Усиление стен металлическими тяжами

Обновлено: 04.10.2024

При реконструкции жилых зданий со стенами из кирпичной кладки возникает необходимость восстановления несущей способности или усиления элементов кладки вследствие увеличения нагрузок от надстраиваемых этажей. При длительной эксплуатации зданий наблюдаются признаки разрушения простенков, столбов и кладки стен в результате неравномерных осадок фундаментов, атмосферных воздействий, протечек кровли и др.

Процесс восстановления несущей способности кладки следует начинать с исключения основных причин трещинообразования. Если этому процессу способствует неравномерная осадка здания, то следует исключить это явление известными и описанными ранее методами.

До принятия технических решений по усилению конструкций важно оценить фактическую прочность несущих элементов. Эта оценка выполняется методом разрушающих нагрузок, фактической прочности кирпича, раствора, а для армированной кладки - предела текучести стали. При этом необходимо наиболее полно учитывать факторы, снижающие несущую способность конструкций. К ним относятся трещины, локальные повреждения, отклонения кладки от вертикали, нарушение связей, опирания плит и т.п.

Что касается усиления кирпичной кладки, то накопленный опыт реконструкционных работ позволяет выделить ряд традиционных технологий, основанных на использовании: металлических и железобетонных обойм, каркасов; на инъецировании полимерцементных и других суспензий в тело кладки; на устройстве монолитных поясов по верхней части зданий (в случаях надстройки), предварительно напрягаемых стяжек и др. решений.

На рис. 6.40 приведены характерные конструктивно-технологические решения. Представленные системы направлены на всестороннее обжатие стен с использованием регулируемых натяжных систем. Они выполняются открытого и закрытого типов, при внешнем и внутреннем расположении, обеспечиваются антикоррозионной защитой.


Рис. 6.40. Конструктивно-технологические варианты усиления кирпичных стен
а - схема усиления кирпичных стен здания металлическими тяжами; б , в, г - узлы размещения металлических тяжей; д - схема размещения монолитного железобетонного пояса; е - то же, тяжами с центрирующими элементами: 1 - металлический тяж; 2 - натяжная муфта: 3 - монолитный железобетонный пояс; 4 - плита перекрытий; 5 - анкер; 6 - центрирующая рама; 7 - опорная пластинка с шарниром

Для создания требуемой степени натяжения используются стяжные муфты, доступ к которым должен быть всегда открыт. Они позволяют по мере удлинения тяжей в результате температурных и других деформаций производить дополнительное натяжение. Обжатие элементов кирпичных стен производится в местах наибольшей жесткости (углы, сопряжения наружных и внутренних стен) через распределительные пластины.

Для равномерного обжатия кладки стен используется специальная конструкция центрирующей рамы, которая имеет шарнирное опирание на опорно-распределительные пластины. Такое решение обеспечивает длительную эксплуатацию с достаточно высокой эффективностью.

Места расположения тяжей и центрирующих рам закрываются различного рода поясами и не нарушают общий вид фасадных поверхностей.

Для элементов стен, простенков, столбов, имеющих разрушения кирпичной кладки, но не потерявших устойчивость,производится местная замена кладки. При этом марка кирпича принимается на 1-2 единицы выше, чем существующая.

Технология производства работ предусматривает: устройство временных разгрузочных систем, воспринимающих нагрузку; разборку фрагментов нарушенной кирпичной кладки; устройство кладки. При этом необходимо учитывать, что удаление временных разгрузочных систем должно осуществляться после набора прочности кладки не менее 0,7 R КЛ . Как правило, такие восстановительные работы ведутся при сохранении конструктивной схемы здания и фактических нагрузок.

Весьма эффективны приемы восстановления неоштукатуренной кирпичной кладки, когда требуется сохранить прежний вид фасадов. В этом случае очень тщательно подбираются кирпич по цветовой гамме и размерам, а также материал швов. После восстановления кладки производится пескоструйная очистка, что позволяет получать обновленные поверхности, где новые участки кладки не выделяются из основного массива.

В связи с тем что каменные конструкции воспринимают в основном сжимающие усилия, то наиболее эффективным способом их усиления является устройство стальных, железобетонных и армоцементных обойм. При этом кирпичная кладка в обойме работает в условиях всестороннего сжатия, когда поперечные деформации значительно уменьшаются и, как следствие, увеличивается сопротивление продольной силе.

Расчетное усилие в металлическом поясе определяется по зависимости N = 0,2 RKJl × l × b , где RKJl - расчетное сопротивление кладки скалыванию,тс/м 2 ; l - длина участка усиливаемой стены, м; b - толщина стены, м.

Для обеспечения нормальной работы кирпичных стен и предотвращения дальнейшего раскрытия трещин первоначальным этапом является восстановление несущей способности фундаментов методами усиления, исключающей появление неравномерных осадок.

На рис. 6.41 приведены наиболее распространенные варианты усиления каменных столбов и простенков стальными, железобетонными и армоцементными обоймами.


Рис. 6.41. Усиление столбов стальной обоймой (а), армокаркасами (б), сетками и железобетонными обоймами (в, г) 1 - усиливаемая конструкция; 2 - элементы усиления; 3 -защитный слой; 4 - щитовая опалубка с хомутами; 5 - инъектор; 6 - материальный шланг

Стальная обойма состоит из продольных уголков на всю высоту усиливаемой конструкции и поперечных планок (хомутов) из плоской или круглой стали. Шаг хомутов принимается не более меньшего размера сечения, но не более 500 мм. Для включения обоймы в работу следует инъецировать зазоры между стальными элементами и кладкой. Монолитность конструкции достигается путем оштукатуривания высокопрочными цементно-песчаными растворами с добавкой пластификаторов, способствующих большей адгезии с кладкой и металлоконструкциями.

Для более эффективной защиты на стальную обойму устанавливается металлическая или полимерная сетка, по которой осуществляется нанесение раствора толщиной 25-30 мм. При незначительных объемах работ раствор наносится вручную с помощью штукатурного инструмента. Большие объемы работ выполняются механизированным путем с подачей материала растворонасосами. Для получения высокопрочного защитного слоя используются установки торкретирования и пнев-мобетонирования. Из-за высокой плотности защитного слоя и большой адгезии с элементами кладки достигается совместная работа конструкции и повышается ее несущая способность.

Устройство железобетонной рубашки осуществляется путем установки арматурных сеток по периметру усиливаемой конструкции с креплением ее через фиксаторы к кирпичной кладке. Крепление осуществляется путем использования анкеров или дюбелей. Железобетонная обойма выполняется из мелкозернистой бетонной смеси не ниже класса В10 с продольной арматурой классов А240-А400 и поперечной - А240. Шаг поперечной арматуры принимается не более 15 см. Толщина обоймы определяется расчетом и составляет 4-12 см. В зависимости от толщины обоймы существенно меняется технология производства работ. Для обойм толщиной до 4 см используются методы нанесения бетона торкретированием и пневмобетонированием. Окончательная отделка поверхностей достигается устройством штукатурного накрывочного слоя.

Для обойм толщиной до 12 см по периметру усиливаемой конструкции устанавливается инвентарная опалубка. В ее щитах устанавливаются инъекционные трубки, через которые мелкозернистая бетонная смесь нагнетается под давлением 0,2-0,6 МПа в полости. Для повышения адгезионных свойств и заполнения всего пространства бетонные смеси пластифицируются путем введения суперпластификаторов в объеме 1,0-1,2 % массы цемента. Снижение вязкости смеси и повышение ее проницаемости достигаются дополнительным воздействием высокочастотной вибрации путем контакта вибратора с опалубкой рубашки. Достаточно хороший эффект дает импульсный режим подачи смеси, когда кратковременные воздействия повышенного давления обеспечивают более высокий градиент скоростей и высокую проницаемость.

Железобетонные обоймы могут выполняться в виде элементов несъемной опалубки (рис. 6.42). При этом наружные поверхности могут иметь мелкий или глубокий рельеф или гладкую поверхность. После установки несъемной опалубки и крепления ее элементов обеспечивается замоноличивание пространства между усиливаемой и ограждающей конструкцией. Использование несъемной опалубки имеет значительный технологический эффект, так как отпадает необходимость в разборке опалубки, а главное - исключается отделочный цикл работ.


Рис. 6.42. Усиление столбов с использованием опалубки-облицовки из архитектурного бетона 1 - усиливаемая конструкция; 2 - армокаркас; 3 - элементы облицовки; 4 - бетон омоноличивания

Наиболее эффективными несъемными опалубками следует считать тонкостенные элементы (1,5-2 см), изготовленные из дисперсно-армированного бетона. Для вовлечения опалубки в работу она снабжается выступающими анкерами, существенно повышающими адгезию с укладываемым бетоном.

Устройство растворных обойм отличается от железобетонных толщиной наносимого слоя и составом. Как правило, для защиты арматурной сетки и обеспечения ее адгезии с кирпичной кладкой используются штукатурные цементно-песчаные растворы с добавкой пластификаторов, повышающих физико-механические характеристики. Технология строительных процессов практически не отличается от выполнения штукатурных работ.

Для обеспечения совместной работы элементов обоймы по ее длине, превышающей в 2 и более раз толщину, необходима установка дополнительных поперечных связей через сечение кладки. Усиление кирпичной кладки может быть произведено методом инъецирования. Оно осуществляется путем нагнетания через заранее пробуренные шпуры цементного или полимерцементного раствора. В результате достигается монолитность кладки и повышаются ее физико-механические характеристики.

К инъекционным растворам предъявляются достаточно жесткие требования. Они должны обладать малым водоотделением, низкой вязкостью, высокой адгезией и достаточными прочностными характеристиками. Раствор нагнетается под давлением до 0,6 МПа, что обеспечивает достаточно обширную зону проникновения. Параметры инъекции: расположение инъекторов, их глубина, давление, состав раствора в каждом конкретном случае подбираются индивидуально с учетом трещиноватости кладки, состояния швов и других показателей.

Прочность кладки, усиленной инъецированием, оценивается по СНиП II-22-81* «Каменные и армокаменные конструкции». В зависимости от характера дефектов и вида инъецированного раствора устанавливаются поправочные коэффициенты: тк = 1,1 - при наличии трещин от силовых воздействий и при использовании цементного и полимерцементного растворов; тк = 1,0 - при наличии одиночных трещин от неравномерных осадок или при нарушении связи между совместно работающими стенами; тк = 1,3 - при наличии трещин от силовых воздействий при инъекции полимерных растворов. Прочность растворов должна быть в пределах 15-25МПа.

Усиление кирпичных перемычек достаточно распространенное явление, что связано со снижением несущей способности распорной кладки вследствие выветривания швов, нарушения адгезии и другими причинами.

На рис. 6.43 приведены конструктивные варианты усиления перемычек с использованием различного рода металлических накладок. Они устанавливаются путем пробивки штраб и отверстий в кирпичной кладке и в дальнейшем омоноличиваются цементно-песчаным раствором по сетке.


Рис. 6.43. Примеры усиления перемычек кирпичных стен а , б - путем подведения накладок из уголковой стали; в , г - дополнительными металлическими перемычками из швеллера: 1 - кирпичная кладка; 2 - трещины; 3 - накладки из уголков; 4 - полосовые накладки; 5 - анкерные болты; 6 - накладки из швеллера

Для перераспределения усилий на железобетонные перемычки вследствие увеличения нагрузок на перекрытия используются металлические разгрузочные пояса, выполненные из двух швеллеров и объединенные болтовыми соединениями.

Усиление и повышение устойчивости кирпичных стен. Технология усиления базируется на создании дополнительной железобетонной рубашки с одной или двух сторон стены (рис.6.44). Технология производства работ включает процессы подготовки и очистки поверхности стен, сверления отверстий под анкеры, установки анкеров, крепления к анкерам арматурных стержней или сеток, омоноличивание.

Как правило, при достаточно больших объемах работ используется механизированный метод нанесения цементно-песчаного раствора: пневмобетонированием или торкретированием и реже ручным способом. Затем для выравнивания поверхностей наносится затирочный слой и выполняются последующие операции, связанные с отделкой поверхностей стен.


Рис. 6.44. Усиление кирпичных стен армированием а - отдельными стержнями арматуры; б - арматурными каркасами; в - арматурной сеткой; г - железобетонными пилястрами: 1 -усиливаемая стена; 2 - анкеры; 3 - арматура; 4 - штукатурный или торкрет-бетонный слой; 5 - металлические тяжи; 6 - арматурная сетка; 7 - армокаркас; 8 - бетон; 9 - опалубка

Эффективным приемом усиления кирпичных стен является устройство железобетонных одно- и двусторонних стоек в штрабах и пилястр.

Технология устройства двусторонних железобетонных стоек предусматривает образование штраб на глубину 5-6 см, высверливание сквозных отверстий по высоте стены, крепление с помощью тяжей арматурного каркаса и последующее омоноличивание образовавшейся полости. Для омоноличивания используют цементно-песчаные растворы с пластифицирующими добавками. Высокий эффект достигается при использовании растворов и мелкозернистых бетонов с предварительным домолом цемента, песка и суперпластификатора. Такие смеси кроме большой адгезии обладают свойством ускоренного твердения и высокими физико-механическими характеристиками.

При возведении односторонних железобетонных пилястр требуется устройство вертикальных штраб, в полости которых устанавливают анкерные устройства. К последним осуществляется крепление арматурного каркаса. После его размещения производится установка опалубки. Она выполняется из отдельных фанерных щитов, объединенных хомутами и прикрепляемых к стене с помощью анкеров. Мелкозернистая бетонная смесь нагнетается с помощью насосов поярусно через отверстия в опалубке. Подобная технология применяется при двустороннем устройстве пилястр с той разницей, что процесс крепления щитов опалубки осуществляется с помощью болтов, перекрывающих толщину стены.

5. Методы усиления наземных конструкций зданий и сооружений

Анализ данных по деформациям зданий и сооружений в рассматриваемых условиях показал, что выбор способа усиления несущих конструкций зависит от инженерно-геологических условий (свойств грунтов) и степени их изученности, характера и величины приложенной нагрузки, детальности обследования существующих фундаментов, сохранности существующих конструкций, способа производства работ и типа применяемого оборудования.

Особо опасные деформации происходят в построенных без учета развития неравномерных осадок старых зданиях, получивших повреждения и имеющих многочисленные дефекты, ослабляющие несущие конструкции: трещины в стенах, сдвиги перекрытий и лестничных маршей, перекосы проемов, отклонения стен от вертикали и др.

Исходя из особенностей и характера примыкания принимаются те или иные конструктивные мероприятия, направленные на обеспечение эксплуатационной пригодности существующих зданий: предупредительные проектные решения; предупредительные меры, необходимые при производстве работ; ремонтные меры при возникновении аварийных ситуаций.

Усиление конструкций может выполняться по временной и по постоянной схеме. Временное усиление конструкций применяют в случаях длительного развития деформаций при возникновении аварийных повреждений зданий. По мере стабилизации деформаций временное усиление заменяется постоянным.

Усиление конструкций, как предупредительное, так и восстановительное, выполняется увеличением несущей способности элементов сооружения или изменением конструктивной схемы зданий путем увеличения его пространственной жесткости и прочности.

К настоящему времени разработаны и проверены практикой многочисленные методы восстановления эксплуатационных качеств зданий. Одни методы позволяют усилить надфундаментные конструкции креплением простенков в кирпичных домах, устройством накладных и напряженных поясов, разгрузочных балок, скоб-стяжек и т.п. Другими методами повышают несущую способность основания, реконструируют или усиливают фундамент устройством сплошной фундаментной плиты, расширением или заглублением фундамента, подведением под стены здания свай типа «Мега», набивных, буроинъекционных и т.п., вдавливанием существующих свай с увеличением их длины.

Прежде чем начать работу по усилению отдельных конструкций, необходимо их разгрузить с помощью установки временных опор. Однако здесь нередко допускаются ошибки: нагрузка лежащих выше деформированных конструкций сосредоточенно передается на деформирующийся фундамент и тем самым ухудшаются условия его работы. Нагрузку необходимо перераспределить так, чтобы разгрузить полностью или частично деформирующийся фундамент, т.е. передать ее на надежное основание, иногда через специально выполненные опоры (площадки). За временными опорами необходимо вести постоянные наблюдения и при необходимости подбивать под них клинья или ставить дополнительные разгружающие опоры.

Деформированные простенки между оконными, дверными или иными проемами кирпичных зданий усиливают путем устройства металлических или железобетонных корсетов (обойм). Если выполнено временное крепление лежащей выше кладки, простенки могут быть усилены частичной или полной их перекладкой.

Конструкция металлического корсета состоит из вертикальных стоек уголковой стали с шириной полок 100—120 мм, охватывающих углы простенка, и приваренных к стойкам через определенный интервал горизонтальных планок из полосовой стали толщиной 6—8 мм. Такой корсет почти вдвое повышает несущую способность простенка (рис. 8.3). С внутренней стороны здания части металлического каркаса устраиваются с заглублением в тело простенка и последующим оштукатуриванием борозд. Железобетонный корсет применяется в тех случаях, когда напряжение в рабочем сечении простенка может вызвать разрушение кладки. Стойки такого корсета также могут располагаться в вертикальных бороздах, пробиваемых в кладке простенков.

В тех случаях, когда в конструкциях здания возникают опасные трещины в местах примыкания капитальных стен друг к другу, стены отклоняются от вертикальной плоскости и выпучиваются их отдельные участки, в целях предотвращения дальнейшего развития деформаций устраивают накладные пояса (рис. 8.4). Эти пояса представляют собой систему парных вертикальных анкеров из швеллеров № 12—14, объединенных горизонтальными тяжами из круглой стали диаметром 18—28 мм. Тяжи лучше всего устраивать на уровне железобетонных перекрытий с последующим укрытием их под полами. Натяжение тяжей ведется вручную с помощью муфт, имеющих обратную нарезку. Рассчитываются тяжи по усилию на растяжение кладки. С наружной стороны анкеры и тяжи можно утапливать в штрабу, которая затем оштукатуривается.

В зимнее время не исключена возможность проявления изморози на металлических частях накладных поясов внутри зданий, поэтому на наружной части тяжей необходимо устраивать теплоизолирующие прокладки.

Напряженные пояса конструкции Козлова применяются в тех случаях, когда в стенах зданий возникают трещины со значительным раскрытием и большой протяженностью. Такие пояса придают зданию пространственную жесткость, снимают растягивающие напряжения в кладке и передают их на металл (рис. 8.5).

а — фасад; б — план части здания; в — варианты размещения тяжей; 1 — арматурный тяж диаметром 22 — 32 мм; 2 — штраба

Применение напряженных поясов имеет определенные преимущества по сравнению с другими способами, поскольку они обеспечивают: выравнивание неравномерных деформаций коробки здания; ведение восстановительных работ без нарушения нормальной эксплуатации здания; исключение перекладки значительных участков стен; экономичное расходование металла на восстановление поврежденных стен и здания.

Напряженные пояса состоят из металлических стержней диаметром 22—32 мм, охватывающих поврежденное здание или его отсек на уровне междуэтажных и чердачного перекрытий. Стержни натягивают обычно вручную резьбовыми муфтами. Для установки стержней поясов пробивают горизонтальные штрабы с наружной стороны стен. Стержни крепят к опорным частям, представляющим собой вертикальные уголки № 10—15, установленные на углах или пересечениях стен. Пояса должны быть замкнутыми. Согласно методике Академии коммунального хозяйства им. К.Д. Памфилова, длина большой стороны пояса не должна превышать 1,5 длины короткой. Длинная сторона обычно составляет 15—18 м. Пояс, охватывающий деформированную часть здания, должен быть заведен на неповрежденную часть не менее чем на 1,5 длины деформированного участка.

Сечение тяжей подбирается по усилию, зависящему от расчетного сопротивления кладки на скалывание, толщины стены и ее длины. Сечение стержней, воспринимающих изгибающий момент в стене, назначается таким, чтобы их прочность равнялась прочности кладки, воспринимающей перерезывающую силу:

N = 0,2Rlb ,

где N — усилие в стержне, кН; R — расчетное сопротивление кладки скалыванию, кН/м 2 ; l — длина стены, м; b — толщина стены, м.

Трещины в стенах здания можно укрепить с помощью скоб-стяжек, устанавливаемых на уровне каждого этажа. Назначение таких скоб — перераспределение нагрузки от деформированных участков стен на прочные участки. Такое мероприятие позволяет предотвратить дальнейшее раскрытие трещин. Скоба-стяжка (рис. 8.6) состоит из обрезка швеллера или уголка длиной не менее 2 м, скрепленного со стеной двумя анкерными болтами диаметром 20—22 мм. Анкерный болт располагается на расстоянии не ближе 1 м от трещины.

а — фасад; б — фрагмент усиления, 1 — скоба-стяжка; 2 — разгрузочная балка из швеллера на уровне верха фундамента (на уровне 1-го или подвального этажа), 3 — стяжной болт, 4 — планка-анкер; 5 — бетон марки 100

В отличие от скоб-стяжек, обеспечивающих локальное усиление поврежденного участка стены, разгрузочные балки служат для общего усиления здания. Обычно их устраивают из швеллеров № 22—27 и ставят на уровне верха фундамента или на уровне оконных перемычек первого или подвального этажа (см. рис. 8.6).

Двусторонние разгрузочные балки устанавливают при толщине стен более 64 см и анкеруют болтами диаметром 16—20 мм через 2—2,5 м. Односторонние разгрузочные балки ставят при малой толщине стен и анкеруют полосовым или круглым железом с тем же интервалом, что и двусторонние балки.

Скобы-стяжки и разгрузочные балки устанавливают на цементном растворе в штрабе глубиной не менее ширины полки. По окончании крепления анкеров штраба заполняется бетоном марки 100 с уплотнением. Все металлические детали скоб-стяжек и разгрузочных поясов должны быть покрыты антикоррозионными составами.

Для крупнопанельных зданий в связи с их конструктивными особенностями нужны иные решения по усилению. Для таких зданий предупредительные меры осуществляются введением горизонтального поэтажного армирования (рис. 8.7); усилением крепления плит перекрытий на панелях внутренних и наружных стен (рис. 8.8); устройством консольных опираний перекрытий (рис. 8.8, в); армированием вертикальных стыков и др.

а — анкерами; б — тяжами; 1 — анкер; 2 — стеновая панель; 3 — тяж; 4 — арматурный каркас; 5 — тяжи; 6 — штукатурка по сетке; 7 — металлический уголок

а — вывешиванием перекрытий; б — применением стеновых панелей с консольным уширением; в — установкой ребер жесткости; 1 — металлическая серьга; 2 — балка; 3 — перекрытие; 4 — стеновая панель; 5 — тяж; 6 — трещины, сколы; 7 — консоль; 8 — штукатурка па сетке

Увеличение пространственной жесткости сооружения изменением конструктивной схемы позволяет перераспределить усилия в конструкциях, обеспечив более эффективную их работу. Для этого можно установить дополнительные конструкции в виде стоек, подкосов, порталов, ввести связи, диафрагмы, распорки и др. (рис. 8.9).

Указанные способы в первую очередь применимы для многоэтажных производственных зданий каркасного типа, являются достаточно эффективными и позволяют разгрузить конструкции, получившие повреждения Во всех случаях усиливающие элементы должны быть включены в совместную работу с существующими конструкциями Для этой цели усиливающие элементы обжимают домкратами, подклинивают, заделывают зазоры раствором на расширяющемся цементе и т.п.

Сотников С.Н. Проектирование и возведение фундаментов вблизи существующих сооружений

Что делать если необходимо усиление кирпичных стен (проемов)?


Несмотря на то, что кирпич является прочными и надежным строительным материалом, со временем происходит его постепенное разрушение. Деформироваться может как сам кирпич, так и фундамент здания.

Способы

Если вовремя принять необходимые меры, то можно остановить процесс разрушения кирпичной стены и полностью восстановить функциональность кладки.

Основные причины, по которым начинают деформироваться кирпичные стены:

  • конструктивные ошибки, допущенные во время строительства здания: недостаточная глубина фундамента, неправильный расчет перекрытий, когда несущая способность стен не соответствует оказываемой на них нагрузке;
  • неправильная эксплуатация здания;
  • использование некачественных материалов и неправильных пропорций раствора;
  • ошибки, допущенные на стадии проектирования.
  • неправильное утепление кирпичной стены

Современные строительные технологии позволяют усиливать кирпичные стены, помещая их в такие обоймы:

  1. армированная;
  2. композиционная;
  3. металлическая;
  4. железобетонная.


Чтобы снять усилие, которое разрушает стену, надо учитывать все факторы: марку бетона и раствора, состояние кладки, нагрузку, которая оказывается на стену, процент ее армирования.

Чем больше будет армированных хомутов, тем выше станет прочность кирпичной стены. Если в кирпичной кладке есть трещины, то после ее усиления при помощи обойм, полностью восстанавливается несущая способность стены.

Чтобы оценить размер повреждений, необходимо тщательно очистить трещины от грязи и остатков раствора, после чего промыть водой. Если этого не сделать, а сразу их заделать, то через некоторое время кладка снова начнет разрушаться.

Чтобы добиться максимального результата, надо не только усиливать кирпичную кладку при помощи обойм, но и выполнить инъектирование трещин растворами, которые имеют достаточную вязкость и морозостойкость, а также незначительное водоотделение и усадку, высокую прочность на сжатие и сцепление с поверхностью стены.

Применения армированной обоймы

Для того чтобы усилить стены и не допустить появления новых разрушений, можно выполнить армирование стен. Сделать это можно при помощи арматурных каркасов, металлических стержней или арматурной сетки.


Наиболее простым вариантом является проведение армирования при помощи арматурной сетки, в этом случае, порядок проведения работ будет следующим:

  • фиксировать арматурную сетки на стене можно как с одной ее стороны, так и с обеих;
  • перед этим необходимо просверлить отверстия;
  • для крепления сетки используются сквозные шпильки или сделать это можно при помощи анкерных болтов;
  • после крепления сетки, на нее наносят бетонный раствор, марка которого не должна быть ниже М 100;
  • толщина слоя раствора обычно в пределах 20-40 мм;
  • по высоте углов крепят вспомогательные металлические стержни диаметром 6 мм, от края отступают 25-30 см;
  • если сетка устанавливается только с одной стороны, то используются шпильки или анкера диаметром 8 мм с шагом 60-75 см;
  • если арматурная сетка крепится с обеих сторон стены, то диаметр шпилек не менее 12 мм и их шаг 100-120 см;
  • к анкерам или шпилькам арматурная сетка крепится при помощи сварки или вязальной проволоки.

Создание железобетонного пояса

Этот метод усиления стен отличается небольшими затратами и на его монтаж надо минимум времени. Толщина железобетонной обоймы составляет от 4 до 12 см, для ее создания используется мелкозернистый бетон, арматура, укладываемая в продольном и поперечном направлении.

К стене крепление железобетонной обоймы проводится при помощи фиксаторов, устанавливают ее по периметру здания и таким образом создают арматурную сетку.

Для укрепления стены, созданная железобетонная оболочка должна превышать ее прочность в несколько раз. После установки, железобетонная оболочка берет на себя часть нагрузки, создаваемой на стену, таким образом, она разгружается и прекращается ее повреждение.


Если необходимо сделать обойму толщиной до 40 мм, то она выполняется методом пневмобетонирования и торкретирования, после чего поверхность покрывают штукатуркой.

Если же слой обоймы толщиной до 120 мм, то ее делают при помощи инвентарной опалубки, она устанавливается вокруг ремонтируемой стены на всю ее высоту.

После создания опалубки, в нее вставляют специальные трубки, через которые подают бетонную смесь, имеющую мелкозернистую структуру.

Установка композиционной обоймы


Указанный метод усиления кирпичных стен имеет высокую результативность и эффективность, так как при его проведении применяется высокопрочное стекло или углеволокно. Данное решение позволяет значительно повысить прочность кирпичной кладки на сжатие и на сдвиг.

Выполняется установка композитной обоймы в следующем порядке:

  1. сначала проводится очистка стен, которые будут усиливаться;
  2. кладка пропитывается специальным составом;
  3. подготовленная поверхность грунтуется;
  4. проводится монтаж металлического каркаса;
  5. разбирают временные крепления, но делать это можно, когда новая кладка приобретет не менее 50% своей расчетной прочности;
  6. простенки штукатурят, а затем окрашивают.

Использование композитных материалов позволяет минимально увеличить нагрузку на фундамент, а единственным их недостатком является высокая стоимость.

Укрепление стальными тяжами (обоймами)

Для усиления несущей способности стен, часто применяют стальную обойму. Чтобы создать такую конструкцию, вам понадобится арматура диаметром 12 мм, металлические полосы толщиной 10-12 мм и шириной 40-60 мм, металлические уголки.


По углам площади, которая будет усиливаться, вертикально монтируются металлические уголки, их фиксация выполняется при помощи раствора.

Между хомутами расстояние должно быть не больше 50 мм, а чтобы они лучше сцепились с раствором, уголки закрывают металлической сеткой. Чтобы защитить стальную обойму от коррозии, толщина цементного слоя должна быть в пределах 2-3 см.

[stextbox Если площадь стены большая, то раствор наносят не вручную, а при помощи специального насоса.[/stextbox]

Инъектирование конструктивных элементов

Современным методом усиления стен является инъектирование. Проводится оно следующим образом: в стене пробуриваются отверстия и в ее тело или это может быть выполнено за кирпичную кладку, вводятся цементные эпоксидные или полиуретановые составы.


Раствор попадает в трещину или пустоту, возникшую вследствие разрушения стены, предотвращает их дальнейшее повреждение, укрепляет и обеспечивает полную гидроизоляцию.

При помощи инъектирования стен, можно укрепить кладку, герметизировать появившиеся трещины, защитить стену от негативного действия влаги, провести герметизацию гильз водоводов, в которых размещены коммуникации и т.д.

Советы по усилению проемов в несущих стенах при недостаточной несущей способности

Достаточно часто возникает надо сделать новый проем в несущей стене или укрепить существующий. При выполнении указанных работ, надо придерживаться разработанных технологий и соблюдать существующие нормы:

  • если вы решили сделать проем в несущей стене, то надо придерживаться существующих нормативов, ширина проема в помещении высотой 2,5-3 метра не должна быть больше 2 метров;
  • монтаж проема надо выполнять ближе к середине стены, тогда нагрузка будет распределяться равномерно;
  • если дом многоэтажный, то на нижних этажах ширина проема не должна быть более 90 см;
  • если вы делаете проем в кирпичной стене, то надо предварительно установить опорные контракции;
  • делать проем в кирпичной стене лучше не отбойным молотком, а при помощи алмазной резки, в этом случае получается меньше пыли и шума, а сам проем будет более аккуратным;
  • при создании проема учитывайте, что он должен быть немного больше ширины самой двери или окна, это необходимо для установки коробки.
  • для сокрытия следов усиления можно использовать декоративные панели для имитации кладки

Если вам необходимо укрепить проем в кирпичной стене, то сделать это можно при помощи металлических уголков, двутавров или швеллеров. Эти элементы позволяют равномерно распределить нагрузку и усилить прочность проема.

При использовании швеллера учтите, что у него округлые края, поэтому он будет неплотно прилегать к краям проема. В этом случае, его края надо обтачивать или заливать зазоры специальным раствором.

Оконного проема

Для усиления оконных проемов используют перемычки, которые устанавливают на этапе строительства. Делают перемычки из железобетона, при этом арматура обеспечивает их прочность, а бетон жесткость и сопротивление силам сжатия.


Если возникла необходимость расширить оконный проем, то новая конструкция должна быть обязательно укреплена так же, как это выполняется на этапе строительства дома.

Для усиления оконного проема используются прогоны, которые опираются на специальные выступы. Для создания прогонов могут использоваться швеллера, уголки, промышленные перемычки.

Вывод

Если усиление кирпичной стены выполнено с соблюдением разработанных технологий, то это позволяет полностью восстановить ее функциональность.

Указанные работы надо выполнить вовремя, чтобы не допустить серьезного разрушения здания. Современные методы усиления стен позволяют увеличить их прочность, устойчивость к нагрузкам и деформациям, а также повысить противостояние сейсмологическим факторам.

Полезное видео

Стяжка кирпичного дома армированной обоймой, видео:

Усиление стен тяжами: разновидности и технология выполнения

Кирпич — стройматериал, отличающийся прочностью и надежностью. Но и он с течением времени может подвергаться разрушению. Деформации поддается не только фундаментное сооружение, но и стены частного дома. Требуется своевременно их восстановить. Можно воспользоваться разнообразными способами усиления конструкции, продлевающими срок эксплуатации жилища. Об усилении стен тяжами можно подробнее узнать из этой статьи.

Укрепление стен

Укрепление стен

Причины для укрепления стен

Потребность в усилении капитального строения возникает по нескольким причинам:

  1. После конструктивных ошибок в виде:
    • Нехватки глубины фундаментного сооружения.
    • Неравномерного проседания отдельных частей строения.
    • Любых деформаций, которые возникают в перекрытии.
    • Когда несущая способность здания не соответствует возлагаемым нагрузкам.
  2. В процессе неправильной эксплуатации:
    • Допускается переувлажнение кладочных стен.
    • Проседает основание дома.
  3. Технологические ошибки в процессе возведения стен.

Последние могут по-разному сказываться на долговечности капитального строения. Теряется несущая способность в разной степени воздействия.

Слабая — не более 15 % — вызвана:

  • негативным воздействием существенных порывов ветра;
  • процессом размораживания в несколько циклов;
  • при воздействии огня на поверхность строения с повреждениями глубиной до 5 мм вглубь стен;
  • трещинами наискось и по вертикали, пересекающимися между собой не больше чем в пределах двух порядовок.

Средняя (15- 25%) возникает, когда:

  • кирпичная кладка регулярно выветривается и размораживается;
  • отслаивается облицовка фасада глубиной до 25 %;
  • в процессе воздействия огня повреждается стена глубиной до 20 мм;
  • стена наклоняется и выпучивается в одном этаже не более чем на 1/5 всей ее толщины;
  • по причине нарушения технологии монтажа перемычек и балок под кровлей появляются трещины. Возникает их пересечение;
  • плиты перекрытия смещаются больше чем на 20 мм.

Высокая — больше 50%. Может возникнуть, когда:

  • обрушились стеновые перегородки;
  • поверхность стены подвергалась выветриванию и размораживанию более чем на 40% в отношении ее толщины;
  • после пожара или локального воздействия открытого огня на кладку наблюдается разрушение глубиной больше 60 мм;
  • косые и вертикальные сколы, трещины поднимаются в высоту на 7 порядовок;
  • стены выпучиваются и подвергаются наклону в одном этаже более чем на 1%;
  • стойки смещаются;
  • наблюдается отрыв продольных несущих конструкций от их поперечного аналога;
  • смещение несущих плит более чем на 40 мм.

Важно! Если стена кирпичного сооружения потеряла более 50% прочности, рекомендуется незамедлительно приступать к ее восстановлению. Это разрушенная часть фасада, считающаяся опасной для нахождения людей.

Разновидности методик

Производить усиление кирпичной стены можно по-разному. Все зависит от степени ее разрушения и места размещения дефекта. Но можно выделить общую последовательность выполнения работ:

  1. Произвести ремонт цокольного этажа капитального строения.
  2. Удалить имеющиеся трещины и сколы. Воспользоваться штукатуркой. Выполнить оштукатуривание или ошпаклевывание в зависимости от глубины деформации стены.
  3. Выполнить ремонт и частичное усиление перемычек.
  4. Укрепить отдельные простенки и стойки, которые нуждаются в усилении.
  5. Реализовать пространственную жесткость стеновой кладки.
  6. Разрушенные участки фасада здания локально переложить.
  7. Произвести утепление фасадной части дома.
  8. Заложить или сделать проемы.
  9. Произвести усиление кирпичной кладки методом инъекцирования.

Если в фасаде появились узенькие трещины толщиной до 5 мм или широкие до 4 см (не наблюдается нарушение целостности кладочной поверхности), рекомендуется произвести:

  • расшивку дефекта;
  • ее качественную промывку водой;
  • зачеканивание торкретбетоном.

Если трещина привела к нарушению кладки, специалисты советуют:

  • расчистить трещину;
  • промыть ее водой;
  • заделать торкретбетоном;
  • по длине дефекта делаются небольшие отверстия;
  • в их полость вводятся специальные инъекторы;
  • под определенным давлением через инъекторы производится ввод специализированного строительного состава.

Произвести усиление стены из силикатного кирпича можно посредством различных методик:

  • реализацией обойм на основе армированных составов;
  • укреплением стальными тяжами;
  • выполнением железобетонных обойм по периметру всего строения;
  • использованием композиционных стройматериалов для обойм;
  • усилением кирпичной кладки стальными обоймами.

В процессе выбора методики усиления рекомендуется брать в учет множество факторов:

  • марку применяемого состава для оштукатуривания стен;
  • процент армирования строения;
  • степень разрушения и состояние кладочной поверхности;
  • схематическое изображение приводимых нагрузок на частное сооружение в целом.

Прочностные характеристики кладки полностью зависят от процента ее армирования посредством хомутов.

Во время внешнего осмотра производится оценка состояния стены:

  • количество трещин;
  • их габариты: глубина и ширина;
  • месторасположение дефектов.

Важно! Качественное восстановление прочностных свойств несущих стен производится посредством их усиления обоймами.

Монтаж армированной обоймы

Удалить образовавшиеся трещины и свести к минимуму риск их последующего появления можно собственноручно. На помощь приходит процесс армирования стен.

  • каркасом на основе металлических прутков;
  • цельными стержнями арматуры;
  • арматурной сеткой;
  • пилястрами из железобетона.

Технологический процесс усиления посредством арматурной сетки:

  • установка стройматериала производится с одной или двух сторон. Сетка фиксируется в месте разрушения с небольшим захватом;
  • изначально выполняются специальные отверстия для ее последующего крепления;
  • надежность фиксации возлагается на сквозные шпильки или анкера, вставляемые в подготовленные отверстия;
  • производится нанесение песчано-цементного раствора. Используется цементный порошок марки не менее М 100;
  • рекомендованная толщина нанесения штукатурки составляет 20-40 мм;
  • приступают к креплению вспомогательных стержней сечением 6 мм. Их устанавливают по высоте углов, опустив крепежные элементы на 0,3 м. Обеспечивается надежность процесса усиления кладки;
  • если предполагается односторонняя методика крепления арматурной сетки, применяются анкера сечением 8 мм. Их монтаж по периметру участка производится с интервалом до 0,8 м;
  • двухсторонняя методика размещения сетки требует применения сквозных анкеров сечением 12 мм. Крепежные изделия фиксируются с интервалом до 1,2 м. Их крепят к металлической сетке. Может применяться метод точечной сварки.

Сооружение железобетонного пояса

Усиление фасада на основе силикатного кирпича требует сооружения железобетонного пояса.

Монтаж пояса

Монтаж пояса из железобетона

К положительным качествам пояса относят:

  • скорость выполнения монтажа;
  • невысокую стоимость реализации укрепления.

К негативным сторонам относится увеличение нагрузки на фундаментное сооружение. В процессе сооружения железобетонной конструкции рекомендуется по всему периметру строения выполнить фиксацию арматурной сетки посредством использования специальных фиксаторов.

Важно! Чтобы достичь максимального усиления кирпичной кладки, нужно выполнить такую оболочку, которая по прочностным параметрам превышала бы свойства самой стены.

Основными параметрами эффективности обоймы считаются:

  • состояние кладочной поверхности;
  • прочность бетона;
  • разновидность и степень нагрузки на перекрытия;
  • процент армирования.

Такая разновидность укрепления определенную часть нагрузки берет на себя, тем самым освобождая кладку.

Отличительные черты композиционной обоймы

Методика отличается эффективностью в виду применения высокопрочных волоконных соединений: стекло- и углеволокна. Наблюдается увеличение прочностных характеристик на:

Технологический процесс выполнения строительных манипуляций:

  • Выполняется оценка степени разрушения конструкции.
  • Производится обработка необходимого участка специальной пропиткой.
  • Создается грунтовой состав для упрочнения покрытия.
  • Монтируют металлический каркас.
  • Производится разборка временных сооружений.

Важно! Времянки удаляются исключительно после набора 50% прочности кладки в сравнении с показателями согласно проектной документации.

  • Выполняется оштукатуривание и окраска фасада.

Как сделать стальную конструкцию

Стальная обойма существенно увеличивает прочность и надежность перестенков.

Предварительно рекомендуется обзавестись:

  • металлическими прутками сечением 12 мм;
  • металлическими поперечинами шириной 60 мм и толщиной 12 мм;
  • профильными уголками.

Технология выполнения работ:

  1. По углам участка усиления монтируют вертикальные уголки на бетонный раствор.
  2. Полосы фиксируются с интервалом 0,5 м.
  3. Увеличение прочностных параметров сооружаемой конструкции достигается путем накладки на уголки металлической сетки армирования.
  4. Оштукатуривание поверхности цементно-песчаным раствором выполняется шаром в 30 мм. Требуется полностью спрятать сетку во избежание последующей коррозии металла.

Важно! Если предполагается выполнение работ в больших масштабах, лучше предварительно достать растворонасос. Нанесение цемента должно производиться равномерно и приблизительно в одно время.

Какие современные методы используются для улучшения прочности кирпичных стен

Классический вариант укрепления с использованием композитных стройматериалов и инъектирования характеризуется скоростью выполнения работ и эффективностью улучшения качества несущих стен. Сегодня доступны инновационные способы выполнения работ.

Суть процесса состоит в том что:

  • в теле фасадной части дома выполняется сверление отверстий;
  • внутрь вводятся специализированные ремонтные вещества на основе эпоксидной смолы, полиуретана или микроцемента;
  • пустоты внутри сооружения заполняются раствором. Снижается риск последующего увеличения размеров трещины и разрушения фасада капитального строения. Увеличиваются прочностные характеристики перестенков. Повышается надежность имеющейся гидроизоляции.

Процесс инъектирования позволяет решить ряд задач:

  • произвести полноценное укрепление кирпичной кладки;
  • выполнить структурное склеивание стройматериала;
  • надежно защитить поверхность фасада капительного строения от опасного влияния капиллярной влаги, которая просачивается внутрь дома.

Технологический процесс усиления композитным сырьем:

  • на обрабатываемую поверхность приклеиваются холсты. Они выполняются в виде ленты или сетки на базе высокопрочного стекловолоконного или углеродного сырья;
  • в качестве клеевого раствора используется состав на основе цемента или эпоксидной смолы.

Усиление кладочной поверхности и ее проемов требует грамотности и точности соблюдения технологии работ. Требуется произвести полноценное укрепление с удалением имеющихся дефектов и абсолютным восстановлением покрытия. Его целостности и прочности.

Важно своевременно приступить к выполнению работ, пока разрушение не перешло в стадию невозврата. Любая разновидность усиления кирпичной кладки хороша по-своему. Она повышает устойчивость капительного строения к нагрузкам и деформации. Защищает сооружение от негативного влияния окружающей среды.

Улучшение и усиление каменных конструкций

При реконструкции зданий и сооружений, выполнен­ных из каменных конструкций, важно оценить фактиче­скую прочность несущих элементов. Эта оценка для ар­мированных и неармированных конструкций выполняется методом разрушающих нагрузок на основании фактической прочности кирпича, раствора и предела теку­чести стали. При этом необходимо наиболее полно учи­тывать все факторы, которые могут снизить несущую спо­собность конструкции (трещины, локальные поврежде­ния, отклонения кладки по вертикали и соответствующее увеличение эксцентриситетов, нарушение связей между несущими конструкциями, смещения плит покрытий и перекрытий, прогонов, стропильных конструкций ит. п.).

B связи с тем что каменные конструкции испытывают в основном сжимающие усилия, наиболее эффективным способом их усиления является устройство стальных, железобетонных и армированных растворных обойм (рис. 3.13).


Рис. 3.13. Усиление каменных столбов стальной (а), железобетон­ной (б) и армированной растворной (в) обоймами:

Каменная кладка в обойме работает в условиях все­стороннего сжатия, ври этом ее поперечные деформации значительно уменьшаются и, как следствие, существенно увеличивается сопротивление продольной силе.

Стальная обойма состоит из двух основных элемен­тов - вертикальных стальных уголков, которые устанав­ливаются по углам простенков или столбов на цемент­ном растворе, и хомутов из полосовой или круглой ста­ли. Шаг хомутов принимается не более меньшего раз­мера сечения и не более 500 мм. Для обеспечения вклю­чения обоймы в работу кладки необходимо тщательно зачеканивать или инъецировать зазоры между стальны­ми элементами обоймы и каменной кладкой цементным раствором.

После устройства металлической обоймы ее элемен­ты защищают от коррозии цементным раствором тол­щиной 25. 30 мм по металлической сетке.

Железобетонная обойма выполняется из бетона клас­са BJO и выше с продольной арматурой классов A-I, А- II, А- III и поперечной арматурой класса A-I. Шаг по­перечной арматуры принимается не более 15 см. Толщи­на обоймы определяется расчетом и принимается в пре­делах 4. 12 см.

Армированная растворная обойма отличается от же­лезобетонной тем, что вместо бетона применяется це­ментный раствор марки 75. 100, которым защищается арматура усиления.

Эффективность железобетонных и цементных обойм определяется процентом поперечного армирования, прочностью бетона или раствора, сечением обоймы, со­стоянием каменной кладки и характером приложения нагрузки на конструкцию.

Для обеспечения совместной работы элементов обой­мы при ее длине, превышающей в 2 раза и более тол­щину, необходимо установить дополнительные попереч­ные связи, которые пропускают через кладку (рис. 3.14), расстояние между этими связями в плане при­нимается не более 1 м и не более двух толщин стен, а по высоте - не более 75 см.

Одновременно с усилением стен обоймами рекомен­дуется также выполнять инъекцию в имеющиеся трещины в кирпичной цементного раствора.

Инъекция осуществляется путем нагнетания в по­врежденную кладку жидкого цементного или полимер-цементного раствора под давлением. При этом происхо­дит общее замоноличивание кладки, восстанавливается

Рис. 3.14. Усиление простенков стальными обоймами:

1 – кирпичный столбик; 2 - стальные уголки; 3 - планка; 4-поперечная связь

и даже увеличивается ее несущая способность. Достоин­ством такого метода усиления является возможности его осуществления без остановки производства, при не­больших затратах материалов и без увеличения попереч­ных размеров конструкций.

Для обеспечения эффективности инъецирования при­меняют портландцемент марки не менее 400 с тонко­стью помола не менее 2400 см 2 /г с густотой цементного теста 22. 25%, а также шлакопортлапдцемент марки 400 с небольшой вязкостью в разжиженных растворах. Песок для раствора применяют мелкий с модулем круп­ности 1,0. 1,5 или тонкомолотый с тонкостью помола равной 2000. 2200 см 2 /г.

Для повышения пластичности состава в раствор добавляют пластифицирующие добавки в виде нитрита натрия (5% от массы цемента), поливинилацетатную эмульсию ПВА с поли мер цементным отношением П/Ц= =0,6 или нафталиноформальдегидную добавку в коли­честве 0,1 % от массы цемента.

К инъекционным растворам предъявляются доста­точно жесткие требования: малое водоотделение, необ­ходимая вязкость, требуемая прочность на сжатие и сцепление, незначительная усадка, высокая морозо­стойкость.

При небольших трещинах в кладке (до 1,5 мм) при­меняют полимерные растворы на основе эпоксидной смолы (эпоксидная смола ЭД-20 (ЭД-16) - 100 мас. ч.; модификатор МГФ-9 - 30 мас. ч.; отвердитель ПЭПА - 15 мас. ч.; тонкомолотый песок - 50 мас. ч.), а также цементно-песчаные растворы с добавкой тонкомолотого песка (цемент - 1 мае. ч.; суперпластификатор нафталиноформальдегид - 0,1 мас. ч.; песок - 0,25 мас. ч.; водоцементное отношение - 0,6).

При более значительном раскрытии трещин приме­няют цементно-полимерные растворы состава 1:0,15: : 0,3 (цемент : полимер ПВА : песок) или цементно-пес­чаные растворы состава 1 : 0,05 : 0,3 (цемент : пластификатор нитрит натрия : песок), В/Ц=0,6, модуль круп­ности песка

Раствор нагнетается под давлением до 0,6 МПа. Плотность заполнения трещин определяется через 28 сут после инъецирования неразрушающими методами.

Совместное усиление кирпичной кладки стальной обоймой и инъецированием позволяет существенно по­высить ее несущую способность и используется в том случае, если раздельное применение этих способов уси­ления недостаточно.

При устройстве комбинированного усиления сначала устанавливают металлическую обойму, затем произво­дят инъецирование раствора в кладку.

При реконструкции кирпичных зданий часто возни­кает необходимость в повышении их жесткости и проч­ности в связи с появлением в процессе эксплуатации не­допустимых трещин и деформаций. Эти дефекты могут быть вызваны неравномерными осадками фундаментов в результате ошибок при проектировании, строительст­ве или эксплуатации, плохой перевязкой швов и т.п. Одним из наиболее эффективных способов восстановления и усиления несущей способности здания в этом слу­чае является его объемное обжатие с помощью металли­ческих тяжей диаметром 25. 36 мм, располагаемых в уровне перекрытий.

Объемное обжатие может осуществляться для зда­ния в целом или для его отдельной части. Тяжи могут располагаться по поверхности стен или в бороздах се­чением 70x80 мм. После натяжения борозды заделыва­ются цементным раствором; тяжи, расположенные по поверхности стен, также оштукатуриваются, образуя горизонтальные пояса, которые не должны ухудшать архитектурный облик здания.

Крепление тяжей осуществляется к вертикальным уголкам, устанавливаемым на цементном растворе на углах и выступах здания (рис.3.15). Натяжение тяжей осуществляется с помощью стяжных муфт одновремен­но по всему контуру здания. Предварительно тяжи разо­греваются автогеном, паяльными лампами или электро­нагревом.

Механическое натяжение осуществляется вручную с помощью рычага длиной 1,5 м с усилием 300. 400 Н. Общее усилие натяжения составляет около 50 кН, его контроль осуществляется по отсутствию провисания тя­жей, различными приборами, индикаторами, простуки­ванием (хорошо натянутый тяж издает чистый звук вы­сокого тона).

Поврежденные или отклонившиеся от вертикали уг­лы зданий усиливаются металлическими балками из швеллеров № 16. 20, которые устанавливаются в уров­не перекрытий в вырубленные с двух сторон стены бо­розды или на поверхности стены и соединяются друг с другом стяжными болтами.

Кирпичные опоры под железобетонные или стальные перемычки при необходимости усиливают бандажами или обоймами, а при сильных повреждениях разбирают и перекладывают, предварительно установив под конца­ми перемычек временные разгружающие стойки на клиньях.

Усиление перемычек или устройство новой перемыч­ки над проемом большего размера осуществляется пу­тем подведения стальных балок, которые устанавлива­ются над проемом в вырубленные борозды и стягивают­ся между собой болтами. После разборки нового проема балки оштукатуриваются по металлической сетке.

При нарушении совместной работы продольных н по­перечных стен вследствие образования трещин рекомен­дуется устанавливать поперечные стальные гибкие свя­зи диаметром 20. 25 мм в уровне перекрытий,, закрепив их к стенам с помощью распределительных прокладок из швеллеров или уголков.

При реконструкции часто возникает необходимость во временном усилении (раскреплении) стен и перегоро­док из каменных материалов. Такое усиление необходи­мо при отклонении стен от вертикали и их выпучивании на величину более 1 /3 толщины. При высоте стен до 6 м их раскрепляют подкосами из бревен, установленным сшагом 3. 4 м, причем верхние концы подкосов упира­ют в металлические штыри, забитые в швы кладки. При большей высоте стен (до 12 м) применяют двойные подкосы ив бревен (брусьев), которые крепятся в при­стенные стойки и распределительные брусья.

При высоте стен более 12 м крепление стен осущест­вляется тяжами с натяжными муфтами. Рационально при этом использовать расположенные рядом устойчи­вые здания и сооружения (рис. 3.16).


Рис. 3.15. Усиление стен объемным обжатием:

1 - тяжи; 2 - муфта натяжения; 3- металлическая прокладка; 4- швеллер № 16 - 20;

5 - уголок

Поврежденные несущие простенки возможно разгру­зить, установив в смежных проемах временные стойки или (при технологической возможности) заложив их кирпичной кладкой.

При опирании на усиливаемые простенки стропиль­ных конструкций, балок и прогонов их разгружают пу­тем подведения под опорные части этих конструкций временных деревянных или металлических рам или кир­пичных столбов на гипсовых растворах.


Рис. 3.16. Крепление наклонившейся стены к стенам устойчивых зданий:

1 - деформированное здание; 2 - распорка; 3- ус­тойчивое сооружение

Читайте также: