Вещество которое нельзя получить взаимодействием оксида металла с водой

Обновлено: 02.05.2024

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH)2. Однако существуют исключения. Так, гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних солей:

Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000 o C:

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 o C:

Химические свойства амфотерных гидроксидов

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с кислотами:

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:

помогите дам 65 баллов Тесты по химии на тему "Кислоты, оксиды, основания, соли"

1.Оксиды состоят из кислорода и:
• а) одного элемента
• б) двух элементов
• в) нет правильного ответа
2.Все оксиды могут взаимодействовать с водой
• а) да
• б) нет
3.Оксиды могут взаимодействовать между собой с образованием:
• а)кислоты
• б) соли
• в) основания
• г) все перечисленное
4.Основные оксиды можно получить при взаимодействии с кислородом:
• а) неметалла
• б) металла
• в) газа
5.Оксиды, которые при взаимодействии с водой могут образовывать и кислоты, и основания называют:
• а) кислотными
• б) основными
• в) амфотерными
• г) несолеобразующими
6.Кислотные оксиды могут взаимодействовать с:
• а) водой, кислотой, солью
• б) кислотой, основанием, солью
• в) основным оксидом, водой, солью
7.Формулы, соответствующие кислотным оксидам
• а) СаО, MgCl2, H2O
• б) SO3, SiO2, Al2O3
• в) CO3, N2O5, H2O
• г) SO2, P2O5, SiO2,
8.Реакция получения кислотного оксида:
• а) Mg + Cl2 = MgCl2
• б) 4Na + O2 = 2Na2O
• в) 4Р + 5О2 = P2O5
9.Реакция взаимодействия основного оксида с кислотным:
• а) Na2O + H2O = 2NaOH
• б) Na2O + 2НСl = 2NaCl + H2O
• в) 3Na2O + P2O5 = 2Na3PO4
10.Кислотные оксиды могут вступать в реакции:
• а) разложение, соединение, замещения
• б) соединение, нейтрализации, обмена
• в) соединение, обмена, разложения
• г) нет правильного ответа
Основания
1.Метилоранж в щелочной среде изменяет окраску на:
• а) красный
• б) малиновый
• в) фиолетовый
• г) не изменяет окраску
2.Щелочи это –
• а) оксиды
• б) кислые соли
• в) кислоты
• г) нет правильного ответа
3.Основание можно получить реакцией:
• а) разложение
• б) соединение
• в) замещения
• г) обмена
4.Основаниям могут соответствовать оксиды:
• а) кислотные
• б) основные
• в) амфотерные
5.Реакция получения основания:
• а) 2Na + H2SO4 = Na2SO4 + H2
• б) MgCl2 + 2KOH = Mg(OH)2 +2KCl
• в) СuSO4 + BaCl2 = BaSO4 + CuCl2
• г) Na2CO3 + 2HCl = H2O + CO2 + 2NaCl
• д) нет реакции
6.Основания могут вступать в реакцию с:
• а) основными оксидами
• б) кислотными оксидами
• в) со всеми неорганическими веществами
7.Взаимодействие основания с солью:
• а) NaOH + CO3 = NaHCO3
• б) NaOH + HNO3 = HOH + NaNO3
• в) NaOH + Al(OH)3 = Na3AlO3 + 3H2O
• г) NaOH + MgCl2 = NaCl + Mg(OH)2
8.Если основание вступает в реакцию с кислотой, такая реакция называется:
• а) разложение
• б) соединение
• в) замещения
• г) нейтрализации
9.При взаимодействии основания с солью образуется:
• а) кислота и вода
• б) оксид и вода
• в) соль и основание
• г) соль и кислота
10.Металлы соединениях имеют степень окисления:
• а) положительную
• б) отрицательную
• в) и положительную, и отрицательную
Соли
1.Формулы, которым соответствуют соли:
• а) NaOH, MgCl2, Cu(OH)2
• б) К2О, HNO3, SO3
• в) NaHCO3, Mg(OH)Cl2, K2S
• г) K3PO4, Al2O3, Na3AlO3
2.Соли в реакцию нейтрализации:
• а) вступают
• б) не вступают
3.Поваренная соль это:
• а) сульфат магния
• б) сульфат меди
• в) хлорид натрия
• г) нитрат меди
4.Соли вступают в реакцию с
• а) основными оксидами
• б) кислотными оксидами
• в) кислотами
• г) основаниями
• д) со всеми неорганическими веществами
5.Соль образуется в результате:
• а) 2NaOH + H2SO4 = Na2SO4 + 2H2O
• б) 3MgCl2 + 2Na3PO4 = 6NaCl + Mg3(PO4)2
• в) MgS + 2KOH = K2S + Mg(OH)2
6.Средние соли содержат в своем составе ионы
• а) водорода, металла, кислотного остатка
• б) металла, кислотного остатка
• в) металла, гидроксогруппы, кислотного остатка
7.Кислые соли содержат в своем составе ионы
• а) водорода, металла, кислотного остатка
• б) металла, кислотного остатка
• в) металла, гидроксогруппы, кислотного остатка
8.При взаимодействии кислотного и основного оксида образуется:
• а) основание
• б) кислота
• в) соль
9.Медный купорос это:
• а) сульфат магния
• б) сульфат меди
• в) хлорид натрия
• г) нитрат меди
10.К гидроксидам относятся:
• а) соль, основание
• б) кислота, соль
• в) основание, кислота, соль
• г) кислота, основание

Основания

Основания

Из этой статьи вы узнаете, что такое основания, а также какие виды оснований бывают, с чем они взаимодействуют и как их получают. Другими словами, все, что нужно знать об основаниях в рамках курса химии за 8‑й класс.

17 февраля 2022

· Обновлено 12 июля 2022

Ждём вас 8 октября в 13:00. Вместе с педагогами, психологами и другими экспертами в образовании и воспитании ответим на главные вопросы мам и пап.

Основания (гидроксиды) — это сложные вещества, которые состоят из катиона металла и гидроксильной группы (OH).

Общая формула оснований: Me(OH)n, где Me — химический символ металла, n — индекс, который зависит от степени окисления металла.

Примеры оснований: NaOH, Ba(OH)2, Fe(OH)2.

Названия оснований

Названия гидроксидов строятся по систематической номенклатуре следующим образом:

Пишем слово «гидроксид».

Указываем название второго химического элемента в родительном падеже.

Если второй элемент имеет переменную валентность, то указываем валентность элемента в этом соединении в скобках римской цифрой.

Примеры названий оснований:

Ni(OH)2 — гидроксид никеля (II);

Al(OH)3 — гидроксид алюминия.

У некоторых оснований существуют и тривиальные названия. Собрали их в таблице.

Тривиальные названия некоторых оснований

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Практикующий детский психолог Екатерина Мурашова

Классификация оснований

По растворимости в воде

В зависимости от растворимости в воде выделяют:

щелочи. Эти основания растворимы в воде: NaOH, KOH, Ba(OH)2 и другие. Ca(OH)2, хотя малорастворим, тоже относится к щелочам из-за своей едкости;

нерастворимые основания. К таким основаниям относятся Fe(OH)2, Cu(OH)2 и другие;

амфотерные гидроксиды. К амфотерным относятся те основания, которые образованы металлами со степенью окисления +3 или +4. Эти основания отличаются тем, что проявляют как основные свойства, так и кислотные.

Также есть основания, которые относятся к амфотерным, но образованы металлом с иной степенью окисления: Zn(OH)2, Pb(OH)2, Sn(OH)2, Be(OH)2.

Напомним, что растворимость мы проверяем по таблице растворимости кислот и оснований в воде.

По числу гидроксогрупп

В зависимости от количества гидроксильных групп, способных замещаться на кислотный остаток, выделяют следующие виды оснований:

однокислотные: KOH, NaOH;

Физические свойства оснований

Основания при обычных условиях — это твердые кристаллические вещества без запаха, нелетучие, чаще всего белого цвета. В таблице приведены основания, которые имеют иную окраску.

Гидроксид лития LiOH

Гидроксид магния Mg(OH)2

Гидроксид кальция Ca(OH)2

Пошаговый гайд от Екатерины Мурашовой о том, как перестать делать уроки за ребёнка и выстроить здоровые отношения с учёбой.

Учёба без слёз (бесплатный гайд для родителей)

Растворы щелочей изменяют окраску индикатора

Гидроксид-ионы, которые содержатся в растворе щелочи, взаимодействуют с индикатором, образуя новые соединения. Признак реакции — окраска раствора.

Щелочи вступают в реакцию с любыми кислотными оксидами. Нерастворимые основания взаимодействуют только с кислотными оксидами, которые соответствуют сильным кислотам.

Кислотный оксид + основание = соль + вода

Взаимодействие с кислотами

Щелочи вступают в реакцию со всеми кислотами. Нерастворимые основания могут взаимодействовать только с сильными кислотами.

Основание + кислота = соль + вода

Взаимодействие основания с кислотой называют реакцией нейтрализации — это частный случай реакции обмена.

Взаимодействие с солями

Основания взаимодействуют с растворимыми солями по обменному механизму. В результате такой реакции должен выделиться осадок или газ (CO2, SO2, NH3).

Основание + соль = другое основание + другая соль

Термическое разложение

При нагревании нерастворимые основания разлагаются на соответствующий оксид (степень окисления металла остается неизменной) и воду.

Нерастворимое основание оксид металла + вода

Взаимодействие амфотерных гидроксидов со щелочами

Продукты реакции зависят от условий ее проведения.

При сплавлении двух оснований:

Амфотерный гидроксид (тв) + щелочь (тв) = средняя соль + вода

Если реакция проводится в растворе:

Амфотерный гидроксид (р-р) + щелочь (р-р) = комплексная соль

Получение оснований

Взаимодействие металла с водой

Активные металлы (металлы групп IA и IIA, кроме Be и Mg) активно взаимодействуют с водой при обычных условиях с образованием щелочей.

Нерастворимые основания данным способом получить невозможно, за исключением Mg(OH)2.

Металл + вода = гидроксид металла + водород

Гидроксид магния можно получить данным способом, но только при нагревании:

Взаимодействие оксидов щелочных и щелочноземельных металлов с водой

Этим способом получают только растворимые в воде основания.

Оксид металла + вода = щелочь

Электролиз

Гидроксид натрия и калия в промышленности получают с помощью электролиза — через раствор хлорида калия проводят постоянный электрический ток:

Электролиз хлорида натрия протекает по аналогичной схеме.

Получение нерастворимых оснований при взаимодействии соли со щелочью

Растворимая соль + щелочь = нерастворимое основание + другая соль

Вопросы для самопроверки

Вспомните определение оснований и приведите 2 примера этих веществ.

Какие виды оснований существуют? Чем они отличаются?

К какому виду оснований относится Zn(OH)2?

Взаимодействуют ли основания с основными оксидами? Приведите примеры веществ, с которыми основания вступают в реакцию.

Можно ли получить гидроксид алюминия с помощью взаимодействия алюминия с водой?

Основания и другие темы по химии изучать интереснее, когда понимаешь, как применять знания в реальной жизни. На онлайн-курсах по химии в Skysmart преподаватели приводят яркие примеры: от процессов в природе до использования химических реакций в промышленности. Приходите учиться — вводный урок бесплатный!

Оксиды

Оксиды

Знакомство с оксидами обычно начинается на уроках химии в 8 классе. Из этой статьи вы узнаете, что такое оксиды в химии, их классификацию и свойства, а также способы получения.

18 декабря 2021

Определение оксидов

Оксиды — это сложные вещества, состоящие из двух химических элементов (т. е. бинарные соединения), один из которых — кислород в степени окисления −2.

Общая формула оксидов: ЭxOy, где Э – химический элемент, а x и y — индексы, определяемые степенью окисления химических элементов.

Виды оксидов

Все оксиды делятся на солеобразующие и несолеобразующие.

Несолеобразующие оксиды — это оксиды, которые не взаимодействуют с кислотами и щелочами, то есть не способны образовать соли.

К несолеобразующим оксидам относят: CO, SiO, N2O, NO.

Солеобразующие оксиды — это оксиды, которые взаимодействуют с кислотами и щелочами с образованием солей.

Солеобразующие оксиды делятся на три группы:

Основные оксиды — это оксиды, образованные металлами со степенью окисления +1 или +2.

Примеры основных оксидов: Na +1 2O, Ca +2 O, Ba +2 O.

Амфотерные оксиды — оксиды, образованные металлами со степенью окисления +3 или +4.

К амфотерным оксидам относят также: ZnO, BeO, PbO, SnO.

Несмотря на то, что эти металлы проявляют степень окисления +2 в данных соединениях, их оксиды проявляют амфотерные свойства.

Примеры амфотерных оксидов: Al +3 2O3, Fe2 +3 O3.

Кислотные оксиды — оксиды, образованные металлами с валентностью V и более или неметаллами с любой валентностью (за исключением несолеобразующих оксидов, то есть CO, SiO, N2O, NO).

Если один и тот же химический элемент образовывает несколько оксидов, то с увеличением степени окисления основные свойства оксидов ослабевают и усиливаются кислотные.

CrO (оксид хрома (II)) — проявляет основные свойства;

Cr2O3 (оксид хрома (III)) — проявляет амфотерные свойства;

CrO3 (оксид хрома (VI)) — проявляет кислотные свойства.

Закрепим знания о типах оксидов, изучив схему:

Классификация оксидов

Номенклатура оксидов

Названия оксидов строятся по систематической номенклатуре следующим образом:

Пишем слово «оксид».

Если этот элемент имеет переменную валентность, то указываем валентность элемента в этом соединении в скобках римской цифрой.

Номенклатура оксидов

Примеры названий оксидов:

Fe2O3 — оксид железа (III). Читается: феррум два о три.

Na2O — оксид натрия. Читается: натрия два о.

SO3 — оксид серы (VI). Читается: эс о три.

До появления систематической номенклатуры вещества называли по присущим им специфическим свойства (цвету, запаху и т. д.). Такой способ названия веществ — тривиальная номенклатура. Некоторые названия используются и сейчас.

Названия некоторых оксидов: таблица

Химическая формула оксида

Бытовое (тривиальное название)

Возможное научное название

Химические свойства основных оксидов

1. Взаимодействие с водой

С водой способны реагировать оксиды тех металлов, которым соответствуют растворимые гидроксиды. То есть с водой реагируют только оксиды щелочных и щелочноземельных металлов.

Основный оксид + вода = основание

Оксид магния взаимодействует с водой только при нагревании.

2. Взаимодействие с кислотными оксидами и кислотами

Основные оксиды, соответствующие щелочам, взаимодействуют со всеми кислотными оксидами и кислотами. Оксиды неактивных металлов взаимодействуют только с кислотными оксидами, соответствующими сильным кислотам, или с сильными кислотами.

Основный оксид + кислотный оксид = соль

Основный оксид + кислота = соль + вода

3. Взаимодействие с амфотерными оксидами

В эту реакцию могут вступать только основные оксиды щелочных или щелочноземельных металлов. При сплавлении двух оксидов образуется соль.

Основный оксид + амфотерный оксид = соль

Как составлять такие соли: металл в этой соли берем из основного оксида, а кислотный остаток из амфотерного оксида (они проявляют более кислотные свойства).

Химические свойства кислотных оксидов

Кислотные оксиды взаимодействуют с водой с образованием соответствующих кислот. За исключением SiO2, которому соответствует нерастворимая кремниевая кислота.

Кислотный оксид + вода = кислота

2. Взаимодействие с основными оксидами и щелочами

Кислотные оксиды сильных кислот способны взаимодействовать с любыми основными оксидами или основаниями.

Кислотный оксид + основный оксид = соль

Кислотные оксиды, соответствующие слабым кислотам (такие как CO2, SO2), способны взаимодействовать с основными оксидами, соответствующим щелочам, а также с щелочами.

3. Взаимодействие с амфотерными оксидами и гидроксидами

С амфотерными оксидами в реакцию вступают кислотные оксиды — как правило, сильных кислот.

Кислотный оксид + амфотерный оксид = соль

Кислотный оксид + амфотерный оксид = соль + вода

Химические свойства амфотерных оксидов

Амфотерные оксиды не взаимодействуют с водой — даже при нагревании!

Амфотерный оксид + вода ≠

2. Взаимодействие с кислотными оксидами и кислотой

Амфотерные оксиды взаимодействуют только с сильными и средними кислотами и их оксидами.

Амфотерный оксид + кислотный оксид = соль

Амфотерный оксид + кислота = соль + вода

3. Взаимодействие с основными оксидами

Амфотерные оксиды взаимодействуют только с теми оксидами, которые соответствуют щелочам. Реакция протекает только в расплаве, так как в растворе такие оксиды взаимодействуют преимущественно с водой с образованием щелочей.

Амфотерный оксид + основный оксид (расплав) = соль

4. Взаимодействие со щелочами

Продукты взаимодействия амфотерных оксидов со щелочами зависят от условий проведения реакции. В растворе образуются комплексные соли, а при сплавлении – средние соли.

Амфотерный оксид + щелочь (раствор) + вода = комплексная соль

Амфотерный оксид + щелочь (расплав) = средняя соль + вода

Получение оксидов

1. Окисление металлов

Почти все металлы окисляются кислородом до устойчивых степеней окисления.

Металлы с переменной степенью окисления, как правило, образуют соединения в степени окисления +3:

При взаимодействии щелочных металлов (элемента IA группы) образуются пероксиды Me2O2 или надпероксиды MeO2, где Ме — щелочной металл.

2. Окисление простых веществ — неметаллов

При окислении неметаллов в избытке кислорода, как правило, образуются высшие оксиды (это оксиды, в которых неметалл проявляют высшую степень окисления):

При недостаточном количестве кислорода образуются оксиды неметаллов в промежуточной степени окисления:

Существуют и исключения. Например, сера окисляется лишь до оксида серы (IV) даже в избытке кислорода:

Или азот, который взаимодействует с кислородом только при температуре 2 000̊С или под действием электрического разряда с образованием оксида азота (II):

Галогены (элементы VIIA группы) вовсе не взаимодействуют с кислородом, так же как и инертные газы (элементы VIIIA группы).

3. Разложение гидроксидов

Некоторые кислоты и гидроксиды неустойчивы и самопроизвольно разлагаются по схеме:

Гидроксид (кислота) = оксид + вода

Оксиды тяжелых металлов (нерастворимые гидроксиды) и кремниевая кислота разлагаются при нагревании по той же самой схеме.

Разложение кремниевой кислоты при нагревании

Разложение гидроксида железа (III) при нагревании

4. Окисление сложных веществ

Сложные бинарные (состоящие из двух химических элементов) соединения окисляются с образованием двух оксидов этих элементов в устойчивых степенях окисления.

Также оксиды получают разложением солей, например, карбонатов, нитратов сульфатов и т. д.

Мы узнали, какие вещества в химии называют оксидами, какие бывают оксиды, а также разобрали свойства каждого вида. Осталось подкрепить теорию практикой — а сделать это можно на курсах по химии в онлайн-школе Skysmart!

Химические свойства металлов

Химические свойства металлов

Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

20 декабря 2021

· Обновлено 20 декабря 2021

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Читайте также: