Упругая и пластическая деформация металлов

Обновлено: 20.09.2024

Деформацией называется изменение формы и размеров тела под действием напряжений.

Напряжение – сила, действующая на единицу площади сечения детали.

Напряжения и вызываемые ими деформации могут возникать при действии на тело внешних сил растяжения, сжатия и т.д., а также в результате фазовых (структурных) превращений, усадки и других физико-химических процессов, протекающих в металлах, и связанных с изменением объема.

Металл, находящийся в напряженном состоянии, при любом виде нагружения всегда испытывает напряжения нормальные и касательные (рис. 6.1.).

Рис.6.1. Схема возникновения нормальных и касательных напряжений в металле при его нагружении

Рост нормальных и касательных напряжений приводит к разным последствиям. Рост нормальных напряжений приводит к хрупкому разрушению. Пластическую деформацию вызывают касательные напряжения.

Деформация металла под действием напряжений может быть упругой и пластической.

Упругой называется деформация, полностью исчезающая после снятия вызывающих ее напряжений.

При упругом деформировании изменяются расстояния между атомами металла в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места, и деформация исчезает.

Упругая деформация на диаграмме деформации характеризуется линией ОА (рис.6.2.).

Рис.6.2. Диаграмма зависимости деформации металла от действующих напряжений

Если нормальные напряжения достигают значения сил межатомных связей, то наблюдается хрупкое разрушение путем отрыва (рис.6.3.)

Рис.6.3. Схема упругой деформации и хрупкого разрушения под действием упругих напряжений а – ненапряженная решетка металла; б – упругая деформация; в, г – хрупкое разрушение в результате отрыва

Зависимость между упругой деформацией и напряжением выражается законом Гука

где: Е - модуль упругости.

Модуль упругости является важнейшей характеристикой упругих свойств металла. По физической природе величина модуля упругости рассматривается как мера прочности связей между атомами в твердом теле.

Эта механическая характеристика структурно нечувствительна, т. е. термическая обработка или другие способы изменения структуры не изменяют модуля упругости, а повышение температуры, изменяющее межатомные расстояния, снижает модуль упругости.

Пластической или остаточной называется деформация после прекращения действия вызвавших ее напряжений.

При пластическом деформировании одна часть кристалла перемещается по отношению к другой под действием касательных напряжений. При снятии нагрузок сдвиг остается, т.е. происходит пластическая деформация (рис.6.4)

В результате развития пластической деформации может произойти вязкое разрушение путем сдвига.

Рис.6.4. Схема пластической деформации и вязкого разрушения под действием касательных напряжений а – ненапряженная решетка; б – упругая деформация; в – упругая и пластическая деформация; г – пластическая деформация; д, е – пластичное (вязкое) разрушение в результате среза

13. Упругая и пластическая деформация металлов

Деформация – это изменение формы и размеров тела, деформация может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. К деформациям относятся такие явления, как сдвиг, сжатие, растяжение, изгиб и кручение.

Упругая деформация – это деформация, которая исчезает после снятия нагрузки. Упругая деформация не вызывает остаточных изменений в свойствах и структуре металла; под действием приложенной нагрузки происходит незначительное обратимое смещение атомов.

При растяжении монокристалла возрастают расстояния между атомами, а при сжатии атомы сближаются. При смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания. После снятия нагрузки смещенные атомы из-за действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние и кристаллы приобретают первоначальные размеры форму.

Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.

Самое малое напряжение вызывает деформацию, причем начальные деформации являются всегда упругими и их величина находится в прямой зависимости от напряжения. Основными механическими свойствами являются прочность, пластичность, упругость.

Важное значение имеет пластичность, она определяет возможность изготовления изделий различными способами обработки давлением. Эти способы основаны на пластическом деформировании металла.

Материалы, которые имеют повышенную пластичность, менее чувствительны к концентраторам напряжений. Для этого проводят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.

Физическая природа деформации металлов

Под действием напряжений происходит изменение формы и размеров тела. Напряжения возникают при действии на тело внешних сил растяжения, сжатия, а также в результате фазовых превращений и некоторых других физико-химических процессов, которые связанны с изменением объема. Металл, который находится в напряженном состоянии, при любом виде напряжения всегда испытывает напряжения нормальные и касательные, деформация под действием напряжений может быть упругой и пластической. Пластическая происходит под действием касательных напряжений.

Упругая – это такая деформация, которая после прекращения действия, вызвавшего напряжение, исчезает полностью. При упругом деформировании происходит изменение расстояний между атомами в кристаллической решетке металла.

С увеличением межатомных расстояний возрастают силы взаимного притяжения атомов. При снятии напряжения под действием этих сил атомы возвращаются в исходное положение. Искажение решетки исчезает, тело полностью восстанавливает свою форму и размеры. Если нормальные напряжения достигают значения сил межатомной связи, то произойдет хрупкое разрушение путем отрыва. Упругую деформацию вызывают небольшие касательные напряжения.

Пластической называется деформация, остающаяся после прекращения действия вызвавших ее напряжений. При пластической деформации в кристаллической решетке металла под действием касательных напряжений происходит необратимое перемещение атомов. При небольших напряжениях атомы смещаются незначительно и после снятия напряжений возвращаются в исходное положение. При увеличении касательного напряжения наблюдается необратимое смещение атомов на параметр решетки, т. е. происходит пластическая деформация.

При возрастании касательных напряжений выше определенной величины деформация становится необратимой. При снятии нагрузки устраняется упругая составляющая деформации. Часть деформации, которую называют пластической, остается.

При пластической деформации необратимо изменяется структура металла и его свойства. Пластическая деформация осуществляется скольжением и двойникованием.

Скольжение в кристаллической решетке протекает по плоскостям и направлениям с плотной упаковкой атомов, где сопротивление сдвигу наименьшее. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая. Плоскости скольжения и направления скольжения, лежащие в этих плоскостях, образуют систему скольжения. В металлах могут действовать одна или одновременно несколько систем скольжения.

Металлы с кубической кристаллической решеткой (ГЦК и ОЦК) обладают высокой пластичностью, скольжение в них происходит во многих направлениях.

Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой, оно осуществляется в результате перемещения в кристалле дислокаций. Перемещение дислокации в плоскости скольжения ММ через кристалл приводит к смещению соответствующей части кристалла на одно межплоскостное расстояние, при этом справа на поверхности кристалла образуется ступенька.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

БИЧ МЕТАЛЛОВ

БИЧ МЕТАЛЛОВ В мире нет ничего вечного — эту нехитрую истину все знают давно. То, что кажется навеки незыблемым — горы, гранитные глыбы, целые материки, — со временем разрушаются, рассыпаются в пыль, уходят под воду, проваливаются в глубины. Исчезают целые культуры, народы

Свойства металлов и сплавов

Свойства металлов и сплавов В этой главе будет рассказано о металлах, сплавах и их свойствах, что полезно не только для мастеров слесарного дела, но для всех, кто занимается чеканкой, ковкой, художественным литьем (этому посвящены последующие главы).Металл относится к

1. Строение металлов

1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот. Для того чтобы

1. Деформация и разрушение

1. Деформация и разрушение Приложение нагрузки вызывает деформацию. В начальный момент нагружение, если оно не сопровождается фазовыми (структурными) изменениями, вызывает только упругую (обратимую) деформацию. По достижении некоторого напряжения деформация (частично)

2. Механические свойства металлов

2. Механические свойства металлов Механические свойства металлов определяются следующими характеристиками: предел упругости ?Т, предел текучести ?Е, предел прочности относительное удлинение ?, относительное сужение ? и модуль упругости Е, ударная вязкость, предел

3. Способы упрочнения металлов и сплавов

3. Способы упрочнения металлов и сплавов Поверхностное упрочнение металлов и сплавов широко применяется во многих отраслях промышленности, в частности в современном машиностроении. Оно позволяет получить высокую твердость и износостойкость поверхностного слоя при

ЛЕКЦИЯ № 8. Способы обработки металлов

ЛЕКЦИЯ № 8. Способы обработки металлов 1. Влияние легирующих компонентов на превращения, структуру, свойства сталей Легирующие компоненты или элементы, вводимые в стали в зависимости от их взаимодействия с углеродом, находящемся в железоуглеродистых сплавах,

ЛЕКЦИЯ № 11. Сплавы цветных металлов

ЛЕКЦИЯ № 11. Сплавы цветных металлов 1. Цветные металлы и сплавы, их свойства и назначение Ценные свойства цветных металлов обусловили их широкое применение в различных отраслях современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы

32. Деформация в движущейся вязкой жидкости

32. Деформация в движущейся вязкой жидкости В вязкой жидкости имеются силы трения, в силу этого при движении один слой тормозит другой. В итоге возникает сжатие, деформация жидкости. Из-за этого свойства жидкость и называют вязкой.Если вспомнить из механики закон Гука, то

§ 23. Коррозия и эрозия металлов

§ 23. Коррозия и эрозия металлов Коррозией металлов называется их разрушение вследствие химического или электрохимического взаимодействия с внешней средой.Химической коррозией называется процесс разрушения металлов без электрического тока, происходящий в среде сухих

4.16. Химическое окрашивание металлов

4.16. Химическое окрашивание металлов Старинные рецепты. (См. «Наука и жизнь», № 9, 1980).Применяя из старинных журналов некоторые рецепты окрашивания металлов, предупреждаем сразу тех, кто пожелает воспользоваться при работе с такими едкими и ядовитыми веществами, как

7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ

7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ Электроосаждение металла на катоде лежит в основе электрохимического получения металлов из растворов (гидроэлектрометаллургия) или из расплавов, а также рафинирования (очистки) металлов.Металлы, имеющие

7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ

7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ Разработано и широко применяется несколько методов анодной обработки металлов: электрополирование, анодное оксидирование и размерная обработка.Электрохимическое полирование было открыто русским химиком Е.И. Шпитальским в 1910 г. Процесс

17. Теплоемкость и теплопроводность металлов и сплавов

17. Теплоемкость и теплопроводность металлов и сплавов Теплоемкость – это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость – количество энергии, поглощаемой единицей массы при нагреве на один градус. От величины

Пластическая деформация металлов

Деформацией называется изменение размеров и формы тела под действием приложенных сил. Деформация делится на упругую и пластическую.

Упругая деформация. Упругой деформацией называют деформацию, влияние которой на форму, структуру и свойства те­ла полностью устраняется после прекращения действия внешних сил. Упругая деформация не вызывает заметных остаточных из­менений в структуре и свойствах металла; под действием приложенной нагрузки происходит только незначительное относи­тельное и полностью обратимое смещение атомов.

Пластическая деформация. При возрастании касательных напряжений выше определенной величины (предел или порог упругости) деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации. Часть же деформации, которую называют пластической, остается.

Пластическая деформация в кристаллах может осущест­вляться скольжением и двойникованием. Скольжение (смеще­ние) отдельных частей кристалла относительно друг друга про­исходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины (τк).

Схема упругой и пластической деформаций металла с куби­ческой структурой, подвергнутого действию касательных напряжений, показана на рис. 18. Эта схема дает наглядное представление о смещении атомов в соседних плоскостях при сдви­ге на одно межатомное расстояние.

Скольжение в кристаллической решетке протекает по плос­костям, и направлениям с наиболее плотной упаковкой атомов где величина сопротивлению сдвигу (τк) наименьшая, а сама величина τ значительна. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая.

Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической дефор­мации. Металлы, имеющие кубическую кристаллическую ре­шетку, обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с гексаго­нальной плотноупакованной структурой менее пластичны и поэтому труднее, чем металлы с кубической структурой, подда­ются прокатке, штамповке и другим способам деформации.

Процесс скольжения не следует, однако, представлять как одновременное передвижение одной части кристалла относи­тельно другой. Такой жесткий или синхронный сдвиг потребовал бы напряжений, в сотни или даже тысячи раз превышающих те, при которых в действительности протека­ет процесс деформации.


Рис. 18. Схема упругой и пластической деформации металла под действием напряжения сдвига:

а – первоначальный кристалл; б – упругая деформация; в – увеличение упругой и пластической деформации, вызванных скольжением, при нагружении, большем предела упругости; г – напряжения, обусловившие появление сдвига (после сдвига сохранилась остаточная деформация); д – образование двойника.


Рис. 19. Движение краевой дислокации, приводящее к образованию ступеньки единичного сдвига на поверхности кристалла:

а – схема движения дислокации; б – краевая дислокация в кристаллической структуре; в – дислокация переместилась на дно; г – на два межатомных расстояния в решетке под влиянием приложенного напряжения; д – выход дислокации на поверхность и появление сдвига.

Скольжение осуществляется в результате перемещения в кристалле дислокаций, что показано на рис. 19. Чтобы дислокация из исход­ного положения 1 переместилась в соседнее положение 14, не нужно сдвигать всю верхнюю половину кристалла на одно меж­атомное расстояние.

Достаточно, чтобы произошли следующие перемещения атомов: атом 1 в положение атома 2, атом 3 — в 4, атом 5 — в 6, атом 7 — в 8, атом 9 — в 10, атом 11 — в 12, атом 13 — в 14, атом 15 — в 16 и атом 17 — в 18. Также смещаются атомы не только в плоскости чертежа, но и во всех атомных слоях, параллельных этой плоскости.

Незначительные перемещения атомов в области дислокации приводят к перемещению дислокаций на одно межатомное расстояние.

Следует иметь в виду, что перемещение дислокаций, образовавшихся в процессе кристаллизации, ограничено. Большие деформации возможны только вследствие того, что движение этих дислокаций вызыва­ет появление или размножение большого количества новых дислокаций в процессе пластической деформации.

Двойникование. Пластическая деформация некоторых метал­лов, имеющих плотноупакованные решетки К12 и Г12, помимо скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования. Двойникование подобно скольжению сопровождается прохождением дислокаций сквозь кристалл.

При большой деформации в результате процессов скольжения зерна (кристаллиты) меняют свою форму. До деформации зерно имело округлую форму, после дефор­мации в результате смещений по плоскостям скольжения зерна вытягиваются в направлении действующих сил τ, образуя во­локнистую или слоистую структуру. Одновременно с изменением формы зерна внутри него происходит дробление блоков и увеличение угла разориентировки между ними.

Текстура деформации. При большой степени деформации возникает преимущественная кристаллографическая ориенти­ровка зерен. Закономерная ориентировка кристаллитов относи­тельно внешних деформирующих сил получила название тек­стуры (текстура деформации).

Наклеп. С увеличением степени де­формации свойства, характеризующие сопротивление деформации (σв, σт, НВ и др.), повышаются, а способность к пластической деформации — пластич­ность (δ и φ) уменьшается. Это явление роста упрочнения получило название наклепа. Упрочнение металла в процессе пластической деформации (наклеп) объясняется увеличением числа де­фектов кристаллического строения (дислокаций, вакансий, межузельных атомов).

Все дефекты кристалличе­ского строения затрудняют движение дислокаций, а следовательно, повышают сопротивление дефор­мации и уменьшают пластичность. Наибольшее значение имеет, увеличение плотности дислокаций, так как возникающее при этом взаимодействие между ними тормозит дальнейшее их перемещение. В результате деформации уменьшается плотность, сопротивление коррозии и повышается электросопротивление. Холодная деформация ферромагнитных металлов, например железа, повышает коэрцитивную силу и уменьшает магнитную про­ницаемость.

Свойства пластически деформированных металлов.

В результате холодного пластического деформирования металл упрочняется и изменяются его физические свойства — электросопро­тивление, магнитные свойства, плотность. Наклепанный металл за­пасает 5-10% энергии, затраченной на деформирование. Запасенная энергия тратится на образование дефектов решетки (например, плот­ность дислокаций возрастает до 10 9- 10 12 см -2 ) и на упругие искажения решетки. Свойства наклепанного металла меняются тем сильнее, чем больше степень деформации (рис. 20).

При деформировании увеличиваются проч­ностные характеристики (твердость;σв; σ0,2; σупр) и понижаются пластичность и вязкость (δ; φ; ан). Металлы интенсивно наклепываются в начальной стадии деформи­рования, после 40%-ной дефор­мации механические свойства меняются незначи­тельно. С увеличением степени деформации пре­дел текучести растет быстрее предела прочности (временного сопротивления).

Обе характери­стики у сильно наклепанных металлов сравниваются, а удлинение становится равным нулю. Такое со­стояние наклепанного металла яв­ляется предельным, при попытке про­должить деформирование металл разрушается.

Путем наклепа твердость и временное сопротивле­ние (предел прочности) удается повысить в 1,5-3 раза, а предел текучести — в 3-7 раз при максимально возможных де­формациях. Металлы с ГЦК-решеткой упрочняются силь­нее металлов с ОЦК-решеткой. Среди сплавов с ГЦК-решеткой сильнее упрочняются те, у которых энергия дефектов упаковки минимальна (например, интенсивно наклепываются аустенитная сталь; алюминиевая бронза с 7% А1; никель; а алюминий упрочняется незначительно).

Упрочнение при наклепе широко используют для повышения ме­ха­нических свойств деталей, изготовленных методами холодной обра­ботки давлением. В частности, наклеп поверхностного слоя деталей повышает сопротивление усталости. Понижение пластичности при наклепе исполь­зуют для улучшения обрабатываемости резанием вяз­ких и пластичных материалов (сплавов алюминия, латуней и др.).

Влияние нагрева на структуру и свойства холоднодеформированных металлов.

Неравновесная структура, созданная холодной деформацией у боль­шинства металлов устойчива при комнатной температуре. Переход металла в более стабильное состояние происходит при нагреве. Процессы, происходящие при нагреве подразделяют на две основ­ные стадии: возврат и рекристаллизацию; обе стадии сопровождаются выделением теплоты и уменьшением свободной энергии. Возврат про­исходит при относительно низких температурах, рекристаллизация — при более высоких.

Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микроструктуры деформированного металла, т. е. размер и форма кристаллов при возврате не изменяются.

Рекристаллизацией называют зарождение и рост новых кристал­лов с меньшим количеством дефектов строения; в результате рекри­сталлизации образуются совершенно новые, чаще всего, равноосные кристаллы.

Возврат. Стадию возврата, в свою очередь, разделяют на две возможные стадии: отдых и полигонизацию. Отдых при нагреве деформи­рованных металлов происходит всегда, а полигонизация развивается лишь при определенных условиях.

Отдыхом холоднодеформированного металла называют стадию воз­врата, при которой вследствие перемещения атомов уменьшается коли­чество точечных дефектов, в основном вакансий; в ряде металлов, таких как алюминий и железо, отдых включает также переползание дислокаций, которое сопровождается взаимодействием дислокаций разных знаков и приводит к заметному уменьшению их плотности. Перераспределение дислокаций сопровождается также уменьшением остаточных напряжений.

Отдых вызывает значительное уменьшение удельного электросопротивления и повышение плотности металла. Если при отдыхе уменьшается плотность дислокаций, то наблюдается уменьшение твердости и прочности металла (алюминий, железо); если плотность дислокаций при отдыхе не меняется, то отдых не сопровож­дается изменением механических свойств (медь, латунь, никель).

Полигонизация — это процесс разделения деформиро­ванных зерен металла на полигоны — области с малой плотностью дислокаций. Эти области называются бло­ками. Процесс полигонизации протекает в интервале температур отдых — рекристаллизация и заканчивается созданием блочной структуры.

Полигонизация приводит к дальнейшему снятию упру­гих искажений кристаллической решетки и более полно­му восстановлению физических свойств металла. Меха­нические свойства его при этом изменяются незначитель­но. Текстура сохраняется, хотя и становится блочной.

Вслед за возвратом протекает рекристаллизация, за­ключающаяся в зарождении и росте новых неискажен­ных равноосных зерен (рис. 21).

При первичной рекристаллизациив деформированной среде зарождаются и растут равноосные зерна до тех пор, пока полностью не исчезнет текстура, созданная деформацией. Зародышами зерен являются отдельные энергетически выгодные блоки (центры рекристаллиза­ции). После исчезновения текстуры металл приобретает равновесную мелкозернистую структуру.

Суммарная протяженность границ мелких зерен ве­лика. Граничные зоны зерен представляют собой тонкие (в несколько атомных слоев) сильно искаженные облас­ти, так как здесь сопрягаются кристаллические решетки различно ориентированных стыкующихся зерен, сюда стекаются точечные дефекты и дислокации. Поэтому граничные зоны зерен и характеризуются высокими зна­чениями энергии (поверхностной энергии), которая уменьшается за счет округления зерен и дальнейшего их роста путем фронтального перемещения граничных зон растущих зерен и поглощения мелких.

Атомы из мелких зерен диффундируют через границу в растущие зерна, отчего первые постепенно исчезают, а вторые разраста­ются. В результате число зерен структуры металла умень­шается, а их размеры увеличиваются. Рост одних равно­осных зерен за счет исчезновения других представляет собой собирательную рекристаллизацию.

Температура начала рекристаллизации зависит от многих факторов и прежде всего от степени деформации материала и содержания примесей в нем. Определено, что

где Трекр— абсолютная минимальная температура рекри­сталлизации; α — коэффициент, учитывающий вышепере­численные факторы; Тпл — абсолютная температура плав­ления данного вещества.

Минимальная температура рекристаллизации железа и других металлов технической чистоты определяется по формуле А. А. Бочвара:

Термическая операция, заключающаяся в нагреве де­формированного (текстурованного) материала до темпе­ратуры выше Трекр, выдержке и последующем медленном охлаждении (в печи), называется рекристаллизационным отжигом.


Рис. 21. Влияние нагрева на механические свойства и структуру металла, упрочненного деформацией.

Практически температура рекристаллизационного от­жига выбирается выше расчетной (обычно на 200. 300°С), так как чем выше температура нагрева, тем быстрее про­текает рекристаллизация, характеризующаяся, в частно­сти, уменьшением твердости металла. Для же­леза и низкоуглеродистой стали температура рекристал­лизационного отжига принимается равной 650. 700°С.

Для того чтобы в металле при нагреве протекала ре­кристаллизация, необходима его хотя бы минимальная предварительная холодная обработка (критическая сте­пень деформации εкр для железа равна 5. 6 %, для мало­углеродистой стали — 7. 15, для меди — около 5, для алюминия — 2. 3 %).

При рекристаллизации после де­формирования материала с εкр зерно растет в нем особен­но сильно и может увеличиться по сравнению с исходным во много раз. Выбирая степень деформации и температу­ру рекристаллизационного отжига, можно получить в металле зерно нужного размера. Рекристаллизационный отжиг широко используют для управления формой и раз­мерами зерен, текстурой и свойствами металлов и сплавов.

Создание текстуры и наклеп возможны только в слу­чае холодного деформирования металла. Обработка дав­лением называется холодной, если она совершается при температурах ниже температуры рекристаллизации, горячей — при температу­рах выше температуры рекристаллизации.

При горячей обра­ботке давлением одно­временно с пластиче­ской деформацией ме­талла протекает рекри­сталлизация, которая продолжается и после деформации до тех пор, пока температура ме­талла не станет ниже Трекр. При этом в металлах не возникает текстура и они не наклепываются. Такая обработка широко используется при производстве горячекатаного стального полуфабриката различного профиля.

Упругие и пластические деформации металлов

Упругая деформация металлов– деформация, влияние которой на форму, структуру и свойства тела полностью устраняется после прекращения действия внешних сил, когда размеры и форма тела после снятия нагрузки восстанавливается мгновенно, со скоростью звука, т.е. она проявляется за короткий промежуток времени. Она характеризуется упругими изменениями кристаллической решетки. Упругая деформация не вызывает заметных остаточных изменений в структуре и свойствах металла; под действием приложенной нагрузки происходит только незначительное смещение атомов или поворот блоков кристалла. При растяжении монокристалла возрастают расстояния между атомами, а при сжатии — сближаются. При таком смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания, поэтому после снятия нагрузки смещенные атомы вследствие действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние, и кристаллы приобретают свою первоначальную форму и размеры.

Пластическая деформация металлов - приводит к остаточным изменениям формы и размеров тела. Пластическая деформация может осуществляться скольжением и двойникованием.

Скольжение (смещение) отдельных частей кристалла относительно друг друга происходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины. Смещение происходит по системам скольжения, причем с изменением температуры деформации системы скольжения могут изменяться.

Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации. Металлы, имеющие кубическую кристаллическую решетку, обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с плотноупакованной структурой менее пластичны и поэтому труднее, чем металлы с кубической структурой, поддаются прокатке, штамповке и другим способам деформации.

Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой. Такой жесткий, или синхронный, сдвиг потребовал бы напряжений, в сотни или даже тысячи раз превышающие те, при которых в действительности протекает процесс деформации.



Двойникование. Пластическая деформация некоторых металлов, помимо скольжения может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования.

Изменение структуры поликристаллического металла при пластической деформации. Пластическая деформация поликристаллического металла протекает аналогично деформации монокристалла - путем сдвига (скольжения) пли двойникования. Формоизменение металла при обработке давленном происходит в результате пластической деформации каждого зерна. При этом следует иметь в виду, что зерна ориентированы не одинаково, п полому пластическая деформация по может протекать одновременно н одинаково во всем объеме поликристалла.

Первоначально под микроскопом на предварительно полированных и деформированных образцах можно наблюдать следы скольжения в виде прямых линий, эти линии одинаково ориентированы в пределах отдельных зерен.

При большой деформации в результате процессов скольжения зерна (кристаллиты) меняют свою форму. До деформации зерно имело округлую форму, после деформации в результате смещения по плоскостям скольжения зерна вытягиваются в направлении действующих сил, образуя волокнистую или слоистую структуру. Одновременно с изменением формы зерна внутри нею происходит дробление блоков.[5], [6]

Деформация металла: виды, описание процессов


Деформация металла происходит под воздействием силы, прилагаемой человеком или им же, но при помощи станка. Она может быть направлена снаружи и изнутри. В результате происходит сжатие металла, его растяжение, изгиб или кручение.

Процессы деформирования металла изучаются в таких областях науки, как кристаллография, материаловедение, физика твердого тела. Специалисты анализируют причины деформации и предлагают варианты по их исключению во время рабочего процесса. Это позволяет избежать большого количества брака.

Упругая и пластическая деформация металлов

Деформация металла бывает нескольких видов и зависит от того, как реагирует металл на приложенное к нему усилие.

Расстояние между атомами может увеличиваться под действием сил растяжения или уменьшатся, когда на металл влияют силы сжатия. В каждом из этих случаев атомы выходят из состояния равновесия, следовательно, изменяется баланс сил притяжения и электростатического отталкивания.

Упругая и пластическая деформация металлов

Однако после того, как нагрузка снимается, все процессы либо приходят в норму и кристаллы возвращаются к своим начальным параметрам и форме, либо так и остаются в измененном состоянии.

Вид деформации, исчезающей после устранения нагрузки, называется упругой. В результате такой нагрузки атомы смещаются незначительно, что не приводит к изменению свойств и структуры металла.

Если следы внешнего воздействия остаются и процесс деформации металла носит необратимый характер, речь идет о пластической деформации.

Причиной деформации металла может стать даже незначительное напряжение. При этом в начале воздействия и до определенных значений прилагаемых усилий деформации всегда бывают упругими. Прочность, пластичность и упругость – это основные механические свойства металла.

Разнообразие способов изготовления изделий в результате обработки давлением зависит от показателя пластичности. Данные способы основаны на характеристиках пластической деформации.

Такое качество, как повышенная пластичность металлов, определяет их сниженную степень чувствительности к концентраторам напряжения. Следовательно, при использовании разных металлов в производстве необходимо проводить их сравнительный анализ по данному показателю, а также контролировать качество материалов в процессе работы.

Параметры изделия под действием напряжения могут меняться. Это результат воздействия на него сил, прилагаемых извне, приводящих к напряжению или сжатию, а также фазовых преобразований и физико-химических процессов, являющихся следствием изменения объема детали.

Поскольку сила, действующая на металл, может возникать под разным углом, напряжение металла будет характеризоваться как нормальное или касательное. Появившаяся в итоге деформация может оказаться пластической и упругой. Пластическая деформация металлов и сплавов связана с действием касательных напряжений.

Особенности упругой деформации металла

Каждый металл имеет свои пределы упругости. От величины упругости зависит то, насколько сможет изменить форму и свойства детали прилагаемая сила. Процессы деформации металлов проходят по-разному.

Для того чтобы охарактеризовать способность металла противостоять растяжению и сжатию, используется специальный показатель, который называется модулем Юнга, или модулем продольной упругости.

Особенности упругой деформации металла

Металлы с высоким модулем продольной упругости относятся к категории эластичных. Они способны вернуться в свое исходное состояние после того, как напряжение исчезнет. Возникшая нагрузка вызывает лишь незначительное и обратимое смещение атомов или поворотов блоков кристалла.

Таким образом, упругая деформация не приводит к заметным изменениям в структуре эластичного металла.

Например, рассматривая процесс изгиба стального листа, можно следующим образом описать механизм деформации металла: изначально существующие связи сжимаются и растягиваются, но процент возникших изменений не приведет к относительному перемещению атомов. Упругая деформация обеспечит восстановление связей между ними после того, как напряжение будет устранено. Однако результат воздействия напряжения может проявиться спустя некоторое время.

Свойства эластичных металлов могут быть изменены или утрачены при возникновении определенных условий. Пластичность материала уменьшится, он станет хрупким и уязвимыми. Так, при резких перепадах температур свои пластические свойства теряет олово.

Встречаются случаи аллотропических превращений, когда белое β-олово переходит в состояние серого α-олова и материал рассыпается. Изменения также могут произойти в результате контакта с металлом определенных химикатов, воздействие которых также негативно сказывается на свойствах упругости.

Повысить уровень эластичности можно за счет увеличения количества углерода. Например, для того чтобы обеспечить необходимые характеристики автомобильных рессор, для их изготовления используют специальные марки стали, соответствующие ГОСТ 14959-2016, содержание углерода в которых 0,62–0,70 %. Если необходима сталь с более высокой упругостью, выбирают марки с повышенным содержанием марганца и кремния.

Виды пластической деформации металла

В соответствии с теорией дислокации приложенная к кристаллам нагрузка приводит к тому, что смешение их частей относительно друг друга фиксируется не по всей площади скольжения. Оно возникает в месте дефекта кристалла и продвигается при меньшем усилии, приложенном извне, чем при единовременном скользящем движении целого блока атомов.

Виды пластической деформации металла

Теоретические и фактические значения напряжений часто не совпадают. Разница между ними может быть очень существенной. Для меди она составляет от 1540 МПа до 1 МПа, а для железа от 2300 МПа до 29 МПа. В качестве причины такого расхождения можно назвать имеющиеся в материале структурные дефекты, вблизи которых происходит первоначальная локализация сдвига. Впоследствии появившийся сдвиг начинает распространяться и двигается совместно с дефектом.

Плотноупакованные плоскости кристаллической решетки чаще всего становятся местами появления дислокаций. Усиление нагрузки приводит к тому, что в движение приходят дислокации плоскости скольжения с максимальными касательными напряжениями.

Пластическое течение начинается при определенном условии: касательное напряжение должно быть выше уровня критического значения, величина которого определяется первоначальной структурой деформируемого металла. Определить количественные и качественные параметры процесса пластической деформации металла можно, зафиксировав учет историй его деформирования.

Определить вид пластической деформации металлов можно исходя из того, каким образом двигаются кристаллы под воздействием приложенных усилий. Их движение может носить характер скольжения и двойникования.

Процесс скольжения

Данный вид пластической деформации идеального кристалла можно рассматривать как основной. Скольжение происходит в тех плоскостях, где присутствует самая высокая плотность расположения атомов. Движение направлено туда, где расстояния между атомами самые близкие.

Количество плоскостей может быть разным. Так, в гексагональной решетке такая плоскость представлена в единственном числе. Она располагается в основании, где присутствует максимальное количество атомов. Металлы, имеющие такую решетку, не отличаются высокой степенью пластичности.

Несколько плоскостей можно насчитать в решетках кубической формы. Это обстоятельство положительно сказывается на пластичности материалов с таким строением.

Процесс пластической деформации металлов зарождается в конкретных плоскостях скольжения. Внешняя сила здесь должна быть направлена в определенное место и под определенным углом. Для того чтобы произошла пластическая деформация металлов и сплавов в результате растяжения или сжатия, плоскость должна располагаться по отношению к линии воздействия внешней силы под углом 45°.

Скольжение представляет собой сдвиговый деформационный процесс. Это можно подтвердить следующим экспериментом: нагрузить отполированный образец из моно- или поликристалла.

После достижения определенного уровня нагрузки на поверхности металла возникает сетка из линий скольжения, которые называют линиями Чернова – Людерса. Именно они позволят увидеть произошедший сдвиг между различными частями образца.

Процесс двойникования

Этот процесс представляет собой сдвиг некоторых областей кристалла в положение, соответствующее зеркальному отражению областей, оставшихся в прежнем виде. Возникающая в результате деформация металла может расцениваться как незначительная.

Разные механизмы двойникования могут способствовать появлению образований, которые:

  • представляют собой зеркальную переориентацию структуры материнского кристалла в определенной плоскости;
  • появляются вследствие поворота матрицы на определенный угол вокруг кристаллографической оси.

Данный вид пластической деформации характерен для кристаллов, которые имеют:

  • гексагональную решетку (магний, кадмий, титан, цинк);
  • объемно-центрированную решетку (железо, молибден, ванадий, вольфрам).

Расположенность к двойникованию возрастает параллельно с увеличением темпов деформации и снижением температур.

Такие металлы, как медь и алюминий, имеют гранецентрированную решетку, и двойникование в этом случае может быть следствием отжига заготовки, приведшего к ее пластическому деформированию.

Виды холодной деформации металла

Холодная деформация позволяет сохранить деформированную структуру материала, подвергшегося обработке давлением. Не утрачиваются при этом и последствия наклепа, то есть упрочнения металла при пластической деформации.

Виды холодной деформации металла

К основным способам холодной деформации металлов можно отнести:

  • холодную прокатку;
  • волочение;
  • холодную листовую штамповку.

Эти способы холодной пластической деформации металлов относятся к категории энергетически затратных и сопровождаются высокой степенью износа рабочих инструментов, поэтому в чистом виде используются нечасто.

В процессе холодной деформации ухудшаются пластические свойства металлов, а их твердость при этом возрастает. Процесс изменения физических и механических свойств происходит из-за глубоких структурных преобразований. Твердый деформированный металл становится хрупким. Возрастает уровень его предрасположенности к коррозии, уменьшается электропроводность, повышается растворимость в кислотах и т. д.

Упрочнение металла при холодной деформации может стать следствием характерного для этого процесса явления, которое называется «наклеп». Возникает он самопроизвольно и всегда прямо пропорционален степени холодной деформации: чем она выше, тем больше наклеп. Но его устойчивость может быть обеспечена только при низких температурах.

Стадии разрушения металла в процессе деформации

Высокие напряжения усиливают процесс деформации и способствуют разрушению металлов, основной причиной которых являются трещины. После того как трещина зарождается, она начинает распространяться через сечения и в итоге происходит окончательное разрушение материала.

Зарождаются трещины в результате сосредоточения находящихся в движении дислокаций перед каким-либо препятствием, из-за чего напряжение достигает уровня, достаточного для того, чтобы металл начал трескаться. После того как размер трещины становится критическим, ее дальнейший рост происходит произвольно.

Острая и разветвленная трещина характерна для хрупкого разрушения. Она разрастается с огромной скоростью, и процесс протекает практически моментально. Хрупкое разрушение характеризуется очень маленькой энергоемкостью, при этом работа процесса распространения трещины почти нулевая.

Также трещины могут образоваться из-за транскристаллитного и хрупкого интеркристаллитного разрушения. В первом случае они распространяются по телу зерна, а во втором – по границам зерен.

В результате хрупкого разрушения образуется блестящий кристаллический излом с ручьистым строением, плоскость которого перпендикулярна нормальным напряжениям. Образовавшаяся трещина распространяется по нескольким параллельно расположенным плоскостям.

Вязкое разрушение возникает в результате среза, произошедшего под действием касательных напряжений, которому предшествует существенная пластическая деформация.

Тупая раскрывающаяся трещина характеризуется большой величиной пластической зоны, расположенной перед ней. Распространяется она медленно и имеет высокие показатели энергоемкости. Это связано с затратами энергии, необходимыми для образования поверхностей раздела. Поверхность излома неровная, матовая. Его плоскость расположена под определенным углом.

Чтобы определить степень пластичности металла, следует сопоставить пределы его прочности и текучести. Чем больше разница между ними, тем выше пластичность. У хрупких металлов эти показатели практически равны, а значит, процесс их разрушения почти не связан с пластической деформацией.

Совпадение пределов текучести и прочности может произойти и в случае нагрева металлов до высоких температурных значений.

Понимать причины и механизмы деформации и разрушения металлов крайне важно, ведь от этого зависит безопасность возводимых конструкций и надежность работы механизмов. Поэтому данный вопрос должен быть объектом постоянного изучения, в результате чего можно будет предупреждать возможные ошибки и просчеты, экспериментальным путем находить наилучшие варианты решений поставленных задач.

Для улучшения качества и увеличения скорости работ, вы всегда можете воcпользоваться нашими верстаками собственного производства от компании VTM

Читайте также: