среды. Регулирует показатель водорода в стоках;
  • Пищевая промышленность. Используется как консервант и разрыхлитель теста. Добавляется в напитки, делая их газированными;
  • Для создания давления в пневматическом оружии.

Применение углекислого газа особенно востребовано в системах пожаротушения. Он заполняется в углекислотные газовые огнетушители и при возгорании позволяет изолировать очаг пожара от источника кислорода. Горение не может долго продолжаться без подпитки воздухом, а газификация углекислотой не даст ему проникнуть к огню.

Различные виды огнетушителей

Получаемый в малом количестве от спиртового брожения используется как способ газировки напитков. Он также уберегает муку, сухофрукты, арахис от насекомых, не влияя на качество и скорость их порчи.

Углекислый газ – первоклассная среда для разведения цветов, подкормки овощей и подводных растений. Он ускоряет фотосинтез и улучшает обменные процессы в растительных клетках. Главное – имеет доступную цену даже для обывателей.

Теплица с цветами

Диоксид углерода может применяться и в криодеструкции, в качестве заморозки. Он сжигает холодом поверхность бородавок и родинок, заставляя их отваливаться, но не оставлять шрамов от скальпеля и швов.

Заключение

Углекислый газ – простое и распространенное по всей планете вещество, играющее практическую функцию в ключевых отраслях деятельности. Без него не обходится промышленность, медицина, пищевая отрасль и даже простой человеческий быт.

Схема пути диоксида углерода

С недавних пор CO2 применяется как основа для производства источника топлива (метанола). Популярность набирает способ использования в качестве возобновляемого геотермального источника энергии, способного увеличить производство электроэнергии и сократить выбросы газа в атмосферу.

Углерод. Химия углерода и его соединений


Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение углерода

Электронная конфигурация углерода в основном состоянии :

+6С 1s 2 2s 2 2p 2 1s 2p

Электронная конфигурация углерода в возбужденном состоянии :

+6С * 1s 2 2s 1 2p 3 1s 2p

Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома углерода — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства

Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.

Алмаз — это модификация углерода с атомной кристаллической решеткой. Алмаз — самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp 3 -гибридизации.



Графит — это аллотропная модификация, в которой атомы углерода находятся в состоянии sp 2 -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.

Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.



Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.

[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n



Фуллерен — это искусственно полученная модифицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.

Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.


В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).

Качественные реакции

Качественная реакция на карбонат-ионы CO3 2- — взаимодействие солей-карбонатов с сильными кислотами . Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Качественная реакция на углекислый газ CO2 – помутнение известковой воды при пропускании через нее углекислого газа:

При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:


Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.

Углекислый газ СО2 не поддерживает горение . Угарный газ CO горит голубым пламенем.

Соединения углерода

Основные степени окисления углерода — +4, +2, 0, -1 и -4.

Наиболее типичные соединения углерода:

карбиды металлов (карбид алюминия Al4C3)

Химические свойства

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:


Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

ZnO + C → Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Карбиды

Карбиды – это соединения элементов с углеродом . Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.

Например :

Например :

Например :

Это соединения с металлами, при гидролизе которых образуется пропин

Например : Mg2C3

Например :

Например:

СаС2+ 2Н2O →

Пропиниды разлагаются водой или кислотами с образованием пропина и гидроксида или соли

Например:

Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями .

Например , карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газа, оксида кремния (IV) и оксида азота (II):

SiC + 8HNO3 → 3SiO2 + 3CO2 + 8NO + 4H2O

Оксид углерода (II)

Строение молекулы и физические свойства

Оксид углерода (II) («угарный газ») – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.

Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:


Способы получения

В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:

НСООН → CO + H2O

В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:

CO2 + C → 2CO

Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Угарный газ в промышленности также можно получать неполным окислением метана:

Химические свойства

Оксид углерода (II) – несолеобразующий оксид . За счет углерода со степенью окисления +2 проявляет восстановительные свойства.

1. Угарный газ горит в атмосфере кислорода . Пламя окрашено в синий цвет:

2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.

3. Угарный газ взаимодействует с водородом при повышенном давлении . Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.

Например , под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:

4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.

Например , угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:

CO + NaOH → HCOONa

5. Оксид углерода (II) восстанавливает металлы из оксидов .

Например , оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:

Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:

СО + CuO → Cu + CO2

СО + NiO → Ni + CO2

6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.

Например , пероксидом натрия:

Оксид углерода (IV)

Строение молекулы и физические свойства

Оксид углерода (IV) (углекислый газ) — газ без цвета и запаха. Тяжелее воздуха. Замороженный углекислый газ называют также «сухой лед». Сухой лед легко подвергается сублимации — переходит из твердого состояния в газообразное.

Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:

Углекислый газ не горит, поэтому его применяют при пожаротушении.

Молекула углекислого газа линейная , атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:


Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):


Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода — это покупатель в магазине. А атомы кислорода — это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.

Способы получения

В лаборатории углекислый газ можно получить разными способами:

1. Углекислый газ образуется при действии сильных кислот на карбонаты и гидрокарбонаты металлов. При этом взаимодействуют с кислотами и нерастворимые карбонаты, и растворимые.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Еще один пример : гидрокарбонат натрия реагирует с бромоводородной кислотой:

2. Растворимые карбонаты реагируют с растворимыми солями алюминия, железа (III) и хрома (III) . Карбонаты трехвалентных металлов необратимо гидролизуются в водном растворе.

Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:

3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.

Например , карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:

Химические свойства

Углекислый газ — типичный кислотный оксид . За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства .

1. Как кислотный оксид, углекислый газ взаимодействует с водой . Реакция очень сильно обратима, поэтому мы считаем, что в реакциях угольная кислота распадается почти полностью при образовании.

2. Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями . При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами . При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.

Например , гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:

При избытке щелочи образуется средняя соль, карбонат калия:

Помутнение известковой воды — качественная реакция на углекислый газ:

Видеоопыт взаимодействия гидроксида кальция (известковая вода) с углекислым газом можно посмотреть здесь.

3. Углекислый газ взаимодействует с карбонатами . При пропускании СО2 через раствор карбонатов образуются гидрокарбонаты.

Например , карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:

4. Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями .

Например , углекислый газ взаимодействует с углеродом с образованием угарного газа:

CO2 + C → 2CO

Магний горит в атмосфере углекислого газа:

2М g + CO 2 → C + 2 MgO

Видеоопыт взаимодействия магния с углекислым газом можно посмотреть здесь.

Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.

Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:

Карбонаты и гидрокарбонаты

При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).

Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:

Гидрокарбонаты при нагревании переходят в карбонаты:

Качественной реакцией на ионы СО3 2─ и НСО3 − является их взаимодействие с более сильными кислотами , последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО2.

Например , карбонат натрия взаимодействует с соляной кислотой:

Гидрокарбонат натрия также взаимодействует с соляной кислотой:

NaHCO3 + HCl → NaCl + CO2 ↑ + H2O

Гидролиз карбонатов и гидрокарбонатов

Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Читайте также: