Условия ускоряющие коррозию металлов

Обновлено: 19.05.2024

Электрохимическая коррозия относится к наиболее часто встречающимся процессам постепенного разрушения металла.

Как мы знаем, наше окружение наполнено электричеством.

В зависимости от среды, меняются показатели проводимости. Не отличается то, что при контакте с такой средой сталь начинает постепенно портиться.

У процесса есть несколько важных отличий.

В первую очередь – неодновременное протекание восстановления окислительного процесса и ионизации атомов металла.

На интенсивность распространения при этом влияет такой параметр, как электродный потенциал металла.

Главная причина электрохимической коррозии в том, что большинство металлов проявляют термодинамическую неустойчивость.

Примеры распространения коррозии такого типа встречаются в воде, почве, на открытом воздухе.

Она часто становится причиной потери прочности и постепенного разрушения металла на днище судов, трубопроводов, опор ЛЭП и других объектов.

Если говорить о типах электрохимической коррозии, то называют 3 разновидности:

  • щелевые поражения;
  • питтинги;
  • межкристаллическое повреждение.

Повреждаться могут разные типы металлов в зависимости от их расположения. Ржавчина появляется при контакте со стоячей и текущей водой, в местах соединения разных металлов, а также на сварных швах.

Какие механизмы отвечают за протекание электрохимической коррозии

Такое повреждение металла проводится двумя механизмами – гомогенным и гетерогенным. Рассмотрим каждый из них подробно.

  • Гомогенный. Первоначально затрагивается поверхностный слой металлического изделия. Постепенно металл начинает растворяться под действием актов – катодного или анодного. На протяжении определенного времени происходит миграция катода и анода. Со временем процесс ускоряется. Особенность гомогенного механизма в том, что затрагивает как твердые, так и жидкие металлы. Меняется только скорость течения.
  • Гетерогенный. У большинства твердых металлов не наблюдается гомогенной поверхности. Это связано с тем, что в самом материале состав кристаллической решетки может отличаться. Также как и в описанном выше случае, формируется анодный и катодный процессы, металл начинает постепенно разрушаться.

У такого вида процесса есть несколько особенностей.

В первую очередь – четкое деление на катодный и анодный процесс. Один из основных факторов, влияющих на их скорость протекания относительно друг друга – это время.

Схема электрохимической коррозии

Схема электрохимической коррозии

В зависимости от типа металла, коррозия может быть локализована на отдельных участках. Также наблюдается растворение поверхностного слоя на анодах, что позволяет поражению затронуть обширные площади.

Здесь появляется еще одна особенность протекания процесса – формирование гальванических элементов. Это происходит из-за специфики структуры поверхности, на которой присутствуют микроэлектроды.

Из-за чего начинает развиваться коррозия

После того, как мы рассмотрели суть электрохимической коррозии, пришло время обратить внимание на причины распространения коррозии.

Среди них три распространенные:

  • Сплав имеет неоднородную структуру. В большинстве сплавов поверхность негомогенная, потому что в кристаллической решетке присутствуют посторонние включения. Ухудшает ситуацию и присутствие пор макро и микротипа. Это приводит к тому, что продукты коррозии также начинают образовываться неравномерно.
  • Неоднородная среда, в которой находится металл. Чтобы коррозия протекла быстрее, важен фактор доступа окислителя. Электрохимическая реакция может быть ускорена.
  • Отличие физических условий. Коррозия усиливается в том случае, если происходит облучение, в среде присутствуют блуждающие тока. Негативно влияет и температура, особенно при перепадах. В таком случае разница между холодными и теплыми местами становится причиной появления анода.

Именно по причине различия в критических факторах, скорость электрохимической коррозии может сильно меняться.

Главные внутренние факторы протекания электрохимической коррозии

На интенсивность распространения коррозийного поражения влияют две группы факторов – внешние и внутренние.

Текущее состояние поверхности металла

Когда поверхность металла неровная, коррозийный процесс протекает намного интенсивнее. Если на поверхности присутствуют небольшие выступы, они начинают накапливать воду.

Это может негативно повлиять на интенсивность распространения.

Чтобы не допустить такого фактора, важно использовать отшлифованный или отполированный металл.

Когда сталь гладкая, вода не так сильно повреждает ее, потому что постепенно происходит формирование равномерной пленки по всей поверхности.

Также хорошим средством для уменьшения поражения становится применение пассивирования, а также ряд других способов.

Степень термодинамической стойкости металла

Разные виды материалов отличаются разными показателями термодинамической устойчивости.

Наиболее стойкие разновидности материала не разрушаются при помещении в агрессивную среду.

Чтобы понять, есть ли у металла склонность к коррозии под действием термодинамических факторов, измеряют потенциал анодного и катодного процесса, а также изобарно-изотермического.

Именно такой фактор оказывает большое влияние на потенциальное воздействие среды на постепенное развитие коррозии.

К сожалению, у большинства представленных в продаже марок металлов стойкость невысокая. Есть и неустойчивые разновидности, у которых этот риск нивелируется благодаря склонности к образованию пассивных пленок на поверхности.

Кристаллографическая структура

Оказывает прямое воздействие на металл.

Как известно, атомы в кристаллической решетке располагаются по-разному. Лучше защищены те разновидности, у которых атомы упакованы неплотно.

Особенности решетки также учитывают при планировании защиты материала методом создания на нем специальных пленок. И пленка и сам основной материал должны четко соответствовать по составу друг другу или быть максимально приближенными.

В этом случае исключается появление напряжения, которое негативно отражается на текущем состоянии заготовки. Если контакт с агрессивной средой все-таки происходит, материал начинает разрушаться слой за слоем.

Гетерогенность

Этот фактор рассматривается в непосредственной связи с величиной зерна металла.

Если в сплаве есть выраженные анодные включения, они сильно влияют на ускорение протекания коррозии.

Катодные включения не столь опасны, потому что на интенсивности процесса не отражаются. Величина зерна как фактор риска рассматривается не так часто и этим показателем можно пренебречь.

Не стоит сбрасывать со счетов и механические факторы

Важно понимать, что многие конструкции из металла используются под постоянным напряжением.

К этой категории относится повышенное внутреннее напряжение, когда сильно увеличивается риск деформации.

Негативно влияют на качество металла также воздействие истирания, периодические контакты с другими металлическими изделиями.

Такой фактор оказывает значительное влияние на интенсивность распространения повреждения.

Даже если само сырье первоначально обладало стойкостью к потенциальным повреждениям, в таком случае она уменьшится – формируемые пленки просто не будут закрепляться на поверхности.

Потому лучше сразу исключить это условие электрохимической коррозии – постараться не использовать металлоконструкции под пиковыми сильными нагрузками, не допускать возникновения трения и соприкосновения между собой стальных деталей.

Основные внешние факторы электрохимической коррозии

Кроме внутренних, на металл также влияют и внешние факторы.

Они могут не только ускорять, но и замедлять процесс, а также влиять на характер его протекания.

К ним относятся следующие:

  • Температура. Температура сильно влияет на то, как себя ведет металл в разных условиях. От нее сильно зависит то, насколько быстро будут растворяться вторичные продукты коррозии. Среди других особенностей – запуск и стимуляция диффузионных процессов в металле, создание перенапряжения на электродах и другие проявления. Когда металлическое изделие помещается в растворы с кислородной деполяризацией, по мере прогрева электролита диффузия окислителя ускоряется. На фоне этого наблюдается сильное снижение перенапряжения ионизации кислорода.

Если деталь помещается в растворы неокисляющихся кислот, наблюдается коррозия с водородной деполяризацией.

Повышение температуры уменьшает скорость распространения повреждений, потому что сильно снижается перенапряжение водорода.

Отдельно стоит отметить ситуацию, когда металл уже покрывается специальной защитной пленкой. В этом случае сам тип пленки будет влиять на то, как именно она поведет себя при контакте с разными видами внешних угроз, в том числе, с повышением температуры.

Нагрев и охлаждение могут отразиться на состоянии катодов и анодов через их внутренние процессы.

В некоторых случаях полярность электродов значительно меняется.

Как мы уже отмечали выше, проблемы могу возникать из-за того, что разные участки детали нагреты до отличающихся друг от друга температур.

В этом случае стремительно увеличивается количество термогальванических пар, стимулирующих распространение коррозии на новые участки.

  • Уровень рН раствора, в который помещен металл. Такой показатель как рН указывает, насколько в растворе будут активными ионы водорода, и как быстро коррозия будет распространяться по материалу. Это опасно, потому что может непредсказуемо менять потенциал катодных процессов, формирование окисных пленок. Также создается значительное перенапряжение реакции на электродах. Рекомендуется не допускать контакта металла со средами, у которых показатель рН высокий.

Если по каким-то причинам металлическая заготовка оказалась помещена в раствор, большое значение будет иметь скорость, с которой он движется, а также само наличие внутренних колебаний.

Заранее определить точное воздействие будет сложно по той причине, что всегда непросто предсказать, как поведут себя нейтральные электролиты.

Cчитается, что при смешении электролита, меняются показатели диффузии кислорода, что значительно отражается на процессе протекания коррозии.

Можно уделять меньше внимания скорости движения электролита в том случае, если вы имеете дело со средами повышенной кислотности.

На них подобное поражение оказывает минимум влияния.

Чем отличаются анодный и катодный процессы

Если вы внимательно проследите за тем, как работает гальванический элемент, то увидите, что в нем протекают сразу два связанных друг с другом процесса – анодный и катодный.

Рассмотрим их более подробно.

Анодный процесс

В химии показывается формулой Fe → Fe2+ + 2e. Она показывает, что постепенно запускается окисление, ионы металла начинают переход в раствор.

Катодный процесс

Может протекать по-разному.

В частности, переизбыток электронов решается ассимиляцией атомами электролита и его молекул. На фоне этого происходит восстановительная реакция непосредственно на самом катоде.

Формула будет зависеть от того, в каких условиях протекает реакция.

Так при наличии водородной деполяризации можно записать процесс как 2 H+ + 2e → H2.

Важно понимать, что оба процесса сильно связаны друг с другом под влиянием кинетического фактора.

С течением времени может происходить взаимное замедление или ускорение анодного или катодного процесса. При этом сам анод всегда будет оставаться тем местом, на котором формируется коррозия металла.

Во время анализа протекания процесса коррозии часто обращают внимание на электропроводящие фазы и момент после их соприкосновения.

Обычно одна фаза имеет положительный заряд, в то время как другая – отрицательный. Это приводит к появлению разности потенциалов.

Таким образом возникает ДЭС или как его часто называют ученые – двойной электрический слой с ассиметричным расположением частиц в местах, где фазы разделяются.

Анодный и катодный процесс

Опасным для металла становится скачок потенциалов. Он может стимулироваться двумя центральными причинами:

  • Большая накопленная энергия гидратации. В таком случае наблюдается отрыв ионов металла и постепенное перетекание их в раствор. На поверхности в результате остается аналогичное число электронов, заряд становится отрицательным. Далее, в соответствии с законами физики, наблюдается перетекание катионов из раствора, формируется ДЭС на границе, как мы уже описывали выше.
  • Разряжение катионов электролита. В результате металл начинает стремительно принимать положительный заряд. ДЭС появляется из-за активности анионов раствора в контакте с катионами электролита.

Что происходит в том случае, если поверхностный слой металла совсем не имеет определенного заряда?

В таком случае ДЭС наблюдаться не будет, возникнет явление нулевого заряда.

Его потенциал будет отличаться в зависимости от того, с каким металлом вам приходится работать.

Описанный процесс значительно отражается на том, как протекает коррозия и как быстро она захватывает все новые и новые участки металла.

В современной науке нет средств, которые могли бы точно измерить величину скачка потенциала, значит и процесс формирования электродвижущей силы оказывается на таким интенсивным.

Если рассматривать вопросы, связанные с процессом поляризации, можно написать отдельную статью на эту тему.

Потому далее мы рассмотрим другой важный показатель – поляризацию.

Поляризация и ее влияние на скорость протекания коррозии

Процесс поляризации связан с интенсивностью распространения электрохимической коррозии.

Этот показатель отражает, насколько сильное перенапряжение наблюдается на определенном участке.

Принято выделять три вида поляризации:

  • Электрохимическая. Чаще всего наблюдается в ситуации, когда катодный и анодный процессы начинают замедляться.
  • Фазовая. Возникает в том случае, если на поверхности материала формируется новая фаза.
  • Концентрационная. Этот процесс появляется в том случае, если есть очень малые показатели скорости отвода продуктов коррозии, а также подхода деполяризатора.

Особенности поляризации также стоит учитывать в том случае, если вы заинтересованы в дополнительной защите металлов от постепенного разрушения.

Обеспечиваем эффективную защиту от коррозии

Наша компания предлагает заказчикам защиту металлоконструкций разных типов от коррозии.

В пользу работы с нами говорит сразу несколько факторов:

  • Опыт работы с 2007 года, есть постоянные заказчики.
  • Большие производственные площади. Три цеха для горячего цинкования, мощность 120 тысяч тонн в год.
  • Универсальность. Работаем со множеством видов изделий благодаря установленной на предприятии самой глубокой ванны в ЦФО – 3,43 метра.

Мы используем в процессе проверенное европейское оборудование. Даем гарантию соответствия качества товаров требованиям ГОСТ 9.307-89.

Чтобы получить дополнительные консультации и ответы на интересующие вас вопросы, звоните нам или оставляйте заявку на сайте.

Активаторы процесса коррозии и ускорение разрушения металлов

Химическую коррозию ускоряет повышение концентрации агрессив­ных (способных химически взаимодействовать с металлами) веществ.

Интенсивность электрохимической коррозии в основном зависит от природы контактирующих металлов, от концентрации и вида электролита. Скорость электрохимической коррозии тем выше, чем больше разность потенциалов между находящимися в контакте металлами. Например, желе­зо (Е° Fe/Fe2+ = -0,44 В) при контакте с медью (Е°Cu/Cu2+ = +0,34 В) будет

разрушаться быстрее, чем при контакте с оловом (E°Sn/Sn 2+ = -0,14 В).

Процессы окисления на аноде и восстановления на катоде взаимосвя­заны. При ускорении или торможении катодного процесса будет также по­вышаться или снижаться и скорость коррозии. Так, повышение концентра­ции ионов Н + или молекул кислорода 02 в электролите увеличивает ско­рость катодной реакции, а следовательно, ускоряет электрохимическую коррозию металла.

Процессы электрохимической коррозии также сильно ускоряются в присутствии ионов С1 - (растворённые соли - хлориды:NaCl, СаС12 и др.).

Химическое взаимодействие металлов с различными веществами в до­полнение к электрохимической коррозии всегда увеличивает общую ско­рость разрушения металлов. В большинстве случаев такими активными веществами по отношению к металлам являются кислоты. Кислоты, в ко­торых окислителем является ион Н + , реагируют с металлами, имеющими отрицательные значения потенциалов, с образованием солей и выделением газа - водорода Н2.

Например, если цинковое изделие подвергается воздействию раствора соляной кислоты НС1, то наряду с обычной реакцией растворения цинка в кислоте:

Zn° -2ё →Zn 2+

происходят также электрохимические процессы в гальванических элемен­тах разного рода, образующихся на поверхности металла:

Анод:Zn° -2ё →Zn 2+

Катод:2H + +2ё→ H2°↑(в кислой среде)

Общая скорость разрушения металла будет складываться из скоростей химического и электрохимического процессов.

Щёлочи в водных растворах химически не взаимодействуют с боль­шинством металлов, однако некоторые амфотерные металлы (алюминий, цинк, бериллий, олово, свинец) разрушаются водными растворами щело­чей, например:

Рассмотрим, какие процессы происходят при контакте цинкового из­делия с водным раствором щёлочи, например, NaOH.

Так же как и в предыдущем примере, цинк вступает в химическую ре­акцию, и при этом, окисляясь, разрушается:

Электрохимическая коррозия цинка в среде электролита в данном слу­чае описывается уравнениями:

Анод: Zn°-2e → Zn 2+

Катод: О2 +2Н2О + 4 ё →4(ОН) - (в отсутствие кислоты)

Присутствующие в щелочном растворе ионы ОН - замедляют катодную реакцию, а, следовательно, анодный процесс окисления цинка также будет подавляться.

Таким образом, в щелочной среде коррозия амфотерных металлов происходит практически полностью за счёт химического взаимодействия.

Химическое взаимодействие металла с растворами солей также может ускорять процесс коррозии за счёт образования дополнительных микро­гальванических элементов. Известно, что металл может восстанавливать ионы металлов, имеющих более высокие значения потенциалов, из водных растворов солей. Например, при добавлении в электролит, находящийся в контакте с цинком, раствора медной соли происходит восстановление меди (ЕZn°Cu °):

Медь осаждается на поверхности цинка в виде мелких кристаллов -образуется множество микрогальванических пар цинк-медь. Сразу начина­ется дополнительная электрохимическая коррозия цинка по схемам:

Анод: Zn│Zn° -2ё →Zn 2+

Катод: Сu│2H + +2ё→ H2°↑(в кислой среде)

Катод: Сu│О2 +2Н2О + 4 ё → 4(ОН) - (в отсутствие кислоты)

КОРРОЗИЯ МЕТАЛЛОВ И ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ

Металлы вследствие своей высокой прочности, пластичности, износоустойчивости, тепло- и электропроводности являются наиболее важными конструкционными материалами.

В процессе эксплуатации в результате воздействия окружающей среды происходит их разрушение, так называемая коррозия.

Потери от коррозии в ведущих индустриальных странах составляют около 3-5% валового национального продукта, а затраты на возмещениекоррозионных потерь во всем мире исчисляются сотнями миллиардов долларов, поэтому раздел «Коррозия металлов и методы защиты их от коррозии» является одним из важнейших в курсе химии для инженерных специальностей.

Обычно корродируют металлы, которые встречаются в природе не в самородном состоянии, как Au, Pt, а в виде различных руд. На извлечение этих металлов из природных соединений расходуется значительное количество энергии (Ме +n + n? → Me 0 ; ΔG>0), которая накапливается в металлах, делая их термодинамически неустойчивыми, химически активными веществами (Ме 0 - n? → Me + n ; ΔG<0). В результате такого самопроизвольно протекающего коррозионного процесса металлы переходят в оксиды, гидроксиды, карбонаты, сульфиды и другие соединения и теряются безвозвратно.

Итак, коррозию можно определить как самопроизвольно протекающий окислительно-восстановительный процесс (ΔG<0) разрушения металла под воздействием окружающей среды, происходящий с выделением энергии (ΔН<0) и рассеиванием вещества (ΔS>0).

Механическое разрушение металлов, происходящее по физическим причинам, не называют коррозией, а называют эрозией, истиранием, износом.

По характеру разрушения поверхности коррозию подразделяют на сплошную и местную. Сплошная коррозия подразделяется на равномерную, если процесс окисления происходит по всей поверхности металла с одинаковой скоростью, и неравномерную – процесс окисления происходит по всей поверхности с различной скоростью на различных участках металла.

Местная коррозия подразделяется на коррозию пятнами, точечную, питтинг (углубленно-точечную), межкристаллитную (наиболее опасна, т.к. ослабляет связи между зернами структуры сплавов), растрескивающуюся, селективную (избирательную).

По механизму протекания различают следующие виды коррозии:

- электрохимическая (концентрационная, контактная, электрокоррозия);

- особые виды (биологическая, радиационная, ультразвуковая).

По характеру дополнительных воздействий различают:

- коррозию под влиянием механических напряжений;

- коррозию при трении;

- кавитационную коррозию (возникает при одновременном коррозионном и ударном воздействии агрессивной среды, когда лопаются пузырьки воздуха при работе лопастей гребного винта, роторов насосов).

Рассмотрим более подробно виды коррозии по механизму протекания.

Под химической коррозией понимают разрушение металлов окислением в окружающей среде без возникновения электрического тока в системе.

Газовая коррозия протекает при обычных условиях, но чаще при высоких температурах. Наблюдается при разливе расплавленных металлов, их термической обработке, ковке, прокатке, сварке и т.д.

Самый распространенный случай газовой коррозии – взаимодействие металла с кислородом:

Образующаяся при такой коррозии оксидная пленка в ряде случаев играет защитную функцию. Для этого она должна быть сплошной, беспористой, иметь хорошее сцепление с металлом, обладать твердостью, износостойкостью и иметь коэффициент термического расширения, близкий к этой величине для металла. Все эти качества оксидной пленки можно оценить по фактору Пиллинга-Бэдвордса (a). Металлы (щелочные, щелочноземельные), у которых a2O3, ZnO, NiO и т.д.).

При значениях a значительно больше единицы пленки получаются неслошные, лекго отделяющиеся от поверхности металла (железная окалина). Коррозионно-активными газами, кроме кислорода, являются: угарный газ, углекислый газ, сернистый ангидрид, азот, его оксиды и галогены. Например, при разливе расплавленного алюминия, происходит его взаимодействие не только с кислородом, но и с азотом воздуха.

Жидкостная коррозия протекает, как правило, в жидких неэлектролитах: спиртах, хлороформе, бензоле, бензине, керосине и других нефтепродуктах. Ускоряет процесс жидкостной коррозии сера,кислород, галогены, влага, атакже повышенная температура (коррозия поршней в двигателях внутреннего сгорания),что можно описать уравнениями : Me(II) + R1 – S – R2 → MeS + R1 – R2

Me(I) + nR – Cl → MeCl + 1/2nR – R ,

где R1 – S – R2и nR – Cl углеводороды, содержащие серу и хлор.

Электрохимическая коррозия наиболее распространенный вид коррозии. Это разрушение деталей, машин, конструкций в грунтовых, речных, морских водах, под влиянием воды (росы), под воздействием смазочно-охлаждающих жидкостей, используемых при механической обработке металлов, атмосферная коррозия и т.д.

Электрохимическая коррозия – это пространственно разделенный окислительно-восстановительный процесс разрушения металла, протекающий в среде электролита, с возникновением внутри системы электрического тока, называемого коррозионным током.

Рассмотрим химизм атмосферной коррозии стального изделия. Сталь – это сплав железа с углеродом, в котором углерода менее 2%, например, цементит (Fe3C4). При электрохимической коррозии во влажном воздухе (О2 + 2Н2О) железо и цементит образуют микрогальванопару, в которой роль анода выполняет железо, а цементит – роль катода.

Схема процесса:

Анодный процесс: Fe 0 - 2? → Fe 2+ 2 поляризация

Катодный процесс: 2H2O + O2 + 4? → 4OH - 1 деполяризация

Суммарное уравнение коррозионного процесса разрушения стального изделия, находящегося во влажном воздухе:

Для железа более характерна степень окисления (3+), поэтому процесс окисления идет дальше:

4Fe(OH)2+2H2O+O2→4Fe(OH)3, образующийся Fe(OH)3 при нагревании может терять воду.

То есть продуктами коррозии железа (ржавчина) является смесь различных соединений. Если учесть, что в воздухе присутствуют углекислый газ, сернистый газ, следовательно, могут образовываться и соли железа.

Часто из-за различной рельефности металлических конструкций, в том числе и стальных, на некоторых участках скапливается вода, при этом происходит так называемая концентрационная коррозия, обусловленная различной концентрацией деполяризатора кислорода (в случае атмосферной коррозии), водорода (в кислой среде) на различных участках металла. Там, где концентрация деполяризатора больше (края капли воды), формируется катодный участок, где концентрация деполяризатора меньше (центр капли воды) – анодный участок (рис.15).

После высыхания капли в её центре обнаруживается углубление, а иногда даже и отверстие (для пластин толщиной 0,1-0,2 мм). Такие процессы часто наблюдаются при атмосферной и почвенной коррозии железных и стальных изделий (троса, стопки листов и т.д.) – точечная коррозия, переходящая в питтинг. Следует отметить, что хотя конечный продукт коррозии (ржавчина) нерастворим, однако он не препятствует процессу растворения металла, поскольку формируется за пределами анодного участка (на границе соприкосновения его с катодами) в виде кольца внутри капли.

На практике часто встречаются случаи, когда металлы различной активности находятся в контакте друг с другом, образуя гальванопары. Кроме того, технические металлы содержат примеси других металлов, сплавы содержат различные металлы. Такой металл или сплав, находясь в среде электролита, дает множество микро - и макрогальванопар, в которых анодом является более активный металл, т.е. металл с меньшим значением электродного потенциала, именно он и подвергается коррозии.

Рассмотрим случай контактной коррозии с водородной деполяризациейцинка и меди, в сернокислой среде. Цинк и медь, имеют различные значения электродных потенциалов. Более активным в этой гальвано паре является цинк (Е 0 Zn2+/Zn = -0,76 В), он имеет меньшее значение электродного потенциала и будет анодом, т. е именно цинк будет подвергаться коррозионным процессам, менее активным металлом является медь (Е 0 Cu2+/Cu = +0,34 В), она будет катодом.

Запишем схему: (А) Zn | H2SO4 | Cu (K)

Анодный процесс: Zn 0 - 2? → Zn 2+

Катодный процесс: 2Н + + 2? → Н2 деполяризатор

Суммарное ионное уравнение: Zn + 2H + → Zn 2+ + H2

Факторы, влияющие на скорость коррозии:

а) напряжение и деформация при механической обработке металлов;

б) перемешивание агрессивной среды;

в) дифференциальная аэрация;

д) кислотность среды (рН).

Рассматривая фактор (д) обратите внимание, что электродные потенциалы металлов существенно зависят от состава электролита и рН среды. Так, в случае контактной (Al-Zn) коррозии в 1М растворе HCl

возникает гальвано пара, в которой роль анода выполняет Al, а катода- Zn, схема такого процесса: (А) Al | HCl | Zn (K)

В 0,1 М растворе HCl в этом случае большую активность имеет цинк, он будет в гальвано паре анодом, алюминий – катодом, а схему запишем так: (А) Zn | HCl | Al (K)

Электрокоррозия – протекает под действием блуждающих токов, возникает от постоянных источников тока (электротранспорт, трансформаторы, линии электропередач). Рассматривая коррозию под действием блуждающих токов, надо помнить, что место выхода тока – будет анодным участком, входа тока – катодным, участок протекания тока – нейтральной зоной. Радиус действия блуждающих токов может достигать нескольких десятков километров. Ток силой 1А за год разрушает до 3 кг алюминия, 9 кг железа, 11 кг цинка или меди, 34 кг свинца.

ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ

Потери от коррозии в мировой экономике огромны. Около 1/3 вводимого в эксплуатацию металла подвергается коррозии, при этом примерно 10% теряется безвозвратно.

Борьба с коррозией осуществляется различными методами. Наиболее рациональный и надежный путь – изготовление аппаратов и машин изкоррозионно-стойких металлических или неметаллических материалов,но из-за дороговизны таких материалов, чаще используют дешевые и доступные металлы с последующей защитой их от коррозии. Полностью избежать коррозии невозможно, но, применив определенные методы защиты, можно снизить ее воздействие.

Можно условно выделить следующие группы методов защиты металлов от коррозии:

1. Создание рациональных конструкций, т.е. таких, которые не имеют застойных зон и других мест скопления влаги, грязи и других коррозионно-агрессивных сред, допускают быструю очистку и аэрацию.

2. Легирование металлов. Это эффективный, хотя обычно дорогой метод повышения коррозионной стойкости металлов. При легировании в состав сплава вводят компоненты (Cr, Ni, W, Si, V, Mo, Re и другие), вызывающие пассивирование металла. Механизм защиты (например, в нержавеющих сталях) состоит в образовании на поверхности плотных оксидных слоев, типа шпинелей состава NiO . Cr2O, FeO . Cr2O3, которые оказываются более устойчивыми, чем просто оксиды хрома или никеля.

3. Создание аморфных структур металлов. Путь к этому способу защиты открыла сверхбыстрая закалка. Расплавленный металл из тигля подают в тончайший зазор между двумя массивными валками и подвергают формированию и резкому охлаждению. В этих условиях атомы не успевают выстраиваться в присущие металлам кристаллические решетки, фиксируется «хаос атомов», свойственный расплавленному металлу. В результате получается аморфная структура, подобная стеклу, резко возрастает коррозионная устойчивость металлов.

4. Защитные покрытия – самый распространенный метод защиты металлов от коррозии. Смысл их нанесения – изоляция от агрессивной среды. Различают неметаллические и металлические покрытия.

а) неметаллические покрытия получают нанесением на поверхность металла лака, краски, смолы, олифы, эмали или стеклоэмали. Поверхность металла покрывают также резиной, эбонитом, полимерными материалами, цементом, бетоном, оксидными пленками: ZnO, Al2O3 (оксидирование) и нитридными пленками: Fe4N, Fe2N (азотирование). Покрыть поверхность металла можно осаждением нерастворимых фосфатов этого металла: Fe(H2PO4)2 + 2 Fe 2+ ® Fe3(PO4)2¯ + 4H ( фосфатирование) или насыщением поверхности металла углеродом (цементация).

б) защитные покрытия металлами. Для этого используют коррозионно-устойчивые металлы (Sn, Zn, Al, Au, Ag, Ni, Cr и др.) Различают анодные и катодные металлические покрытия. Если защищаемый металл покрывают более активным металлом, то такое покрытие называют анодным. При нарушении покрытия разрушается металл покрытия. Рассмотрим это на примере оцинкованного железа. Составим схему коррозионного разрушения.

A: Zn 0 - 2? → Zn 2+ 2

Если защищаемый металл покрыт менее активным металлом, например, железо покрыто оловом, то такой вид покрытия называется катодным. При нарушении покрытия разрушается основной металл. Рассмотрим этот случай коррозии.

(А) Fe | 2H + | Sn (K)

A: Fe 0 - 2? → Fe 2+ 1

Fe + 2H + → Fe 2+ + H2

5. Электрохимические методы защиты:

а) защита внешним потенциалом);

б) анодная (протекторная).

Защита внешним потенциалом (чаще катодная) осуществляется подключением защищаемой конструкции к отрицательному полюсу (катоду) внешнего источника тока с очень малым напряжением (0,1 В). К положительному полюсу подсоединяется лом, который и разрушается. Этот вид защиты используют для металлических сооружений: трубопроводов, резервуаров и т.д.

Протекторная защита заключается в том, что к изделию, подвергающемуся электрохимической коррозии, подключают деталь – протектор из более активного металла, чем металл изделия. Протектор будет разрушаться, а изделие останется неизменным. Применяют в паровых котлах, для защиты корпусов морских и речных судов, трубопроводов, рельсов и т.д.

Задача. Приведите пример протекторной защиты в электролите, содержащем растворенный кислород. Составьте уравнения анодного и катодного процессов и вычислите ЭДС реакции.

Решение. Протекторная защита осуществляется путем присоединения к железу более активного металла, обычно цинка, магния и их сплавов. Таким образом, создается искусственный микрогальванический элемент. Чаще всего используют протекторную защиту в растворах электролитов (паровые котлы, химические аппараты), в морской воде и в почве (защита трубопроводов). Рассмотрим протекторную защиту от почвенной коррозии:

Среда нейтральная или слабощелочная, так как концентрация солей невелика. В этом, созданном нами, коррозионном элементе анодом служит протектор (цинк), он растворяется.

Анод: Zn 0 – 2 ® Zn 2+ .

Электроны передаются на железо. Деполяризатором в этом случае является кислород.

Катод: O2 + 2H2O + 4® 4OH - ; E 0 = 0,40 B.

ЭДС реакции определяем: DЕ = Екатода – Еанода = 0,40 – (-0,75) = 1,16 В.

Ответ: протектор Zn, он окисляется и защищает железо; DЕ = 1,16 В.

6. Воздействие на агрессивную среду. Для замедления коррозии в агрессивную среду вводят вещества, называемые ингибиторами (замедлителями). Это чаще всего органические вещества, пассивирующие поверхность металла: тиомочевина C(NH2)2S, диэтиламин C2H5 — NH — C2H5, уротропин (CH2)6N4, неорганические вещества SiO3 2- , NO2 - , Cr2O7 2- , а также освобождение воды от растворенного в ней кислорода (воду фильтруют через слой железных опилок). Либо удаляют активаторы коррозии, например, ионы Cl - , Br - , F - , SO4 2- , NO3 - .

Литература:

1. Фролов В.В. Химия. Гл.V, §51-56.

3. Общая химия под ред. Соколовской Е.М. и др. Гл.6, §1-11.

4. Абраменко В.Л. Методические указания к самостоятельному изучению темы “Коррозия и защита металлов от нее”. Луганск, 1991 г.

Лекция. КОРРОЗИЯ МЕТАЛЛОВ

Коррозия (разъедание, разрушение) - это самопроизвольный процесс разрушения металлического изделия в результате его взаимодействия с веществами окружающей среды на границе раздела фаз и приводящий к потере функциональных свойств изделия.

Ущерб от коррозии составляет несколько процентов от годового валового национального дохода и их классифицируют на два вида. Первичные потери (несколько процентов от общих потерь от коррозии) - обусловлены затратами связанными с изготовлением и заменой детали вышедшей из строя в результате коррозионного разрушения. Вторичные потери значительно превосходят первичные и связаны с простоем оборудования, ухудшения качества продукции, в следствие загрязнения ее продуктами коррозии и некоторыми другими потерями.

Коррозионную стойкость металлов (скорость коррозии) можно оценивать по следующим показателям:

· по изменению массы (Dm) металла при коррозии, отнесенной к единице поверхности (S) и единице времени (t) (массовый показатель – используется при равномерной или сплошной коррозии):

· по уменьшению толщины образца за единицу времени (мм/год):

П = Кмасс 8760/1000r,

где r - плотность металла, г/см 3 ; 8760 – число часов в году.

Для количественной оценке коррозионной стойкости может быть использовано любое свойство металла, в том числе и изменение механических характеристик металла, если коррозия не равномерная.

Коррозионные процессы подразделяются на следующие виды: по механизму взаимодействия металла со средой; по виду коррозионной среды и по виду коррозионного разрушения.

По механизму взаимодействия окружающей среды с металлами коррозия делится на два основных типа: химическая и электрохимическая коррозия.

К химической коррозии относятся процессы, протекающие при непосредственном химическом взаимодействии металла с веществами среды и не сопровождающиеся появлением электрического тока, т.е. процесс взаимодействия материала детали с веществом происходит в один этап без разделения в пространстве и во времени. К данному виду коррозии относится газовая коррозия, протекающая при высоких температурах, и коррозия в растворах неэлектролитов.

К электрохимической коррозии относятся коррозионные процессы, протекающие в водных растворах электролитов, в расплавах солей, в щелочах и во влажном воздухе, т.к. поверхность детали покрыта тонкой пленкой воды толщиной в несколько микрон до температуры 80-100 о С.

Разрушение металла происходит под действием возникающих гальванических пар. Механизм электрохимической коррозии, определяемый разностью потенциалов пассивных (катодных) и активных (анодных) участков, сводится к работе гальванического элемента. В результате электрохимической коррозии окисление металла может приводить как к образованию нерастворимых продуктов (ржавчина), так и к переходу атомов металла в раствор в виде ионов.

В растворе электролита: более активный металл посылает в раствор свой ионы, т.е. окисляется, а на менее активном металле идет процесс восстановления ионов водорода или молекул кислорода. Последние, всегда присутствуют в растворе поступая туда из воздуха.

В случае коррозии детали изготовленной из стали с анода в раствор переходят ионы железа: Fe ® Fe 2+ + 2e.

Освободившиеся электроны переходят с анодных участков к поверхности катода, где соединяются с имеющимися в растворе ионами водорода, выделяя газообразный водород: 2H + + 2e - ® H2.

В качестве материала катода в данном случае выступают примеси других металлов или карбид железа. Последняя реакция облегчает протекание реакции окисления железа. В электрохимии данный случай коррозии называется процессс водородной деполяризацией.

На катоде, помимо выделения водорода, могут протекать и другие реакции, например восстановление кислорода (коррозия):с кислородной деполяризациейO2 + 2H2O + 4e - ® 4OH - .

Эти два процесса снижают поляризацию катода и увеличивают скорость коррозии.

Примеси, имеющие, более положительный стандартный электродный потенциал, способствуют увеличению электрохимической коррозии. Если в железе имеются примеси, с более отрицательным стандартным электродным потенциалом (цинк, алюминий), то анодом будут служить примеси, а катодом - железо. При этом примеси будут растворяться, защищая железо от коррозии.

Короткозамкнутые гальванические элементы могут возникать и за счет разности потенциалов между участками различной механической обработки, структуры, состояния оксидной пленки на поверхности металла, различием состава раствора у отдельных участков его поверхности и при наличии контакта различных металлов.

По характеру изменения поверхности металла в результате коррозионных процессов коррозионные разрушения могут быть нескольких видов: сплошным или равномерным, неравномерная коррозия (коррозия пятнами и язвами, точечная коррозия и структурно-избирательная коррозия(межкристаллитная коррозия - разрушение по границам зерен)).

Избирательная коррозия наиболее опасна, т.к. при малой общей площади поражений в отдельных местах может создать резкую концентрацию механических напряжений, в свою очередь содействующих дальнейшему разрушению металла. Межкристаллитная коррозия, ослабляющая связь между металлическими зернами, приводит к развитию трещин.

По виду коррозионной среды различают коррозию в жидкостях-неэлектролитах, газовую, атмосферную, морскую и почвенную коррозию, коррозию под действием блуждающих токов и другие виды.

Атмосферная коррозия происходит во влажном воздухе при обычных температурах. На скорость атмосферной коррозии влияет влажность воздуха и содержание в нем газов, наличие на поверхности металла шероховатостей, микро щелей, пор, т.е. мест, облегчающих конденсацию влаги. Коррозия сталей может быть выражена следующими уравнениями:

Fe 0 ®Fe 2+ + 2e – на анодных участках

O2 + 2H2O + 4e - ® 4OH - - на катодных участках

Fe 2+ + 2OH - ® Fe(OH)2 – химическая реакция

Fe(OH)3 ®FeO(OH) + H2O. образование ржавчины.

Ржавчина является конечным продуктом атмосферной коррозии железа.

Почвенная коррозия приводит к разрушению проложенных под землей трубопроводов, оболочек кабелей, деталей строительных сооружений. Металл в этих условиях соприкасается с влагой грунта, содержащего растворенный воздух.

Коррозия при неравномерной аэрации наблюдается в тех случаях, когда деталь или конструкция находиться в растворе, но доступ растворенного кислорода к различным ее частям неодинаков. В этом случае восстановление кислорода протекает на более аэрируемых участках, а окисление металла - на менее аэрируемых участках поверхности.

Основные методы защиты металлов от коррозии можно сгруппировать по следующим направлениям: изоляция металла от коррозионной среды, электрохимические методы защиты (протекторная защита, электрозащита), изменение свойств коррозионной среды и изготовление детали из коррозионностойкого материала.

Изоляция металла от коррозионной средыосуществляется путем создания защитной пленки на его поверхности (окраска, нанесение смазки, создание неметаллические покрытия из неорганических веществ, покрытие слоем другого металла, практически не коррозирующего в тех же условиях - анодные (Zn, Cd, и др.)).

Цинковое покрытие является анодным по отношению к железу, т.к. стандартный электрохимический потенциал цинка более электроотрицателен, чем потенциал железа. Следовательно, цинк будет растворяться Zn = Zn 2+ + 2e, а на железе будут протекать реакции выделения водорода 2H + + 2e - ® H2 или восстановления кислорода O2 + 2H2O + 4e - ® 4OH - , что зависит от состава водного раствора. Эти процессы будут протекать до тех пор, пока не будет разрушен весь слой цинка.

Никелированное железо также представляет собой гальваническую пару, где катодом служит никель, а анодом железо. Последнее обусловлено тем фактом, что стандартный потенциал никеля положительнее стандартного потенциала железа. В данном случае происходит растворение железа Fe 0 ®Fe 2+ + 2e, а на никеле, в зависимости от состава раствора, происходит реакции выделения водорода или восстановления кислорода. Т.е. никелевое покрытие защищает железо только механически, а при его повреждении ускоряет процесс коррозии железа.

Оксидирование алюминиевых изделий (анодирование) производят с использованием окислительных процессов на аноде электролизера. При этом на поверхности детали формируется плотный слой из оксида алюминия, который и защищает деталь от коррозии. В естественных условиях данный оксид формируется самопроизвольно, в частности, на изделиях изготовленных из алюминия. Широко применяется процесс фосфатирования - отложения на поверхности защищаемой детали слоя солей состоящего из дигидрофосфатов железа Fe(H2HO4)2 и марганца Mn(H2PO4)2.

Придать металлу устойчивость к коррозии можно путем создания защитной пленки из высокомолекулярных соединений (лакокрасочные материалы) или путем нанесения смазки неокисляющимися маслами, которые хорошо смачивают металл при повышенной температуре в жидком виде и при застывании образуют на поверхности слой, изолирующий металл от окружающей среды.

Электрохимические методы защиты. В промышленности часто применяют так называемую протекторную защиту, пригодную в те случаях, когда защищаемая конструкция находится в среде электролита. Для осуществления протекторной защиты изделие соединяют с металлом, имеющим более отрицательным потенциалом, чем потенциал металла защищаемой конструкции. Последний будет разрушаться и тем самым предохранять от коррозии конструкцию.

Электрозащита. Защищаемая конструкция, находящаяся в среде электролита, присоединяется к катоду, а кусок старого металла, присоединяемый к аноду внешнего источника постоянного тока. Поддерживая постоянное оптимальное напряжение, специально подбираемое для каждого случая, предохраняют конструкцию от коррозии.

Изменение свойств коррозионной среды. Изменение свойств окружающей среды, осуществляется двумя путями - удаление агрессивного компонента среды или введение ингибитора.

Значительное снижение скорости коррозии наблюдается при удалении влаги (паров воды) из окружающей среды, что достигается изоляцией изделий от окружающей среды путем упаковки в полимерный материал и введением в ограниченный объем веществ, способных поглощать влагу (селикагель).

Вещества, способные при незначительных добавках их к коррозионной среде эффективно уменьшать коррозию металла или сплава, называют замедлителями (ингибиторами) коррозии. Чаще всего применяют такие замедлители коррозии, добавки которых к раствору электролита вызывают заметное изменение потенциала металла в этом растворе, приближая его к потенциалу малоактивных металлов. Анодные замедлители коррозии (Na2CO3, фосфаты, силикаты, хроматы, нитраты) способствуют уменьшению площади анодных участков на поверхности металла, уменьшая тем самым количество растворяющегося металла. Катодные замедлители коррозии (соли магния, цинка, никеля др.) способствуют уменьшению площади катодных участков на поверхности металла, что ведет к уменьшению общей скорости коррозии за счет уменьшения количества водорода, выделяющегося на этих участках или за счет замедления диффузии кислорода, являющегося деполяризатором. Органические вещества - ингибиторы коррозии (тиомочевина, уротропин, производные аминов) также относят к катодным замедлителям.

Повышение коррозионной стойкости деталей, возможно, добиться путем изготовления их из коррозионностойких материалов, в частности из нержавеющей стали. Нержавеющие стали это сплавы железа с хромом (11 - 18 %), с хромом (17 - 26 %) и никелем (8 до 11%) или с некоторыми другими металлами. При таком содержании лигирующих металлов происходит пассивация материала, и изделие перестает подвергаться коррозионному разрушению. В некоторых случаях коррозионная стойкость повышается путем изготовления деталей из пластмасс.

Форум химиков

Помогите, пожалуйста!
Надо срочно, за 1 день, заржавить большое количество железа, часть с окалиной, часть без.
Какие химикаты для этого нужны и в каких средствах бытовой химии они содержатся?
Заранее благодарна за помощь,
Илона

Это цельное железо, черное (не трансмиссия), прошедшее тепловую обработку при 900 С и затем частично очищенное от окалины механическим способом

Что бы не выглядило загадочно - рассекречиваю = это 19 метров кованых лестничных перил, которые должны быть заржавлены, потом покрыты лаком и в четверг установлены.
Прошлый раз мы использовали жидкость для мытья туалетов - ржавело прямо на глазах.
В этот раз купили 5 разных видов - ни один не берет.
Помогите, химики!

Кошмар какой. То есть что же: это чисто в художественных целях делается?
Ну.
нужна кислая жидкость, а они (которые для мытья) обычно щелочные, хотя не всегда. прошлый раз, видно, повезло.
ну, э.
любую кислоту возьмите.
да с солью обычной.

любая кислота не пойдет - ржавчина состоит из смеси оксида железа Fe2O3 и метагидроксида железа FeO(OH) . Ржавчину проще всего снять обработкой разбавленным водным раствором соляной или серной кислоты, содержащим ингибитор кислотной коррозии уротропин. А мне надо не снять, а нанести ржавчину

А если взять готовую "ржавчину", разболтать в бесцветном лаке и покрасить. Типа краска под ржавчину

ilona, химикам не надо рассказывать, что есть ржавчина и как ее смывать

(Мойша, они нам будут рассказывать, из чего состоит ржавчина!)
Я не очень хорошо представляю, как выглядит Ваше железо (слова словами, да ведь лучше один раз увидеть), но общая идея такая. Голенькое железо ржавеет в воде на раз, а с солью - ещё быстрее. А чёрное, окисленное - то так и будет лежать чёрным. Я и думаю: может слегка химически ободрать его кислотой (не фосфорной, не много, и не с ингибитором), чтобы потом оно художественно порыжело.

К сожалению, голое железо в соленой воде должно лежать несколько дней для достижения нужного эффекта.
А насчет состава ржавчины - не надо обижаться - вон на химик.ру мне хлорид железа предложили, а он зеленого цвета и растворяется в воде.

amik писал(а): А если взять готовую "ржавчину", разболтать в бесцветном лаке и покрасить. Типа краска под ржавчину

Этот метод, к сожалению, только для подкраски годится - выглядит как крашеное, а не как натуральная ржа

Добавка в солёную воду медного купороса может ещё ускорить процесс. (Медяшка сядет и заработает гальванической парой.)

А можа плюс на него подать?

з.ы. о, синхронно о електричестве вспомнили. но купорос - рыжая полумера

ilona писал(а): К сожалению, голое железо в соленой воде должно лежать несколько дней для достижения нужного эффекта.
А насчет состава ржавчины - не надо обижаться - вон на химик.ру мне хлорид железа предложили, а он зеленого цвета и растворяется в воде.

А что тут плохого? Во первых, под словом хлорид железа химик обычно вспоминает коричневую водянистую массу FeCl3*xH2O. Да, оно растворяется в воде, но является хорошим окислителем, окисляя даже медь. И кисленькое оно. Нанести в виде конц. раствора, высушить и через несколько часов прогреть паяльной лампой. Солянка улетит (противогаз, если в доме!) и останется, в общем, бурая ржавчина.

Я бы предложил обмотать ваши перила, смоченной в растворе соли тканью, перила поключить к автомобильному уккумулятору на "+", а ткань на "-" По крайней мере так иногда номера на двигателях кородируют до неузнаваемого состояния
Но тут трудности будут с площадью поверхности окисления, высыханием воды с тряпки и вообще работоспособности такой электрической цепи. Если бы погружением в ванну это делать, то пройдёт на ура, а как себя тряпочка поведёт, я не знаю.

растворы роданидов, да еще при нагревании корродируют железо достаточно быстро Можно также использовать щелочные растворы окислителей

Настоящее определяется прошлым, а будущее настоящим.

В теории различия между теорией и практикой нет, но на практике они есть.

А насчет состава ржавчины - не надо обижаться - вон на химик.ру мне хлорид железа предложили, а он зеленого цвета и растворяется в воде.

Не тот хлорид вы взяли (судя по цвету раствора - FeCl2*6H2O). Хлорное железо FeCl3*xH2O - очень мощный окислитель. Миллиметр нержавейки улетает за пару часов. Сложнее вовремя остановится.

Вообще - окалина очень неплохо противостоит коррозии, так что если надо заржавить железную деталь - то окалину сперва надо стравить кислотой. Лет 12 назад я делал так: поверхность мазал раствором соляной кислоты (примерно 10-15%, точность не важна) затем, минут через 10 - 15 раствором соды. При этом на поверхности образуется густая зелёная грязь. Её надо аккуратно высушить - и толстый слой художественной ржавчины гарантирован. Далее аккуратно промыть водой (смыть избыток соли и соды) и снова высушить.

Здесь уже правильно советовали, обмажете перила соляной кислотой, слегка разведенной, а можно и концентрированной и все. Ржавление должно быть достаточно интенсивное. Ионы хлора одни из самых мощных катализаторов коррозии. FeCl3 которое образуется при растворении железа солянкой и последующем окислении, будет только увеличивать коррозию, но в конце концов и само, за счет гидролиза во влажном воздухе разложится на на что-нибудь типа FeOOH, т.е. ржавчину. Времени только маловато.

Вот вот. Ионы хлора.
Жидкости для унитазов бывают двух основных видов:
1. Для дезинфекции. С хлоркой. Типа "Доместаса".
2. Для удаления ржавчины и известкового налета. С фосфорной и другими кислотами. Типа "Силита".

Ржавые металлические пластинки для проверки антикоррозионных материалов когда-то делали с помощью солянки. Теперь пользуемся другим методом, но он длительный, около 7 суток.

я думал металл надо разрушить
с детства пользовался таким средством - электролиз в конц. растворе поваренной соли. металл разрушается прямо на глазах, а поскольку в электролите образуется NaOH то ионы металлов тут же ловят ОН-группу и оседают в осадок, очень удобно для выделения веществ. Потом можно залить осадок кислотой и получить любую соль.
Разрушал железо, медь, никель, олово.
Если просто засунуть металл в кислоту то скажем с никелем и оловом можно ждать до посинения, медь реагирует только с азоткой и т.д.

Читайте также: