Во всех соединениях щелочные металлы имеют степень окисления 1

Обновлено: 19.05.2024

При определении степени окисления элемента, следует руководствоваться следующими положениями:

1. Степень окисления атомов элементарных металлов равна нулю (Na, Сa, Al и т.д.).

2. Степень окисления атомов неметаллов в молекулах простых веществ равна нулю (N2, Cl2, O2, H2 и т.д.).

3. Во всех соединениях щелочные металлы имеют степень окис­ления (+1), щелочноземельные (+2).

4. Водород в соединениях с неметаллами имеет степень окисления (+1), а в солеобразных гидридах (NаН, СаН2 и т.д.) (–1).

5. Фтор — наиболее электроотрицательный элемент, в соедине­ниях с другими элементами имеет степень окисления (–1).

6. Кислород в соединениях проявляет степень окисления (–2). Исключение составляют OF2, в котором степень окисления кислорода (+2), и пероксиды, например, H2O2 , Na2O2 , в которых степень окисления кислорода (–1).

7. Степень окисления может быть не только целым, но и дробным числом. Так, в KO2 и KO3 для кислорода она соответственно равна (–1/2) и (–1/3).

8. В нейтральных молекулах алгебраическая сумма всех степеней окисления равна нулю.

9. Алгебраическая сумма степеней окисления всех атомов, входящих в ион, равна заряду иона.

Пример 1.

Найти степень окисления хрома в молекуле K2Cr2О7.

Составим для этой молекулы уравнение:

(+1)×2 + x×2 + (–2)×7 = 0,

где (+1) — степень окисления калия; 2 — число атомов калия; x — степень окисления хрома; 2 — число атомов хрома; (–2) — степень окисления кислорода; 7 — число атомов кислорода.

Решая уравнение, получаем x = +6.

Пример 2.

Определить степень окисления хлора в ионе СlО4 – .

Составим для данного иона уравнение:

x×1+ (–2)×4 = –1,

где x — степень окисления хлора; (–2) — степень окисления кислорода; 4 — число атомов кислорода; (–1) — заряд всего иона.

1.4. Важнейшие восстановители иокислители

Величина степени окисления атома элемента в составе соединения дает информацию о том, в каком процессе этот атом может участвовать.

Атомы, имеющие в соединении низшую степень окисления, могут выступать только в роли восстановителя. Они способны только отдавать электроны и окисляться, проявляя восстановительные свойства, например:

N –3 , P –3 , Cl –1 , O –2 , S –2 , I –1 , F –1 и т.п.

Атомы в соединениях, имеющие высшую степень окисления, являются только окислителями. Они могут только принимать электроны и восстанавливаться, проявляя при этом окислительные свойства, например:

Атомы, проявляющие в соединениях промежуточную степень окисления, могут проявлять как окислительные, так и восстановительные свойства. Это зависит от того, реагируют ли они с более сильными окислителями или с более сильными восстановителями, например:

Mn +6 , Fe +2 , Sn +2 , S +4 , N +3 и т.п.

Например, четырехвалентная сера может быть как восстановителем:

S +4 – 2ē→ S +6 (окисление),

так и окислителем:

S +4 + 4ē→ S 0 (восстановление).

Такое свойство называется окислительно-восстановительной двойственностью.

Если говорить об окислительно-восстановительных свойствах эламентов в виде простых веществ, то они согласуются с величиной электроотрицательности данного элемента. Восстановителями обычно являются элементарные вещества, характеризующиеся наименьшими значениями энергии ионизации. К ним относятся металлы, водород. Окислителями обычно являются элементарные вещества, характеризующиеся наибольшим сродством к электрону: F2, O2. Атомы элементарных веществ, характеризующиеся средними значениями электроотрицательности, обладают и окислительными, и восстановительными свойствами, например:

1.5. Изменение окислительно-восстановительных свойств
простых веществ по периодам и группам

Соотношение окислительных и восстановительных свойств простого (элементарного) вещества определяется числом электронов на последнем энергетическом уровне атома. В Периодической системе элементов в пределах периода с повышением порядкового номера элемента, т.е. при движении слева направо, восстановительные свойства простых веществ понижаются, а окислительные возрастают и становятся максимальными у галогенов. Так, например, в третьем периоде Na — самый активный в периоде восстановитель, а хлор — самый активный в периоде окислитель. Это обусловлено увеличением количества электронов на последнем уровне, сопровождающимся уменьшением радиуса атома и приближением строения последнего уровня к устойчивому восьмиэлектронному состоянию. Металлы имеют небольшое число электронов на последнем уровне, поэтому они никогда не принимают "чужие" электроны и могут только отдавать свои. Напротив, неметаллы (кроме фтора) могут не только принимать, но и отдавать электроны, проявляя как восстановительные, так и окислительные свойства. Фтор проявляет только окислительные свойства, так как обладает наибольшей относительной электроотрицательностью из всех элементов. Таким образом, лучшие восстановители — щелочные металлы, а лучшие окислители — элементы главных подгрупп седьмой (галогены) и шестой групп.

В пределах группы изменение окислительно-восстановительных свойств обусловлено увеличением радиуса атома, что приводит к меньшему удерживанию электронов последнего энергетического уровня. У элементов как главных, так и побочных подгрупп с повышением порядкового номера (т.е. при движении сверху вниз) усиливаются восстановительные свойства и ослабевают окислительные. Поэтому из щелочных металлов наиболее активные восстановители — Сs и Fr, а наиболее активный окислитель из галогенов — фтор.

Элементы побочных подгрупп (они размещаются в четных рядах больших периодов) являются d-элементами и имеют на внешнем энергетическом уровне атомов 1-2 электрона. Поэтому эти элементы являются металлами и в состоянии простого вещества могут быть только восстановителями.

1. Щелочные металлы: общая характеристика, строение; свойства и получение простых веществ

Щелочными металлами называются химические элементы-металлы \(IA\) группы Периодической системы Д. И. Менделеева: литий \(Li\), натрий \(Na\), калий \(K\), рубидий \(Rb\), цезий \(Cs\) и франций \(Fr\).

Электронное строение атомов. На внешнем энергетическом уровне атомы щелочных металлов имеют один электрон ns 1 . Поэтому для всех металлов группы \(IA\) характерна степень окисления \(+1\).

  • увеличение радиуса атомов;
  • усиление восстановительных, металлических свойств.

Нахождение в природе. Из щелочных металлов наиболее широко распространены в природе натрий и калий. Но из-за высокой химической активности они встречаются только в виде соединений.

  • каменная соль (хлорид натрия \(NaCl\)),
  • глауберова соль, или мирабилит — декагидрат сульфата натрия Na 2 SO 4 \(·\) 10 H 2 O ,
  • сильвин — хлорид калия \(KCl\),
  • сильвинит — двойной хлорид калия-натрия \(KCl\) \(·\)\(NaCl\) и др.

Соединения лития, рубидия и цезия в природе встречаются значительно реже, поэтому их относят к числу редких и рассеянных.


Физические свойства простых веществ. В твёрдом агрегатном состоянии атомы связаны металлической связью. Наличие металлической связи обусловливает общие физические свойства простых веществ-металлов: металлический блеск, ковкость, пластичность, высокую тепло- и электропроводность.

В свободном виде простые вещества, образованные элементами \(IA\) группы — это легкоплавкие металлы серебристо-белого (литий, натрий, калий, рубидий) или золотисто-жёлтого (цезий) цвета, обладающие высокой мягкостью и пластичностью.

shutterstock_1617945619.png

Натрий Nātrījs Sodium (1).png

Наиболее твёрдым является литий, остальные щелочные металлы легко режутся ножом и могут быть раскатаны в фольгу.

Только у натрия плотность немного больше единицы ρ = 1,01 г / см 3 , у всех остальных металлов плотность меньше единицы.

Химические свойства. Щелочные металлы обладают высокой химической активностью, реагируя с кислородом и другими неметаллами.

Поэтому хранят щелочные металлы под слоем керосина или в запаянных ампулах. Они являются сильными восстановителями.

Взаимодействие натрия с водой протекает с выделением большого количества теплоты (т. е. реакция является экзотермической). Кусочек натрия, попав в воду, начинает быстро двигаться по её поверхности. Под действием выделяющейся теплоты он расплавляется, превращаясь в каплю, которая, взаимодействуя с водой, быстро уменьшается в размерах. Если задержать её, прижав стеклянной палочкой к стенке сосуда, капля воспламенится и сгорит ярко-жёлтым пламенем.

Получение. Металлический натрий в промышленности получают главным образом электролизом расплава хлорида натрия с инертными (графитовыми) электродами.

Во всех соединениях щелочные металлы имеют степень окисления 1


Щелочные металлы. Элементы IA-группы

Ключевые слова конспекта: щелочные металлы, элементы IA-группы, литий, натрий, цезий, калий, рубидий, надпероксиды, пероксид натрия, щелочи, получение и применение щелочных металлов.

Щелочными металлами называют элементы IA-группы Периодической системы. Групповое название «щелочные» обусловлено тем, что растворимые в воде гидроксиды натрия и калия известны с древних времён, их называли щелочами. Важнейшие параметры этих элементов приведены в таблице.

Щелочные металлы. Элементы IA-группы

Вы видите, как меняются свойства элементов в подгруппе: от лития к цезию радиусы атомов увеличиваются, значения энергии ионизации и электроотрицательности уменьшаются, металлические свойства усиливаются.

Электронная конфигурация валентного электронного слоя атомов щелочных металлов ns 1 , где n – номер валентного энергетического уровня. Щелочные металлы являются s-элементами.

В соединениях щелочных металлов преобладает ионный характер связи. В своих соединениях щелочные металлы могут быть только одновалентны. Во всех своих соединениях щелочные металлы имеют степень окисления +1.

Высшими оксидами являются соединения состава Ме2O, они имеют ярко выраженный основный характер. Высшие гидроксиды щелочных металлов МеОН – типичные основания, щёлочи. Водородные соединения щелочных металлов – твёрдые гидриды состава МеН.

ЩЕЛОЧНЫЕ МЕТАЛЛЫ – ПРОСТЫЕ ВЕЩЕСТВА

Щелочные металлы – вещества немолекулярного строения, их кристаллическая решётка металлическая.

При обычных условиях щелочные металлы – твёрдые вещества, имеют металлический блеск на свежем срезе (быстро тускнеют вследствие окисления), лёгкие (литий – самый лёгкий металл, его плотность составляет 0,53 г/см 3 ), легкоплавкие, мягкие (легко режутся ножом).

При внесении щелочных металлов или их соединений в бесцветное пламя оно приобретает характерную окраску:

Элемент

Окраска пламени Элемент

Окраска пламени

Li

Rb

Na

Cs

К

Щелочные металлы являются активными восстановителями. В атмосфере хлора и фтора они воспламеняются при обычных условиях.

Взаимодействие щелочных металлов с жидким бромом сопровождается взрывом.

Нагретые щелочные металлы легко сгорают на воздухе или в кислороде, но только при сгорании лития образуется оксид: При сгорании натрия обычно образуется пероксид (Na2O2):

Пероксид натрия Na2O2 – кристаллы светло-жёлтого цвета – можно рассматривать как соль пероксида водорода H2O2.

При сгорании остальных щелочных металлов образуются надпероксиды (например, КO2). Получить оксиды Na2О, К2O, Rb2O, Cs2O можно восстановлением пероксидов и надпероксидов щелочными металлами, например, по реакции: КO2 + 3К = 2К2O

Щелочные металлы взаимодействуют с серой при нагревании.

Литий – единственный металл, который реагирует с азотом с образованием нитрида уже при комнатной температуре:

Остальные щелочные металлы с азотом не реагируют (натрий реагирует с азотом при 100 °С, при электрическом разряде).

При нагревании щелочные металлы взаимодействуют с водородом с образованием твёрдых гидридов:


Щелочные металлы активно взаимодействуют с водой с образованием щёлочи и водорода. При этом кусочек лития или натрия с шипением «бегает» по поверхности воды, при взаимодействии калия происходит возгорание выделяющегося водорода (бледно-фиолетовое пламя), рубидий и цезий взаимодействуют со взрывом:

Щелочные металлы активно реагируют с разбавленными кислотами с образованием соли и водорода, но при этом параллельно протекают реакции щелочного металла с водой и образовавшейся щёлочи с кислотой.


Иначе протекают реакции с концентрированными растворами кислот или с самими кислотами – сильными окислителями, например с азотной и серной. В этих реакциях происходит восстановление азота в высшей степени окисления (в HNO3) или серы в высшей степени окисления (в H2SO4). Образуется соль, продукт восстановления азота или серы и вода:

Щелочные металлы активно взаимодействуют с растворами солей, но при этом происходит не замещение металла, входящего в состав соли, щелочным металлом, а прежде всего взаимодействие щелочного металла с водой раствора.

Натрий получают электролизом расплава поваренной соли (с добавками СаCl2 для понижения температуры плавления смеси):

Щелочные металлы находят широкое применение в промышленности и в технике:

  • литий – в литий-ионных аккумуляторах, в термоядерной энергетике для получения изотопа водорода – трития, а также в качестве теплоносителя в ядерных реакторах;
  • натрий используют как теплоноситель в ядерных реакторах, для синтеза некоторых органических соединений (например, как катализатор в синтезе каучука, как активный восстановитель в других реакциях, часто в сплаве с калием), в металлотермии (натрийтермия);
  • цезий легко теряет электроны даже под действием света, поэтому он применяется в фотоэлементах.

Наиболее распространёнными соединениями щелочных металлов являются (приведены исторические названия):

NaOH – едкий натр (каустическая сода),
NaCl – поваренная соль,
NaNO3 – чилийская селитра,
Na2SO4 • 10H2O – глауберова соль,
Na2CO3 • 10H2O – сода кристаллическая,
КОН – едкое кали,
КCl – хлорид калия, входит в состав калийной соли (NaCl • КCl + КCl),
KNO3 – индийская селитра,
К2СO3 – поташ.

Конспект урока по химии «Щелочные металлы. Элементы IA-группы». Выберите дальнейшее действие:

Щелочные металлы

К щелочным металлам относят химические элементы: одновалентные металлы, составляющие Ia группу: литий, натрий, калий, рубидий, цезий и франций.

Эти металлы очень активны, быстро окисляются на воздухе и бурно реагируют с водой. Их хранят под слоем керосина из-за их сильной реакционной способности.

Натрий под слоем керосина

Общая характеристика

От Li к Fr (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционной способности. Уменьшается электроотрицательность, энергия ионизации, сродство к электрону.

Щелочные металлы

  • Li - 2s 1
  • Na - 3s 1
  • K - 4s 1
  • Rb - 5s 1
  • Cs - 6s 1
  • Fr - 7s 1
Природные соединения
  • NaCl - галит (каменная соль)
  • KCl - сильвин
  • NaCl*KCl - сильвинит

Галит и сильвит

Получение

Получить такие активные металлы электролизом водного раствора - невозможно. Для их получения применяют электролиз расплавов при высоких температурах (естественно - безводных):

NaCl → Na + Cl2↑ (электролиз расплава каменной соли)

Химические свойства

Одной из особенностей щелочных металлов является их реакция с кислородом. Литий в такой реакции преимущественно образует оксид, натрий - пероксид, калий, рубидий и цезий - супероксиды.

K + O2 → KO2 (супероксид калия)

Помните, что металлы никогда не принимают отрицательных степеней окисления. Щелочные металлы одновалентны, и проявляют постоянную степень окисления +1 в различных соединениях: гидриды, галогениды (фториды, хлориды, бромиды и йодиды), нитриды, сульфиды и т.д.

Li + H2 → LiH (в гидридах водород -1)

Na + F2 → NaF (в фторидах фтор -1)

Na + S → Na2S (в сульфидах сера -2)

K + N2 → K3N (в нитридах азот -3)

Щелочные металлы бурно взаимодействуют с водой, при этом часто происходит воспламенение, а иногда - взрыв.

Na + H2O → NaOH + H2↑ (воду можно представить в виде HOH - натрий вытесняет водород)

Иногда в задачах может проскользнуть фраза такого плана: ". в ходе реакции выделился металл, окрашивающий пламя горелки в желтый цвет". Тут вы сразу должны догадаться: речь, скорее всего, про натрий.

Щелочные металлы по-разному окрашивают пламя. Литий окрашивает в алый цвет, натрий - в желтый, калий - в фиолетовый, рубидий - синевато-красный, цезий - синий.

Окраска пламени щелочными металлами

Оксиды щелочных металлов

Имеют общую формулу R2O, например: Na2O, K2O.

Получение оксидов щелочных металлов возможно в ходе реакции с кислородом. Для лития все совсем несложно:

В подобных реакциях у натрия и калия получается соответственно пероксид и супероксид, что приводит к затруднениям. Как из пероксида, так и из супероксида, при желании можно получить оксид:

По свойствам эти оксиды являются основными. Они хорошо реагируют c водой, кислотными оксидами и кислотами:

Li2O + H2O → LiOH (осн. оксид + вода = основание - реакция идет, только если основание растворимо)

Na2O + SO2 → Na2SO3 (обратите внимание - мы сохраняем СО серы +4)

Гидроксиды щелочных металлов

Относятся к щелочам - растворимым основаниям. Наиболее известные представители: NaOH - едкий натр, KOH - едкое кали.

Гидроксиды щелочных металлов получаются в ходе электролиза водных растворов их солей, в реакциях обмена, в реакции щелочных металлов и их оксидов с водой:

KCl + H2O → (электролиз!) KOH + H2 + Cl2 (на катоде выделяется водород, на аноде - хлор)

Калий с водой

Проявляют основные свойства. Хорошо реагируют с кислотами, кислотными оксидами и солями, если в ходе реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

LiOH + H2SO4 → LiHSO4 + H2O (соотношение 1:1, кислота в избытке - получается кислая соль)

2LiOH + H2SO4 → Li2SO4 + 2H2O (соотношение 2:1, основание в избытке - получается средняя соль)

KOH + SO2 → KHSO3 (соотношение 1:1 - получается кислая соль)

2KOH + SO2 → K2SO3 + H2O (соотношение 2:1 - получается средняя соль)

С амфотерными гидроксидами реакции протекают с образованием комплексных солей (в водном растворе) или с образованием окиселов - смешанных оксидов (при высоких температурах - прокаливании).

NaOH + Al(OH)3 → Na[Al(OH)4] (в водном растворе образуются комплексные соли)

NaOH + Al(OH)3 → NaAlO2 + H2O (при прокаливании образуется окисел - смесь двух оксидов: Al2O3 и Na2O, вода испаряется)

Реакции щелочей с галогенами заслуживают особого внимания. Без нагревания они идут по одной схеме, а при нагревании эта схема меняется:

NaOH + Cl2 → NaClO + NaCl + H2O (без нагревания хлор переходит в СО +1 и -1)

NaOH + Cl2 → NaClO3 + NaCl + H2O (с нагреванием хлор переходит в СО +5 и -1)

В реакциях щелочей с йодом образуется исключительно иодат, так как гипоиодит неустойчив даже при комнатной температуре, не говоря о нагревании. С серой реакция протекает схожим образом:

NaOH + I2 → NaIO3 + NaI + H2O (с нагреванием)

Выделение йода

NaOH + S → Na2S + Na2SO3 + H2O (сера переходит в СО -2 и +4)

Уникальным является также взаимодействие щелочей с кислотным оксидом NO2, который соответствует сразу двум кислотам - и азотной, и азотистой.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Урок 23. Щелочные металлы. Физические и химические свойства. Оксиды и гидроксиды щелочных металлов.

Конспект
В Периодической системе химических элементов щелочные металлы находятся в первой группе главной подгруппе. Свое название получили благодаря растворимым основаниям – щелочам, которые они образуют. На внешнем энергетическом уровне в атомах щелочных металлов находится один электрон, который атомы легко отдают.

Щелочные металлы – сильные восстановители, их активность усиливается от лития к францию. Во всех соединениях щелочные металлы проявляют степень окисления +1.
Все щелочные металлы серебристо-белого цвета (цезий – серебристо-желтого цвета), мягкие, легкоплавкие. Твердость и температура плавления понижается от лития к францию (радиоактивный металл): Li Na K Rb Cs Fr
Из-за своей химической активности в лаборатории щелочные металлы хранятся под слоем керосина или машинного масла, а также в запаянных ампулах в вакууме.
Щелочные металлы взаимодействуют с простыми веществами. Вступая в реакцию с кислородом, только литий образует оксид, остальные щелочные металлы – пероксиды и надпероксиды:
4Li + O2 = 2Li2O (оксид лития)
2Na + O2 = Na2O2 (пероксид натрия)
K + O2 = KO2 (надпероксид калия)
Na2O2 + 2Na = 2Na2O
Оксиды натрия и других щелочных металлов получают из пероксидов:
Na2O2 + 2Na = 2Na2O.
Щелочные металлы и их соединения способны окрашивать пламя: в малиновый цвет (литий), в желтый (натрий), в сине-фиолетовый (каолий), в темно-красный (рубидий), в голубой (цезий).
Щелочные металлы взаимодействуют:
- с водородом, образуя гидриды 2Na + H2 = 2NaH (гидрид натрия)
- с серой – сульфиды 2K + S = K2S(сульфид калия)
- с галогенами – галогениды 2Li + Cl2 = 2LiCl (хлорид лития)
Щелочные металлы взаимодействуют со сложными веществами
- с водой образуют щелочи 2Na + 2H2O = 2NaOH + H2,
- с кислотами – соли и водород 2Na + 2HCl = 2NaCl + H2
хлорид натрия
- с растворами солей – не вытесняют металлы из растворов солей 2Na + CuSO4 + 2H2O = Cu(OH)2↓ + Na2SO4 + H2
Оксиды щелочных металлов – твердые вещества, обладают свойствами основных оксидов.
Взаимодействуют:
- с водой с образованием щелочей Na2O + H2O = 2NaOH
- с кислотными оксидами с образованием солей K2O + CO2 = K2CO3
- с кислотами с образованием соли и воды Li2O + 2HCL = LiCl + H2O
Физические свойства гидроксидов щелочных металлов: твердые вещества белого цвета хорошо растворимые в воде. Вследствие диссоциации щелочи меняют цвет индикаторов.
индикатор цвет индикатора в нейтральной среде цвет индикатора в щелочной среде
лакмус фиолетовый синий
метилоранж оранжевый желтый
фенолфталеин бесцветный малиновый
Гидроксиды щелочных металлов обладают всеми свойствами растворимых оснований. Они взаимодействуют:
- с кислотными оксидами 2KOH + SO2 = K2SO3 + H2O
- с кислотами, NaOH + HCl = NaCl + H2O
- с растворимыми солями, 2LiOH + CuSO4 = Li2SO4 + Cu(OH)2
- с амфотерными основаниями. 2NaOH + Zn(OH)2 = Na2[Zn(OH)4]

Читайте также: