Усталость металла как проверить

Обновлено: 18.05.2024

Построение кривой усталости при эксплуатационном нагружении

Примечание. - одноступенчатое испытание (испытание по Велеру); - блок-программное испытание; - случайное испытание с цифровым моделированием последовательности экстремумов; - случайное испытание со слежением.

1.2. Определяемые характеристики - по ГОСТ 25.502-79 и ГОСТ 25.504-82.

1.3. Испытания на усталость проводят в случае, если расчетные методы определения характеристик сопротивления усталости не применимы или слишком ненадежны.

1.4. Испытания деталей или их частей следует проводить до изготовления конструкции в сборе с целью сокращения времени на ее разработку.

1.5. Назначение размеров детали (с помощью испытаний на усталость) осуществляют в три этапа:

предварительное расчетное определение размеров;

оптимизация размеров экспериментальным путем с помощью упрощенного процесса нагружения (сравнительные испытания);

оценка усталостной долговечности детали при нагружении, максимально приближенном к эксплуатационному.

2. ТРЕБОВАНИЯ К ОБЪЕКТАМ ИСПЫТАНИЙ И ФОРМИРОВАНИЕ ВЫБОРКИ ДЛЯ ИСПЫТАНИЙ

2.1. Для усталостных испытаний используют детали, а также геометрически подобные конструктивные элементы (модели) уменьшенных размеров или отдельные, вырезанные из детали, части, исходя из особенностей испытательного оборудования, затрат времени и средств.

2.2. Требования к изготовлению деталей и моделей должны соответствовать требованиям серийного (или опытного) производства.

2.3. Влияние размеров детали на предел выносливости при отсутствии экспериментальных данных следует определять по ГОСТ 25.504-82.

2.4. При испытании на усталость геометрически подобных моделей уменьшенных размеров или частей детали следует учитывать:

геометрическое влияние размеров, как следствие уменьшенного объема материала (статистическая доля) и увеличенного градиента напряжений (доля механических напряжений);

технологическое влияние размеров, как следствие технологической обработки материала или детали;

влияние размеров с точки зрения обработки поверхности, как следствие упрочнения поверхности и связанного с ним внутреннего напряженного состояния и увеличения твердости поверхностного слоя материала.

2.5. Для построения кривых равной вероятности неразрушения испытывают партию деталей, объем которой определяют в зависимости от целей испытаний, заданной точности и доверительной вероятности оцениваемого параметра, в соответствии с требованиями ГОСТ 25.502-79.

2.6. Минимально необходимое число деталей определяют по номограмме, приведенной на чертеже приложения 2.

2.7. Методика и примеры определения минимального числа испытуемых деталей для оценки среднего ресурса приведены в приложении 2.

3. АНАЛИЗ ЭКСПЛУАТАЦИОННОЙ НАГРУЖЕННОСТИ

3.1. Характеристики нагружения

Эксплуатационное нагружение может быть охарактеризовано:

характером нагружения (случайное, детерминированное одно- или многоступенчатое, квазистатическое, колебательное, ударное);

числом наложенных многоосных составляющих и отношениями между ними (при случайном нагружении - коррелированные или некоррелированные; при детерминированном нагружении - различные или одинаковые частоты, со сдвигом или без сдвига фаз);

регулированием усилия, перемещения, деформации или ускорения;

параметрами окружающей среды (температурой, давлением, коррозией трения);

видом нагружения (растяжение-сжатие, изгиб, кручение, сдвиг);

асимметрией нагружения (знакопеременный или знакопостоянный цикл напряжений);

формой спектра (распределения) нагрузок (узкополосный или широкополосный).

Характеристики однопараметрического спектра нагружения с постоянным средним значением цикла напряжений приведены на черт.1.

Характеристики однопараметрического спектра нагружения с постоянным средним значением цикла напряжений


Примечание. Форму спектра описывают с помощью дополнительной функции частоты максимумов

3.2. Стандартные спектры нагружения

3.2.1. Если испытания на усталость проводят не с действительным спектром или действительной последовательностью экстремумов (на стадии проекта, при сравнительных испытаниях, при разработке документации на определение размеров, при незначительном отклонении действительного нагружения), то их осуществляют со стандартными спектрами (при испытании по блок-программе), а также со стандартными последовательностями экстремумов (при случайном испытании).

3.2.2. Использование стандартных спектров или стандартных последовательностей экстремумов дает следующие преимущества:

Усталость металла

Усталость металла

Что это такое? Усталость металла – это постепенное повреждение его структуры с последующим разрушением. Опасность заключается в том, что процесс этот не одномоментный, проходит время, прежде чем материал окончательно придет в негодность.

От чего зависит? Усталость металла связана с условиями, в которых он эксплуатируется. Поэтому, чтобы не допустить деформации, прибегают к различным мерам, способным защитить материал от порчи.

Что такое усталость металлов

Понятие «усталость металла» скрывает за собой неравновесно-напряженное состояние, из-за которого в материале накапливаются отрицательные остаточные явления. Кроме того, металл оказывается неспособен сопротивляться разрушающей силе ниже его предела прочности.

Появление статической усталости объясняется непрерывным продолжительным воздействием на предмет статичной нагрузки, которая меньше предела прочности металла.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Динамическая нагрузка, например, удары, вибрация, является знакопеременной, то есть при ней сжатие постоянно сменяется растяжением. При подобных процессах усталость металла наступает в короткие сроки и может классифицироваться как одноцикловая, малоцикловая и многоцикловая.

  • Одноцикловая усталость металла – простыми словами это его разрушение в результате перехода в неравновесно-нагруженное состояние. Нагрузка оказывается единожды и равна либо превышает предел прочности материала.
  • Малоцикловая усталость металла возникает из-за неравновесно-нагруженного состояния, вызывающего разрушение металла под действием нагрузки, соответствующей или немного превышающей предельный уровень его прочности. Количество нагружаемых циклов не превосходит 10 000.
  • Многоцикловая усталость металла также является неравновесно-нагруженным состоянием, результатом которого становится разрушение металла при соответствующей либо превышающей предел прочности нагрузке. Количество циклов превышает 10 000.

История термина

В процессе развития транспорта инженеры стремились увеличить скорость его движения, однако это привело к увеличению частоты крушений. Дело в том, что ломались вагонные и паровозные оси, коленчатые валы на пароходах.

Подобная картина складывалась и на предприятиях, ведь и там важно было добиться, чтобы оборудование функционировало быстрее. Станки ускоряли за счет увеличения количества оборотов двигателя, что вскоре вызывало поломку деталей.

История термина

Специалисты пытались обнаружить причины аварий, качество металла изучалось в лабораторных условиях, но ничего выяснить не удавалось. Проверки показывали, что размеры элементов рассчитаны верно, использовался качественный металл, а детали имели хороший запас прочности.

Со временем инженеры обратили внимание на тот факт, что обычно из строя выходят компоненты механизмов, испытывающие на себе повторную переменную нагрузку. Допустим, именно такому воздействию подвергается шток в паровой машине: он крепится к шатуну, а тот приводит в движение коленчатый вал. В паровозе принцип примерно тот же, только ведущее колесо вращается благодаря работе кривошипа.

Поршень перемещается в цилиндре, из-за чего шток меняет направление движения. Сначала он испытывает на себе осевое сжатие, а потом растяжение, сопровождающееся изменением нагрузки на данный элемент.

Никто не мог понять, по какой причине повторяющаяся переменная нагрузка разрушает деталь, ведь с постоянной нагрузкой аналогичной величины материал может долго справляться.

Чтобы описать данный процесс, решили использовать усталость металла на фоне переменной нагрузки. Проблема лишь в том, что такое объяснение не несет в себе никакой информации. Кроме того, оно далеко от сути явления, поскольку усталость мышцы, сопровождающаяся снижением ее способности к сокращению, имеет более сложную природу, далекую от поломки металлического элемента.

Понятие «усталость» сохранилось в технике до сих пор, хотя уже известно, почему металл быстро разрушается при переменной нагрузке. По аналогии было введено понятие «выносливость металлов»: чем дольше изделие не «устает», тем более «выносливым» считается металл.

Если материал подвержен усталости, важно сформировать новые пределы напряжений, отказаться от имеющихся справочных материалов, опыта, накопившегося за годы инженерной работы.

Необходимо было доказать связь между выносливостью и повторяющимися переменными нагрузками, причем проверить способность металла к физической усталости можно было только опытным путем.

Рекомендуем статьи

Всю вторую половину XIX века вопросы усталости и текучести металлов оставались одними из наиболее актуальных для технических обществ. Специалисты рассуждали о том, как колебания воздействуют на детали оборудования, корпусы морских судов.

Имена многих исследователей данной темы сейчас остаются неизвестным, поскольку мало у кого была возможность публиковать результаты своих опытов. До наших дней дошла информация только о ряде ученых, которые занимались определением сути усталости металлов.

Например, В. Альберт, горный инженер из Германии, стремился понять, почему обрывались подъемные цепи. В то время бадьи и клети опускались в шахту при помощи цепей, которые перебрасывали через шкив и накручивали на барабан специальной машины. На барабане звенья претерпевали изгибающую нагрузку, а при раскручивании цепи изгиб уступал место растяжению. Во время подъема груза процесс повторялся в обратном порядке.

Инженер понял, что причина обрыва кроется в частой перемене изгибания элементов цепи, пока она наматывается на барабан и огибает шкив. Чтобы доказать свое предположение, В. Альберт проводил опыты, до ста тысяч раз подвергая образцы изгибу. Далее он осматривал цепи, чтобы найти на звеньях трещины, сформировавшиеся из-за переменной нагрузки.

Опыты с железными брусками

Аналогичные опыты с железными брусками в 1950-х годах проводили английские капитаны Г. Джеймс и Д. Гальтон. Они создали машину, чтобы быстро нагружать брус и снимать с него нагрузку.

Эти эксперименты вдохновили английского инженера В. Ферберна на изучение выносливости массивных железных балок, используемых при строительстве мостов. В 1960-х годах он работал с балками по 6-7 метров, при помощи рычагов оказывая и убирая нагрузку. Данный процесс сопровождался прогибом и выпрямлением изделия, а несколько сотен тысяч перемен нагрузки вызывали образование трещины.

Названные опыты носили бессистемный характер и не были представлены в широких технических кругах. На тот момент было сложно сказать, правда ли существует явление усталости металла либо трещины появлялись по случайному стечению обстоятельств.

Систематические исследования проводил механик из Германии А. Велер, несмотря на то, что он был выпускником коммерческого училища и работал чертежником на паровозном заводе, потом машинистом.

Требовалось понять причины аварий, поэтому создали специальную постоянную комиссию, куда А. Велер вошел в качестве эксперта, долгое время работавшего с паровозами. Он проводил испытания металлов в лаборатории, сам изобретал машины, позволявшие подвергать образцы переменным растяжению, изгибу, скручиванию. Интересно, что современные ученые испытывают материалы на изгиб на оборудовании, разработанном А. Велером.

Его машины для испытаний на усталость металла отличались небольшими скоростями, из-за чего исследования длились годами. Так, станок для имитации переменного изгиба совершал за минуту всего 72 оборота, а один из образцов выдержал более 132 миллионов перемен нагрузки.

Тем не менее А. Велер смог доказать, что образцы из стали и железа разрушаются при повторной переменной нагрузке, которая в иных ситуациях оказывается допустимой. Деталь сможет справляться с ней в течение неограниченного отрезка времени, если подобная нагрузка остается в определенных границах, то есть не выходит за предел выносливости. Данную величину необходимо учитывать при создании проектов быстроходных паровозов и скоростных машин.

Опыты А. Велера в корне изменили представления об уровне нагрузки, которой можно подвергать вагонные оси, шатуны, штоки цилиндров, пр. Благодаря ему расчеты компонентов скоростных машин начали выполнять в соответствии с пределом выносливости, который устанавливали опытным путем.

Основные виды усталости металла

  1. Пороговая усталость представляет собой состояние, при котором заметны первые признаки неравномерного напряжения, являющегося необратимым.
  2. Накопление усталости является необратимым относительным процессом накопления неравновесно-напряженного состояния, в результате которого металл разрушается.

Основные виды усталости металла

Снова добиться прежней износостойкости, надежности конструкции, увеличить ее срок службы можно, если повысить уровень твердости. С этой целью прибегают к поверхностной или объемной закалке. Температуру металла повышают до +850 °C и выдерживают в течение 15–20 минут, затем резко охлаждают в воде или масле. В итоге обеспечивается высокая твердость детали.

Старение и усталость металлов и сплавов вызывают значительное снижение уровня прочности, сокращают срок службы изделия, провоцируя его разрушение из-за появления усталостных трещин. Все это негативно отражается на надежности, продолжительности работы и безотказности техники.

Причины возникновения усталости металла

Локальное перенапряжение приводит к появлению небольшой трещины на металлическом изделии, которая постепенно увеличивается в процессе его использования. В результате деталь ослабевает и резко выходит из строя при разрастании трещины до критических показателей. Это называется механической усталостью металлов.

Причины возникновения усталости металла

Выделяют три этапа усталостного разрушения:

  1. Образование трещины.
  2. Распространение трещины.
  3. Разрушение материала.

Чтобы деталь использовалась в течение максимально долгого срока, не подвергаясь усталостному разрушению, а специалисты не задумывались, через сколько лет наступит усталость металла, важно не допускать превышение локальными напряжениями определенного значения, известного как предел выносливости.

Усталость металла определяется присутствием концентраторов напряжений, в качестве которых могут выступать отверстия, сварные соединения, зазубрины, очаги ржавчины. Не менее важно качество обработки поверхности изделия, так как гладкие плоскости менее подвержены усталостным процессам.

Усталостное разрушение деталей может быть разных типов в соответствии с причиной образования дефекта:

  • перепады температуры – в этом случае говорят о термической усталости металла;
  • совместные циклы давления и температуры;
  • наличие очага коррозии;
  • постоянная вибрация, исходящая от оборудования.

Как определить усталость металла

Экспериментальные методы исследования усталости металлов позволяют создавать надежные конструкций, которые служат долго и справляются с переменными нагрузками. Существуют испытания на усталость для хрупких, малопластичных и пластичных материалов, которые проводят в ускоренном или длительном режиме.

Как определить усталость металла

Нередко предел выносливости определяют в условиях симметричного цикла при помощи гладкого вращающегося образца либо имеющего надрез. Так как специалистам нужно определить усталость металла, прибегают к большому количеству циклов знакопеременных нагрузок. Испытание осуществляется при заданной нагрузке и завершается сразу после разрушения материала, далее фиксируют число выполненных циклов.

Меры повышения выносливости металла

Разрушение крепежных элементов является недопустимым. Избежать преждевременного проявления усталости металла можно таким образом:

  • Прибегнуть к рационализации конструкции, то есть к увеличению радиуса скруглений, переходов между отдельными участками изделия, что позволяет избавиться от концентраторов напряжений.
  • Выбирать материал, обладающий повышенным показателем прочности. Сюда относятся титан, легированная сталь, а также сталь с высоким содержанием углерода.
  • Обеспечить более высокую прочность поверхности при помощи метода закалки с отпуском, азотирования, гальванической обработки металла для защиты от ржавчины.
  • Постоянно затягивать резьбовой крепеж во время работы – практически полная защита от ослабления предварительной затяжки достигается при помощи стопорных клиновых шайб.
  • Тщательно отслеживать качество затяжки соединений, если изготовитель указал величину момента затяжки.
  • Защищать поверхности крепежа от воздействия извне, что позволяет избежать коррозионной усталости металла.
  • Предельно серьезно отнестись к выбору типа крепежа, оценив несущую способность, которая требуется от подобных изделий в конкретной ситуации.
  • Провести грамотный монтаж, благодаря чему удается исключить вибрации, слабину крепежа в рабочем состоянии – так, анкерный болт не должен болтаться при установке в пористый бетон, кирпич.
  • Учесть класс пожаростойкости объекта, конструкции, ведь от этой характеристики зависит необходимость в изделиях с повышенным уровнем стойкости.

Разрушение металла в результате усталости происходит внезапно и связано с большим количеством нюансов, чем обычное. А значит, при проектировании объекта важно проанализировать показатели усталости. На данном этапе уже известен материал, который планируется использовать для проекта, и параметры среды – инженеру нужно выбрать ПО для оценки степени усталости всех элементов конструкций.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Методика проведения усталостных испытаний

Под действием циклических напряжений в металлах и сплавах зарождаются и постепенно развиваются трещины, вызывающие в конечном итоге полное разрушение детали или образца. Это разрушение особенно опасно потому, что может протекать под действием напряжений, намного меньших пределов прочности и текучести. Подсчитано, что более 80% всех случаев эксплуатационного разрушения происходит в результате циклического нагружения.

Процесс постепенного накопления повреждений в материале под действием циклических нагрузок, приводящий к изменению его свойств, образованию трещин и разрушению, называют усталостью, а свойство противостоять усталости – сопротивлением усталости.

Усталостная трещина обычно зарождается в поверхностных слоях и затем развивается вглубь образца или детали, образуя острый надрез. Распространение усталостной трещины обычно длительно. Оно продолжается до тех пор, пока сечение не окажется столь малым, что действующие в нем напряжения превысят разрушающие. Тогда произойдет быстрое разрушение, как правило хрупкое, из-за наличия острого надреза.

Задача усталостных испытаний – дать количественную оценку способности материала работать в условиях циклического нагружения без разрушения.

Современные методы испытаний на усталость разнообразны. Они отличаются характером изменения напряжений во времени, схемой нагружения (изгиб, растяжение – сжатие, кручение), наличием или отсутствием концентраторов напряжений. Основные требования и методика усталостных испытаний обобщены в ГОСТ 25.502 – 79.

Во время любого усталостного испытания на образец действуют циклические напряжения, непрерывно изменяющиеся во времени и часто по знаку. Типичные примеры используемых циклических напряжений показаны на рис. 2.89. Цикл напряжений – это совокупность переменных значений напряжений за один период их изменения. Каждый цикл характеризуется несколькими параметрами. За максимальное напряжение цикла σmax принимают наибольшее по алгебраической величине напряжение. Минимальное напряжение цикла – σmin – наименьшее по алгебраической величине напряжение.

Среднее напряжение цикла

Амплитуда напряжений цикла

Сложение и вычитание максимальных и минимальных напряжений производят с учетом их знака. Из рис. 2.89 ясно, что

Цикл характеризуется также коэффициентом ассиметрии

Наиболее распространенные схемы нагружения при усталостных испытаниях – изгиб и растяжение – сжатие. Схема изгиба реализуется по-разному. Особенно проста и чаще всего применяется схема чистого изгиба образца при вращении (см. рис. 2.90). Нагрузка здесь прилагается в двух точках, что обеспечивает постоянство изгибающего момента на всей рабочей длине образца.

Для испытаний в условиях циклического растяжения – сжатия чаще всего используют гидропульсационные машины с гидравлическим приводом и гидропульсатором.

Схемы некоторых стандартных образцов, используемых при усталостных испытаниях, показаны на рис. 2.91. Их рабочая часть имеет круглое или прямоугольное сечение. Используют гладкие (без надрезов) и образцы с концентраторами напряжений.

Усталостные испытания делятся на две большие группы: высокоцикловые и малоцикловые. Первые характеризуются большой частотой нагружения (10 1 – 10 3 Гц), вторые – низкой частотой, не более 10 Гц.

Основным первичным результатом высокоциклового усталостного испытания одного образца является число циклов до разрушения (циклическая долговечность) при заданных характеристиках цикла. По результатам испытаниям серии образцов могут быть определены различные характеристики сопротивления усталости. Главной из них является предел усталости σR – наибольшее значение максимального напряжения цикла, при действии которого не происходит усталостного разрушения образца после произвольно большого или заданного числа циклов нагружения.

Для того, чтобы оценить предел усталости, необходимо испытывать целую серию образцов, как правило, не меньше 15. Каждый образец испытывают при определенном значении максимального напряжения цикла. При этом циклы для всех образцов одной серии должны быть подобны, т.е. иметь одинаковую форму и отношение различных характеристик цикла.

По результатам испытания отдельных образцов строят кривую усталости в координатах максимальное напряжение цикла σmax – циклическая долговечность N (рис. 2.92). Максимальное напряжение для первого образца обычно задают на уровне ⅔ σв. Нижний предел используемых напряжений составляет 0,3 – 0,5 σв. Из-за относительно большого разброса экспериментальных точек строить эти кривые рекомендуется методом наименьших квадратов. Наиболее наглядны кривые усталости в логарифмических координатах (см. рис. 2.92,б).

Рисунок 2.92 - Кривые усталости в различных координатах

По мере уменьшения максимального напряжения цикла циклическая долговечность всех материалов возрастает. При этом у сталей и некоторых цветных сплавов, склонных к динамическому деформационному старению, кривая усталости асимптотически приближается к прямой, параллельной оси абсцисс (см.рис. 2.92, а, кривая 1). Ордината, соответствующая постоянному значению σmax, и есть предел усталости таких материалов σR – наибольшее напряжение, которое не вызывает разрушения при любом числе циклов N (его иногда называют физическим пределом выносливости). Наиболее просто определяется σR при использовании логарифмического масштаба (см.рис. 2.92,б). Удобно оценивать σR и по кривым в координатах σmax – 1/N (см.рис. 2.92,в). Здесь предел усталости определяют, экстраполируя кривую в точку ее пересечения с осью ординат, где 1/N = 0. Этот способ особенно целесообразен для приближенной оценки σR по результатам испытания небольшого числа образцов.

Многие цветные металлы и сплавы не имеют горизонтального участка на кривых усталости (см.рис. 2.93, а, б, кривые 2). В этом случае определяют предел ограниченной усталости – наибольшее напряжение σmax, которое материал выдерживает, не разрушаясь в течение определенного числа циклов нагружения. Это число циклов называют базой испытания, обычно 10 8 циклов (когда на кривой усталости имеется горизонтальный участок, испытания продолжают не более чем до 10 7 циклов).

Кривые усталости, построенные при использовании цикла с R = - 1, для многих металлических материалов хорошо описываются уравнением Вейбулла:

σmax = σ-1 + a (N + B) - α ,

где σ-1 – предел усталости; N – долговечность; a, B, α – коэффициенты.

Для усталостных испытаний характерен значительный разброс экспериментальных данных, поэтому особенно важна их правильная статистическая обработка, регламентируемая ГОСТом. При ограниченном числе образцов предел выносливости определяется с 50%-ной вероятностью. Для этого, строя кривую усталости, необходимо при напряжениях, равных 0,95 – 1,05 σR, провести испытание нескольких (не менее трех) образцов, половина которых должна остаться неразрушенной по достижении заданной базы испытаний.

Как уже говорилось выше, по результатам усталостных испытаний для каждого образца определяют циклическую долговечность N – число циклов нагружения, которое выдерживает материал перед разрушением при определенном напряжении. Циклическая долговечность – вторая по важности после σR характеристика сопротивления высокоцикловой усталости металлических материалов.

Предел усталости и циклическую (или усталостную) долговечность можно определять и по результатам испытаний на малоцикловую усталость (МЦУ). Однако в них эти характеристики не являются основными. Испытания на МЦУ проводят с использованием относительно высоких напряжений и малой частоты циклов напряжений, имитируя условия эксплуатации конструкций, например самолетных, которые подвергаются воздействию относительно редких, но значительных по величине циклических нагрузок. База испытания на малоцикловую усталость не превышает 5 · 10 4 циклов. Таким образом, малоцикловая усталость относится к левой ветви кривых усталости (см.рис. 2.92, а, б) до их выхода на горизонталь или появления перегиба.

Границей между мало- и многоцикловой усталостью является зона перехода от упруго-пластического к упругому деформированию в условиях циклического нагружения. Названная выше база (5·10 4 циклов) является такой условной границей, характеризующей среднее число циклов нагружения для этой переходной зоны у пластичных сталей и сплавов цветных металлов. Для высокопластичных сплавов переходная зона смещается в сторону большего числа циклов, а для хрупких – в сторону меньшего.

Малоцикловые испытания чаще всего проводят по схеме растяжение – сжатие. При этом по ГОСТ 25.502 – 79 необходимо обеспечить непрерывное измерение и регистрацию деформирования рабочей части образца. В отличие от испытаний на многоцикловую усталость, где в основном используют цилиндрические образцы, в малоцикловых испытаниях предпочитают образцы с прямоугольным сечением, в частности пластины с концентратором напряжений.

Важнейшим первичным результатом испытаний на МЦУ является скорость роста трещины при усталости dl/dN (СРТУ). Ее удобно определять на больших по размеру образцах шириной B=200÷500, длиной L=3B и длиной исходной щели 2l0=0,3 – 4 мм, при этом 2l/B≈0,3, где l= l0l, а Δl – длина предварительно выращенной усталостной трещины от 1,5 до 2 мм. В этом случае легко проводить замеры величины l на поверхности образца и рассчитывать dl/dN с достаточно высокой точностью.

Все большее развитие в последние годы получают испытания на МЦУ, базирующиеся на концепциях механики разрушения. Эти испытания получили название испытаний на циклическую трещиностойкость. Их основным результатом является построение диаграммы усталостного разрушения – зависимости СРТУ от наибольшего значения Kmax или размаха ΔK коэффициента интенсивности напряжений цикла (рис. 2.93). При этом

lg Kmax = lg[ΔK/(l – Rσ)].

Диаграмма усталостного разрушения состоит из трех участков. Первый, соответствующий низким скоростям роста усталостных трещин (менее 10 -5 мм/цикл), характеризуется затуханием СРТУ с увеличением Kmax или ΔK. Величина Kmax на участке 1 близка к пороговому значению Ks, за которое принимают величину Kmax, при которой трещина не развивается на протяжении заданного числа циклов нагружения.

Линейный участок 2 диаграммы усталостного разрушения (см.рис. 2.93) описывается степенной зависимостью

dl/dN = CK) m или dl/dN = C’(Kmax) m , (2.43)

где для различных материалов m = 2÷10, m’=2÷6. Зависимости (2.43) обычно реализуются в диапазоне СРТУ от 10 -5 до 10 -3 мм/цикл.

На участке 3 скорость роста трещины возрастает с увеличением Kmax, приближающимся к критическому коэффициенту интенсивности напряжений Kили K- значению Kmax, при котором образец разрушается. Критические коэффициенты Kили Kназывают циклической вязкостью разрушения. Кроме них, по диаграмме усталостного разрушения определяют еще несколько характеристик циклической трещиностойкости. Наиболее важными из них считают: коэффициенты C и m в уравнении (2.43), пороговый коэффициент интенсивности напряжений Ks. Оценивают также величины Kmax и ΔK при заданной СРТУ и, наоборот, величину СРТУ при определенных значениях Kmax и ΔK, коэффициенты интенсивности напряжений K1-2 и K2-3, соответствующие началу и концу второго участка диаграммы усталостного разрушения (см. рис. 2.93 и др.)

Испытания металлов

Испытания металлов

Испытания металлов необходимы для оценки пригодности сырья или изделий к условиям будущей эксплуатации. Очевидно, что данный комплекс мер предотвратит возможные неисправности и поможет сохранить время и ресурсы производства.

Для проведения испытаний используют несколько методов. В нашей статье мы расскажем, как это происходит, разберемся с технологией испытаний и поговорим о необходимом оборудовании для такого рода работ.

Задачи испытания металлов

Испытания металлов – важная часть современного производства. Сравнивая результаты химических, механических и еще целого ряда проверок с определенными нормами, можно делать выводы о том, как поведут себя изделия из конкретного металла в ходе эксплуатации. Например, на усталость образцы испытывают для того, чтобы выяснить, в каких пределах окажется выносливость металла, если изделие будет работать, подвергаясь воздействию определенных факторов.

Обычно пользуются циклической схемой нагрузок.

Существует целый ряд неразрушающих методик испытания свойств металла – тестирование может быть химическим, технологическим, металлографическим, механическим и т. д. Все способы разработаны для качественной оценки материалов и выяснения того, как они будут вести себя под воздействием тех или иных факторов.

Механические методы испытания металлов

Механические испытания имеют важнейшее значение в промышленности. Их целью является определение эксплуатационных характеристик материалов, в частности, прочности и пластичности. На основе полученных результатов делают прогнозы относительно поведения металлических деталей в реальных условиях.

Механические методы испытания металлов

Нагрузка, воздействующая на узлы и детали различных агрегатов и конструкций в ходе эксплуатации, может быть растягивающей, сжимающей или сдвиговой. В ходе основных видов исследований можно воспользоваться разными методиками испытаний металлов, перечень которых в каждом случае зависит от марки металла и предназначения изделий, выполненных из него.

  • статические испытания металлов, в ходе которых нагрузка постоянна или постепенно нарастает;
  • динамические, с быстрым возрастанием интенсивности нагрузки;
  • циклическими, с повторением смены интенсивности и вектора приложения нагрузки;
  • технологическими, в ходе которых специальные стенды воссоздают набор воздействий, характерный для будущей сферы применения изделий.

Определение твердости

Наиболее востребованы испытания твердости металла. Этот показатель характеризует его сопротивление при вдавливании более твердых тел. Чаще всего эксперты, проводя исследование, применяют три основных метода. В образец исследуемого металла вдавливают:

  • стальной шарик (твердость по шкале Брюнеля);
  • алмазный конус (твердость по шкале Роквелла);
  • четырехгранную алмазную пирамиду (твердость по шкале Виккерса).

К несомненным достоинствам этих методик следует отнести их доступность и простоту. Также немаловажное преимущество подобных испытаний заключается в том, что они не разрушают изделия. Образцы можно впоследствии полноценно эксплуатировать. Косвенно из результатов этих исследований можно делать выводы о предположительном сопротивлении металла растягивающим нагрузкам.

Испытание на растяжение

Для установки предела прочности при воздействии растягивающих нагрузок часто проводят испытания металла на растяжение, дающие возможность оценить величину относительного удлинения, а также пределы упругости и текучести данного материала.

Образцы для испытаний имеют круглое или прямоугольное поперечное сечение. Проводя испытания, их фиксируют в специальной установке и подвергают воздействию растягивающих нагрузок. Скорость изменения силы нагрузки в ходе исследования должна быть постоянной. После того как в ходе испытаний эксперты получают и фиксируют данные о параметрах растяжения, специальные алгоритмы позволяют рассчитать все перечисленные показатели.

Испытание на сжатие

Когда речь идет об относительно хрупких марках стали, тесты на растяжение не позволяют сделать корректные выводы. Здесь на помощь экспертам приходит другая методика – испытание прочности металла при воздействии сжимающих нагрузок. Такая экспертиза обязательна для металла, детали из которого будут в ходе эксплуатации работать на сжатие.

Для проведения исследования опытные образцы помещаются в рабочую зону специального пресса и подвергаются воздействию нагрузки до деформации или хрупкого разрушения.

Все эти исследования проводятся в специализированных лабораториях с применением соответствующего оборудования и позволяют определить основные физические и механические характеристики металла. Данные экспертизы дают возможность делать выводы о целесообразности использования данного металла в качестве материала для тех или иных изделий.

Результатом работы экспертов становится оформление протокола испытаний, который обязательно должны принимать во внимание как государственные, так и коммерческие предприятия.

Химические методы испытания металлов

Для того чтобы точно определить химический состав материала и выяснить, какие примеси и в каком количестве он содержит, проводятся химические испытания. Это может быть травление, при котором на металл воздействуют специальными реагентами.

Химические методы испытания металлов

Подобный метод дает возможность оценить пористость, выявить ликвацию и т. д. Примеси таких элементов, как сера или фосфор, обнаруживают в металле, используя контактные отпечатки. Для проведения исследования используют высокочувствительную фотобумагу, прижимая ее к поверхности образца.

Спектроскопический анализ обладает целым рядом серьезных преимуществ, среди которых его высокая точность, позволяющая обнаруживать примеси в количествах, недоступных для других методов химического анализа, и оперативность. Полихроматоры, квантометры и другие разновидности спектрометров дают экспертам возможность точно произвести оценку химического состава металла на основании анализа его спектра.

Физические методы испытания металла

Микроскопическое исследование

С помощью металлургического и поляризационного микроскопов можно с высокой точностью оценить качество металла и его пригодность для изготовления конкретных изделий. Микроскопия позволяет исследовать особенности структуры, в том числе размер и форму зерна, фазовый состав и другие важные характеристики.

Радиографический контроль

Для проведения исследования образец подвергают воздействию гамма- или рентгеновского излучения: с противоположной источнику стороны располагают пленку, которая фиксирует картинку. Полученная в результате теневая рентгено- или гаммаграмма, позволяет выявить пористость, ликвацию и микротрещины.

Облучив образец с разных сторон, можно точно локализовать местоположение дефектных зон. Радиография отлично зарекомендовала себя как метод проверки швов на сварных конструкциях и изделиях.

Магнитно-порошковый контроль

Этот метод исследования применим исключительно к ферромагнетикам (Fe, Ni, Co и т. д.) и ферромагнитным сплавам. Наиболее широко магнитно-порошковым методом пользуются для исследования сталей на предмет наличия скрытых дефектов. Сама процедура относительно проста: на предварительно намагниченный образец наносят магнитный порошок, который указывает на дефекты, распределяясь по поверхности.

Ультразвуковой контроль

Суть метода в отражении зонами дефектов коротких ультразвуковых импульсов, посылаемых в толщу металла специальными приборами. Отраженные волны попадают в приемник-преобразователь, а затем усиленные сигналы отправляются на монитор осциллографа. Разница во времени между отправкой импульса и регистрацией его отражения позволяет точно рассчитать, на какой глубине залегает дефект.

Для вычислений достаточно взять за основу скорость распространения звуковых импульсов в конкретном сплаве. Огромный плюс такого метода в том, что анализ практически не занимает времени и часто не требует остановки работы исследуемых механизмов.

Специальные методы

Помимо общепринятых, для исследования металлических изделий применяют специализированные методы, такие как прослушивание с помощью стетоскопа или простукивание обходчиками колесных пар железнодорожных составов. Также нередко проводят исследования циклической вязкости, которая позволяет судить о поглощении данным материалом вибрации.

Демпфирующую способность металлов оценивают по превращенной в тепло работе и рассчитывают на единицу объема для одного полного цикла обращения напряжения. Для того чтобы правильно спроектировать конструкцию или механизм, работа которых связана с повышенным уровнем вибрации, необходимо учитывать демпфирующие свойства металлов.

Термический метод

Межфазовые переходы в металлическом сплаве сопровождает тепловой эффект, результатом которого становится образование точек перегиба (температурных остановок) на температурных кривых при его охлаждении. Именно на тепловом эффекте основан термический метод исследования образцов металла, дающий возможность обнаружить критические точки в структуре последних.

Дилатометрический метод

Суть метода состоит в измерении длины образцов при разных температурах в ходе нагревания, остывания или выдержки при стабильной температуре. Длина образца меняется вследствие изменения объема металла.

Посредством этого способа изучают и фиксируют критические точки при нагреве металлов, фазовые преобразования в структуре сплава и течение процессов распада в твердых растворах.

Магнитный анализ

С помощью этого метода исследуют переходы между пара- и ферромагнитным состояниями сплавов с количественной оценкой хода процессов.

Оборудование для испытания металлов

В состав базового набора оборудования для механических испытаний входят:

  • электромеханические разрывные машины;
  • горизонтальные машины с экстензометрами;
  • гидравлические разрывные машины;
  • маятниковые копры;
  • пластомеры.

Универсальная разрывная машина позволяет провести практически полный комплекс механических испытаний металлических образцов.

Магнитный анализ

Для измерения продольных деформаций при испытании металла пользуются экстензометром. Прибор снабжен датчиками контактного или бесконтактного типа. Последние позволяют проводить испытания материалов высокими нагрузками. При этом момент разрушения металла можно фиксировать без риска получения травмы, что делает такие приборы предпочтительными с точки зрения безопасности.

Однако датчики этого типа не могут обеспечить такой точности измерений, как контактные. Помимо широкого диапазона приборы с такими устройствами дают возможность тонкой настройки режима измерений.

Также для испытаний на растяжение широко применяются испытательные машины горизонтального типа. Гидравлические захваты и экстензометры, которыми оснащают такое оборудование, позволяют измерять как поперечную, так и продольную деформацию металла в широком диапазоне значений и с высокой точностью.

Испытания образцов металла на разрыв часто проводят с помощью разрывных машин, электрогидравлический привод которых дает возможность точно измерять прочность образцов и их сопротивление разрывающим нагрузкам. Кроме того, оборудование позволяет получать данные о сопротивлении металла сжатию, изгибу или растяжению.

Ударные испытания металла проводят с помощью маятниковых копров, которые разрушают образцы из пластических масс, нейлона, керамики, камня и многих других материалов, попутно снимая показания по их ударной вязкости и минимальной энергии разрушения.

Применение специального оборудования дает возможность определить в ходе исследования реальные механические свойства материала. С помощью машин также проводят испытания:

  • ползучести, релаксации напряжения и длительной прочности;
  • давлением;
  • уплотнений.

Специализированное оборудование для испытаний ползучести, длительной прочности и релаксации напряжения металла широко применяется в лабораториях металлургических предприятий.

Если испытание требует предварительного нагрева образцов до определенной температуры, его проводят в муфельных печах, особенности конструкции которых позволяют исключить контакт исследуемого материала с продуктами горения.

Чтобы смоделировать гидравлический удар в металлических и пластиковых трубах, их испытывают под давлением в специальной системе, позволяющей создать необходимый напор.

Для испытания сильфонных металлических компенсаторов и уплотнений используют устройства, состоящие из вставленных друг в друга цилиндров. При движении внутреннего цилиндра по продольной оси в системе создается давление, которое контролируется с помощью динамометра. Такие устройства позволяют определить максимальное давление, которое выдерживает исследуемый образец.

Качество металлического образца определяется его химическим составом, микро- и макроструктурой, качеством поверхности, геометрией, линейными размерами, технологическими свойствами и рядом других параметров. Металл или изделия из него испытывают на соответствие требованиям государственных стандартов, техническим условиям предприятия или нормам, содержащимся в договорах, заключенных производителем с заказчиками.

При поступлении металла на производство для дальнейшей обработки его качество в обязательном порядке проходит входную проверку. Эта проверка является ключевым звеном в производственном процессе. По этой причине повышенное внимание уделяется надежности и точности методов определения основных параметров.

Методы испытания механических свойств металлов

Механические свойства металлов (прочность, упругость, пластичность, вязкость), как и другие свойства, являются исходными данными при проектировании и создании различных машин, механизмов и сооружений.

Методы определения механических свойств металлов делятся на следующие группы:

· статические, когда нагрузка возрастает медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

· динамические, когда нагрузка возрастает с большой скоростью (испытания на ударный изгиб);

· циклические, когда нагрузка многократно изменяется (испытание на усталость);

· технологические — для оценки поведения металла при обработке давлением (испытания на изгиб, перегиб, выдавливание).

Испытания на растяжение (ГОСТ 1497-84) проводятся на стандартных образцах круглого или прямоугольного сечения. При растяжении под действием плавно возрастающей нагрузки образец деформируется до момента разрыва. Во время испытания образца снимают диаграмму растяжения (рис. 1.36, а), фиксирующую зависимость между действующей на образец силой Р, и вызванной ею деформацией Δl (Δl — абсолютное удлинение).


Рис. 1.36. Диаграмма растяжения низкоуглеродистой стали (а) и зависимость между напряжением и относительным удлинением (б)

Вязкость (внутреннее трение) — способность металла поглощать энергию внешних сил при пластической деформации и разрушении (определяется величиной касательной силы, приложенной к единице площади слоя металла, подлежащего сдвигу).

Пластичность — способность твердых тел необратимо деформироваться под действием внешних сил.

При испытании на растяжение определяют:

· σв — границу прочности, МН/м 2 (кг/мм 2 ):

где Рb — наибольшая нагрузка; F0 — начальная площадь сечения образца;

· σпц — границу пропорциональности, МН/м 2 (кг/мм 2 ):

где Pпц — нагрузка, соответствующая границе пропорциональности;

· σпр — границу упругости, МН/м 2 (кг/мм 2 ):

где Рпр — нагрузка, соответствующая границе упругости (при σпр остаточная деформация соответствует 0,05-0,005 % начальной длины);

· σт — границу текучести, МН/м 2 (кг/мм 2 ):

где Рт — нагрузка, соответствующая границе текучести, Н;

· δ — относительное удлинение, %:

где l0 — длина образца до разрыва, м; l1 — длина образца после разрыва, м;

· ψ — относительное сужение, %:

где F0 — площадь сечения до разрыва, м 2 ; F — площадь сечения после разрыва, м 2 .

Испытания на твердость

Твердость — это сопротивление материала проникновению в него другого, более твердого тела. Из всех видов механического испытания определение твердости является самым распространенным.

Испытания по Бринеллю (ГОСТ 9012-83) проводятся путем вдавливания в металл стального шарика. В результате на поверхности металла образуется сферический отпечаток (рис. 1.37, а).

Твердость по Бринеллю определяется по формуле:

где P — нагрузка на металл, Н; D — диаметр шарика, м; d — диаметр отпечатка, м.

Чем тверже металл, тем меньше площадь отпечатка.

Диаметр шарика и нагрузку устанавливают в зависимости от исследуемого металла, его твердости и толщины. При испытании стали и чугуна выбирают D = 10 мм и P = 30 кН (3000 кгс), при испытании меди и ее сплавов D = 10 мм и P = 10 кН (1000 кгс), а при испытании очень мягких металлов (алюминия, баббитов и др.) D = 10 мм и P = 2,5 кН (250 кгс). При испытании образцов толщиной менее 6 мм выбирают шарики с меньшим диаметром — 5 и 2,5 мм. На практике пользуются таблицей перевода площади отпечатка в число твердости.

Метод Бринелля не рекомендуется применять для металлов твердостью более НВ 450 (4500 МПа), поскольку шарик может деформироваться, что исказит результаты испытаний.

Испытания по Роквеллу (ГОСТ 9013-83). Проводятся путем вдавливания в металл алмазного конуса (α = 120°) или стального шарика (D = 1,588 мм или 1/16", рис. 1.37, б). Прибор Роквелла имеет три шкалы — В, С и А. Алмазный конус применяют для испытания твердых материалов (шкалы С и А), а шарик — для испытания мягких материалов (шкала В). Конус и шарик вдавливают двумя последовательными нагрузками: предварительной Р0 и общей Р:

где Р1 — основная нагрузка.

Предварительная нагрузка Р0 = 100 Н (10 кгс). Основная нагрузка составляет 900 Н (90 кгс) для шкалы В; 1400 Н (140 кгс) для шкалы С и 500 Н (50 кгс) для шкалы А.


Рис. 1.37. Схема определения твердости: а — по Бринеллю; б — по Рoквеллу; в — по Виккерсу

Твердость по Роквеллу измеряют в условных единицах. За единицу твердости принимают величину, которая соответствует осевому перемещению наконечника на расстояние 0,002 мм.

Твердость по Роквеллу вычисляют следующим способом:

НR = 100 – e (шкалы А и С); НR = 130 – e (шкала В).

Величину e определяют по формуле:

где h — глубина проникновения наконечника в металл под действием общей нагрузки Р (Р =Р0+ Р1); h0 — глубина проникновения наконечника под действием предварительной нагрузки Р0.

В зависимости от шкалы твердость по Роквеллу обозначают НRВ, НRС, НRА.

Испытания по Виккерсу (ГОСТ 2999-83). В основе метода — вдавливание в испытываемую поверхность (шлифованную или даже полированную) четырехгранной алмазной пирамиды (α = 136°) (рис. 1.37, в). Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоев, имеющих высокую твердость.

Твердость по Виккерсу:

где Р — нагрузка на пирамиду, Н; d — среднее арифметическое двух диагоналей отпечатка, измеренных после снятия нагрузки, м.

Число твердости по Виккерсу определяют по специальным таблицам по диагонали отпечатка d. При измерении твердости применяют нагрузку от 10 до 500 Н.

Микротвердость (ГОСТ 9450-84). Принцип определения микротвердости такой же, как и по Виккерсу, согласно соотношению:

Метод применяется для определения микротвердости изделий мелких размеров и отдельных составляющих сплавов. Прибор для измерения микротвердости — это механизм вдавливания алмазной пирамиды и металлографический микроскоп. Образцы для измерений должны быть подготовлены так же тщательно, как микрошлифы.

Испытание на ударную вязкость

Для испытания на удар изготавливают специальные образцы с надрезом, которые затем разрушают на маятниковом копре (рис. 1.39). Общий запас энергии маятника будет расходоваться на разрушение образца и на подъем маятника после его разрушения. Поэтому если из общего запаса энергии маятника отнять часть, которая тратится на подъем (взлет) после разрушения образца, получим работу разрушения образца:

K = Рl(соs β – соs α), Дж (кг·м),

де P — масса маятника, Н (кг); h1 — высота подъема центра масс маятника до удара, м; h2 — высота взлета маятника после удара, м; l — длина маятника, м; α, β — углы подъема маятника соответственно до разрушения образца и после него.


Рис. 1.39. Испытание на ударную вязкость: 1 — маятник; 2 — нож маятника; 3 — опоры

Ударную вязкость, т. е. работу, затраченную на разрушение образца и отнесенную к поперечному сечению образца в месте надреза, определяют по формуле:

где F — площадь поперечного сечения в месте надреза образца, м 2 (см 2 ).

Для определения пользуются специальными таблицами, в которых для каждого угла β определена величина работы удара K. При этом F = 0,8 · 10 –4 м 2 .

Для обозначения ударной вязкости добавляют и третью букву, указывающую на вид надреза на образце: U, V, Т. Запись KСU означает ударную вязкость образца с U-образным надрезом, KСV — с V-образным надрезом, а KСТ — с трещиной (рис. 1.40).

Рис. 1.40. Виды надрезов на образцах для испытания на ударную вязкость:
аU-образный надрез (KCU); бV-образный надрез (KСV); в — надрез с трещиной (KСТ)

Испытание на усталость (ГОСТ 2860-84). Разрушение металла под действием повторных или знакопеременных напряжений называется усталостью металла. При разрушении металла вследствие усталости на воздухе излом состоит из двух зон: первая зона имеет гладкую притертую поверхность (зона усталости), вторая — зона долома, в хрупких металлах она имеет грубокристаллическое строение, а в вязких — волокнистое.

При испытании на усталость определяют границу усталости (выносливости), т. е. то наибольшее напряжение, которое может выдержать металл (образец) без разрушения заданное число циклов. Самым распространенным методом испытания на усталость является испытание на изгиб при вращении (рис. 1.41).

Рис. 1.41. Схема испытания на изгиб при вращении:
1 — образец; Р — нагрузка; Мвиг — изгибающий момент

Применяют следующие основные виды технологических испытаний (проб).

Проба на изгиб (рис. 1.42) в холодном и горячем состоянии — для определения способности металла выдерживать заданный изгиб; размеры образцов — длина l = 5а + 150 мм, ширина b = 2а (но не менее 10 мм), где а — толщина материала.


Рис. 1.42. Технологическая проба на изгиб: а — образец до испытания; б — загиб до определенного угла; в — загиб до параллельности сторон; г — загиб до соприкосновения сторон

Проба на перегиб предусматривает оценку способности металла выдерживать повторный изгиб и применяется для проволоки и прутков диаметром 0,8—7 мм из полосового и листового материала толщиной до 55 мм. Образцы сгибают попеременно направо и налево на 90° с равномерной — около 60 перегибов в минуту — скоростью до разрушения образца.

Проба на выдавливание (рис. 1.43) — для определения способности металла к холодной штамповке и вытягиванию тонкого листового материала. Состоит в продавливании пуансоном листового материала, зажатого между матрицей и зажимом. Характеристикой пластичности металла является глубина выдавливания ямки, что соответствует появлению первой трещины.


Рис. 1.43. Испытание на выдавливание: 1 — лист; h — мера способности материала к вытяжке

Проба на навивку проволоки диаметром d ≤ 6 мм. Испытание состоит в навивке 5—6 плотно прилегающих по винтовой линии витков на цилиндр заданного диаметра. Выполняется только в холодном состоянии. Проволока после навивки не должна иметь повреждений.

Проба на искру используется при необходимости определения марки стали при отсутствии специального оборудования и маркировки.

Читайте также: