Водородный ряд активности металлов

Обновлено: 19.09.2024

Химические свойства металлов определяются их активностью. Простые вещества – металлы в химических реакциях всегда являются восстановителями . Положение металла в ряду активности характеризует то, насколько активно данный металл способен вступать в химические реакции (т. е. то, насколько сильно у него проявляются восстановительные свойства).

Среди металлов традиционно выделяют несколько групп.

благородные металлы (серебро, золото, платина, иридий);

щелочные металлы – I(A) группа ;

щелочноземельные металлы – II(A) группа , кроме Be, Mg.

Металлы встпают в реакции с простыми веществами – неметаллами (кислород, галогены, сера, азот, фосфор и др.) и сложными веществами (вода, кислоты, растворы солей)

Взаимодействие с простыми веществами-неметаллами

1. Металлы взаимодействуют с кислородом, образуя оксиды:

4Li + O 2 = обыч. усл . = 2Li 2 O

2Mg + O 2 = t, °C = 2MgO

Серебро, золото и платина с кислородом не реагируют

2. Металлы взаимодействуют с галогенами (фтором, хлором, бромом и йодом), образуя галогениды – Ме +n Г -1 n

2Na + Cl 2 = 2NaCl

3. Металлы взаимодействуют с серой, образуя сульфиды.

4. Активные металлы при нагревании реагируют с азотом, фосфором и некоторыми другими неметаллами.

3Na + P = t, °C = Na 3 P

Взаимодействие со сложными веществами

I. Взаимодействие воды с металлами

1). Взаимодействие с самыми активными металлами, находящимися в периодической системе в I(А) и II(А) группах (щелочные и щелочноземельные металлы) и алюминий . В результате образуются основание и газ водород .

Me + H 2 O = Me(OH) n + H 2 (р. замещения)

Внимание! Алюминий и магний ведут себя также:

Магний (в горячей воде):

2) Взаимодействие воды с менее активными металлами, которые расположены в ряду активности от алюминия до водорода.

Металлы средней активности, стоящие в ряду активности до (Н 2 ) – Be, Fe, Pb, Cr, Ni, Mn, Zn – реагируют с образованием оксида металла и водорода

Me + Н 2 О = Ме х О у + Н 2 (р. замещения)

Бериллий с водой образует амфотерный оксид:

Be + H 2 O = t°C = BeO + H 2

Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe 3 O 4 и водород:

3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.

Cu + H 2 O ≠ нет реакции

II. Взаимодействие растворов кислот с металлами

Металлы, стоящие в ряду активности металлов левее водорода, взаимодействуют с растворами кислот ( раствор азотной кислоты – исключение ), образуя соль и водород.

Кислота (раствор) + Me до (Н2) = Соль + H 2

III. Взаимодействие кислот-окислителей с металлами

Металлы особо реагируют с серной концентрированной и азотной кислотами:

H 2 SO 4 (конц.) + Me = Сульфат + H 2 O + Х

HNO 3 + Me = Нитрат + H 2 O + Х

4Zn + 10HNO 3 (раствор горячий) = t˚C = 4Zn(NO 3 ) 2 + N 2 O + 5H 2 O

4Zn + 10HNO 3 (оч. разб. горячий) = t˚C = 4Zn(NO 3 ) 2 + NH 4 NO 3 + 3H 2 O

IV. С растворами солей менее активных металлов

Ме + Соль = Новый металл + Новая соль

Активность металла в реакциях с кислотами, водными растворами солей и др. можно определить, используя электрохимический ряд, предложенный в 1865 г русским учёным Н. Н. Бекетовым: от калия к золоту восстановительная способность (способность отдавать электроны) уменьшается, все металлы, стоящие в ряду левее водорода, могут вытеснять его из растворов кислот; медь, серебро, ртуть, платина, золото, расположенные правее, не вытесняют водород.

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ

последовательность расположения электродов в порядке возрастания их стандартных электродных потенциалов (см. Стандартный потенциал). Металлич. электроды в водном р-ре электролита образуют след. Э. р. н.: Li, К, Rb, Ba, Sr, Ca, Na, Се, Mg, Be, Al, Ti, Mn, V, Zn, Cr, Ga, Fe, Cd, In, Tl, Co, Ni, Sn, Pb, H2, Bi, Cu, Hg, Ag, Pt, O2, Au. Ддя сравнения включены водородный электрод (Pt, H2[l атм] | Н + ), потенциал к-рого при давлении водорода 1,01 x 10 5 Па и термодинамич. активности аионов Н + в водном р-ре, равной 1, при всех т-рах принимается равным нулю (потенциалопределяющая р-ция Н + + е 2 Н 2, где е - электрон) и кислородный электрод (потенциалопределяющая р-ция О 2 + 2Н 2 О + 4е Э. р. н. позволяет судить о термодинамич. возможности протекания тех или иных электродных процессов. Металл с более отрицат. потенциалом может вытеснять металл с менее отрицат. потенциалом из р-ров его солей, растворяясь при этом. Металлы, имеющие отрицат. стандартный потенциал по сравнению с водородным электродом (т. наз. электроотрицат. металлы), в р-рах с не слишком большой термодинамич. активностью ионов металла имеют более отрицат. потенциал, чем водородный электрод в сильно кислых р-рах. Поэтому при замыкании такого электрода с водородным между ними протекает ток, металл растворяется, а на водородном электроде выделяется водород (см. Анодное растворение). Электроотрицат. металлы термодинамически неустойчивы в водных р-рах (их наз. неблагородными металлами) и осаждаются на катоде при более отрицат. потенциале, чем потенциал выделения Н 2 (см. Электроосаждение).
Металлы, потенциал к-рых менее положительный, чем у кислородного электрода, термодинамически неустойчивы в контакте с О 2 (или воздухом) и водой. Поэтому Э. р. н. служит для ориентировочных оценок скорости электрохим. коррозии в водных р-рах при обычных т-рах, а также для выбора безопасных контактных пар (гальванич. пар) разнородных металлов. Если металл электроотрицательнее, чем Н 2, то может идти активный коррозионный процесс (см. Коррозия металлов, Коррозионностойкие материалы, Электрохимическая защита). Практич. реализация электродных процессов определяется наряду с термодинамич. также и кинетич. факторами (см. Электрохимическая кинетика).
Положение в Э. р. н. металлов, образующих ионы разного заряда, зависит от природы соответствующих ионов. Аналогичные ряды напряжений можно построить для неметаллич. и редокс-электродов (окислит.-восстановительных).

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Полезное

Смотреть что такое "ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ" в других словарях:

электрохимический ряд напряжений — elektrocheminių įtampų eilė statusas T sritis Standartizacija ir metrologija apibrėžtis Cheminių elementų eilė, sudaryta pagal standartinio elektrocheminio potencialo vertes. atitikmenys: angl. electrochemical series; electromotive series;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

электрохимический ряд напряжений — elektrocheminė įtampų eilė statusas T sritis chemija apibrėžtis Cheminių elementų eilė, sudaryta pagal standartinio elektrocheminio potencialo vertes. atitikmenys: angl. electrochemical series; electromotive series; galvanic series; redox series… … Chemijos terminų aiškinamasis žodynas

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ — то же, что ряд напряжений … Естествознание. Энциклопедический словарь

Электрохимический ряд активности металлов — Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ0, отвечающих… … Википедия

РЯД НАПРЯЖЕНИЙ — см. Электрохимический ряд напряжений … Химическая энциклопедия

Ряд напряжений — Электрохимический ряд активности (напряжения) металлов (ряд активности металлов) показывает их сравнительную активность в реакциях окисления восстановления (сверху вниз восстановительная активность уменьшается): Металл Ион металла Реакционная… … Википедия

Электрохимический ряд напряжения металлов — Электрохимический ряд активности (напряжения) металлов (ряд активности металлов) показывает их сравнительную активность в реакциях окисления восстановления (сверху вниз восстановительная активность уменьшается): Металл Ион металла Реакционная… … Википедия

РЯД НАПРЯЖЕНИЙ — (электрохимический ряд), перечень, в который включены металлы и один газ водород, указывающий на относительную способность этих веществ к окислению (т.е. к потере электронов при химических реакциях см. ОКИСЛЕНИЕ ВОССТАНОВЛЕНИЕ). Ряд начинается с… … Научно-технический энциклопедический словарь

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД АКТИВНОСТИ — (напряжения) МЕТАЛЛОВ см … Большая политехническая энциклопедия

Ряд активности металлов — Электрохимический ряд активности (напряжения) металлов (ряд активности металлов) показывает их сравнительную активность в реакциях окисления восстановления (сверху вниз восстановительная активность уменьшается): Металл Ион металла Реакционная… … Википедия

Электрохимический ряд напряжений металлов (ряд Бекетова)

Первоначально Бекетов предполагал, что способность одних металлов вытеснять из растворов солей другие металлы связана с их плотностью: более лёгкие металлы способны вытеснять металлы более тяжелые. Но опыты говорили о ином. Непонятно было и то, как связан “вытеснительный ряд” с рядом напряжений Алессандро Вольта. Со временем накапливалось всё больше экспериментальных данных того, что некоторые правила вытеснения нарушаются при определенных условиях. Бекетов обнаружил, что водород под давлением 10 атмосфер вытесняет серебро из раствора нитрата серебра. Английский химик Уильям Одлинг (1829-1921) описал множество случаев подобных аномалий. Например, медь вытесняет олово из концентрированного подкисленного раствора хлорида олова (II) и свинец – из кислого раствора хлорида свинца (II). Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора хлорид кадмия.

Теоретическую основу ряда активности (и ряда напряжений) заложил немецкий физикохимик Вальтер Нернст (1864-1941). Вместо качественной характеристики – “склонности” металла и его иона к тем или иным реакциям – появилась точная количественная величина. Такой величиной стал стандартный электродный потенциал металла, а соответствующий ряд, выстроенный в порядке изменения потенциалов, называется рядом стандартных электродных потенциалов.

Электрохимический ряд напряжений металлов (ряд Бекетова) это последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод, электродный потенциал которого условно принимается равным нулю.

Восстановленная форма Число отданных електронов Окисленная форма Стандартный электродный потенциал, В
Li 1e Li + -3,05
K 1e K + -2,925
Rb 1e Rb + -2,925
Cs 1e Cs + -2,923
Ba 2e Ba 2+ -2,91
Sr 2e Sr 2+ -2,89
Ca 2e Ca 2+ -2,87
Na 1e Na + -2,71
Mg 2e Mg 2+ -2,36
Al 3e Al 3+ -1,66
Mn 2e Mn 2+ -1,18
Zn 2e Zn 2+ -0,76
Cr 3e Cr 3+ -0,74
Fe 2e Fe 2+ -0,44
Cd 2e Cd 2+ -0,40
Co 2e Co 2+ -0,28
Ni 2e Ni 2+ -0,25
Sn 2e Sn 2+ -0,14
Pb 2e Pb 2+ -0,13
Fe 3e Fe 3+ -0,04
H2 2e 2H + 0,00
Cu 2e Cu 2+ 0,34
Cu 1e Cu + 0,52
2Hg 2e Hg2 2+ 0,79
Ag 1e Ag + 0,80
Hg 2e Hg 2+ 0,85
Pt 2e Pt 2+ 1,20
Au 3e Au 3+ 1,50

Место каждого элемента в ряду напряжений условно, т.к. величина электродного потенциала зависит от температуры и состава раствора, в который погружены электроды, в частности от концентрации ионов. Большое значение также имеет состояние поверхности электрода (гладкая, шероховатая). Стандартный электродный потенциал относится к водным растворам при температуре 25 °С, давлении газов 1 атмосфера и концентрации ионов 1 моль/л.

Из электрохимического ряда напряжений металлов вытекает ряд важных следствий:

  1. Каждый металл способен вытеснять (замещать) из растворов солей все другие металлы, стоящие правее данного металла;
  2. Все металлы, расположенные левее водорода, способны вытеснять его из кислот;
  3. Чем дальше расположены друг от друга два металла в ряду напряжений, тем большее напряжение может давать созданный из них гальванический элемент.

Восстановление водородом из оксидов

Металлы, которые водород не восстанавливает из их оксидов

Руководство по материалам электротехники для всех. Часть 12. Финальная


Последняя часть руководства. Внутри бонусные главы, немного новых фотографий, и главное — pdf с руководством которое можно скачать и поделиться с другом.

Доработки (доступны в pdf версии):

— Добавлены фото деструкции оптического поликарбоната, добавлены фото кварцевого стекла, фото проводящих углеродных композиций в конструкции ПДУ.
— Доработан раздел с изолентами, пришлось подождать посылок, но оно того стоило — теперь это самое полное описание изоляционных лент (добавлена полиэфирная, мастичная, тканевая и другие виды лент).
— Добавлена глава про электрические соединения — с ответом на вопрос почему нельзя.
— Ну и много мелких правок согласно комментариям.

Название я сменил, просто из соображений «легко запомнить-легко гуглить».

Электрические соединения

Популярная шутка говорит о том, что электротехника — это наука о контактах. И две основные неисправности — нет контакта там где он должен быть, и есть контакт там где его быть не должно.

На обложке этого руководства изображена скрутка двух проводов — медного и алюминиевого. Некоторых читателей такое зрелище возмутило, и не без оснований — так делать нельзя. Если попытаться разобраться в причинах этого «нельзя», то можно найти множество дискуссий на эту тему, практически в каждой из которых можно найти довод «всегда так делал, на даче такая скрутка работает уже 100500 лет». К сожалению, понимания причин запрета такой подход не привносит.

В чем же проблема соединить в контакт два произвольных металла? Дело в том, что в силу некоторых причин (о которых ниже) некоторые металлы образуют надежный контакт и работают практически безотказно, а некоторые образуют контакт, который тоже работает, но менее надежен и чаще приносит проблемы. Нужно понимать, что «чаще» не означает, что если вы сделали такое соединение, то оно откажет завтра с вероятностью 100%. Нет, вероятность отказа станет не 0,0001%, а к примеру 0,01%. Все такая же малая, но вас бы не устроила в 100 раз большая вероятность пожара?

Опыт эксплуатации различной техники привел инженеров к выводу, что определенные комбинации металлов обеспечивают приемлемую надежность контакта, а некоторые слишком низкую. Еще раз стоит отметить, что на надежность контакта сильно влияют условия эксплуатации, если соединение находится при постоянной температуре в сухом месте, то оно может быть вполне надежным, даже если пара металлов нежелательная.

Ряд электрохимической активности металлов

Первая причина нарушения контакта которую мы рассмотрим — электрохимическая коррозия. Некоторые из вас помнят со школы ряд активности металлов (неполный):

Li K Ba Sr Ca Na Mg Al Mn Cr Zn Fe Cd Co Ni Sn Pb H Sb Bi Cu Hg Ag Pd Pt Au

Металл Электрохимический потенциал, Вольт
Литий (Li) -3,0401
Калий (K) -2,931
Барий (Ba) -2,905
Стронций (Sr) -2,899
Кальций (Ca) -2,868
Натрий (Na) -2,71
Магний (Mg) -2,372
Алюминий (Al) -1,700
Марганец (Mn) -1,185
Хром (Cr) -0,852
Цинк (Zn) -0,763
Железо (Fe) -0,441
Кадмий (Cd) -0,404
Кобальт (Co) -0,28
Никель (Ni) -0,234
Олово (Sn) -0,141
Свинец (Pb) -0,126
Водород (H) 0
Сурьма (Sb) +0,240
Висмут (Bi) +0,317
Медь (Cu) +0,338
Ртуть (Hg) +0,7973
Серебро (Ag) +0,799
Палладий (Pd) +0,98
Платина (Pt) +0,963
Золото (Au) +1,691

Для инженера этот ряд говорит следующее: В присутствии электролита (вода, влажность воздуха) в паре металлов будет разрушаться тот металл, что в ряду напряженности левее. Чем дальше друг от друга металлы в ряду, тем интенсивнее будет протекать коррозия. На базе
этого явления построена электрохимическая защита металлов, например оцинковка стали. При наличии воды, первым делом разрушается цинковое покрытие, и только после того как оно разрушилось начинается коррозия стали.

В случае электрических контактов, нам важнее не то, какой металл разрушится в паре, они нужны оба, а то, насколько интенсивно будет протекать процесс коррозии. И в этом плане потенциал создаваемый парой алюминий-медь 2,038 В очень большой, его достаточно чтобы разорвать молекулу воды в процессе электролиза! Но если разделить эти два металла стальной оцинкованной пластинкой, то образуется две пары: цинк-алюминий с потенциалом 0,937 В, и цинк-медь, с потенциалом 1,101 В. Это уже не такие большие потенциалы, поэтому процесс коррозии будет протекать медленнее.

Принимая во внимание, что основными металлами для изготовления проводников являются медь и алюминий, то заучивать таблицу и считать потенциалы не требуется, важно только помнить, что непосредственно соединять медь и алюминий в электрический контакт работающий на воздухе нельзя.

Тепловое расширение

Все тела при нагревании расширяются, и металлы не исключение. Для любого материала есть характеристика, такая как «коэффициент теплового расширения тел», который показывает, во сколько раз увеличится размер тела, при нагреве на 1 градус Цельсия. (В различных диапазонах температур значение теплового коэффициента расширения может различаться, кроме того для некоторых анизотропных материалов коэффициент может различаться в разных плоскостях. Для упрощения не будем учитывать эту разницу, воспользовавшись усредненными значениями) Вот небольшая табличка:

Материал Тепловой коэффициент расширения α, (1/К)
Алюминий
Медь
Сталь
Стекло
Стекло термостойкое (боросиликатное)
Стекло кварцевое
Инвар (сплав)
Платина

Из этой таблички видно, что соединение из двух материалов при нагревании будет расширяться по разному, провоцируя внутренние напряжения и деформации. Иногда это полезное свойство — оно используется в биметаллических пластинках в терморегуляторах, такие пластинки при нагреве изгибаются и разрывают контакт. Но в деле создания надежного электрического соединения такая разница в величине теплового расширения может ослабить контакт. Если соединение не обладает упругими свойствами, то спустя нескольких циклов нагрева и охлаждения, можно обнаружить что вместо плотного тугого контакта проводник болтается.

Если соединения разных материалов не избежать, то нужно помнить, что такое соединение потенциально может ослабнуть при изменениях температуры, и должно быть обслуживаемым и контролируемым. Замуровать соединение медного и алюминиевого проводника в стенке под слоем штукатурки — плохая идея.

Ползучесть

Некоторые материалы склонны проявлять явление «ползучести», когда к примеру проводник под небольшой механической нагрузкой, не достаточной для пластической деформации, тем не менее деформируется со временем. Величина этого явления зависит от нагрузки и от температуры, характеризуясь очень малой величиной. Пройдут тысячи часов, прежде чем размер тела изменится на доли процента. Тем не менее это явление достаточно важно в обеспечении надежного контакта. Ползучесть, наряду с тепловым расширением вносит вклад в то, что затянутая клемма спустя годы ослабевает и провод в ней болтается.

К сожалению алюминий (чистый) обладает значительно более интенсивной ползучестью, чем медь, что делает электрические контакты с его участием менее надежными и требующими регулярного обслуживания. Это стоит помнить при ремонте и обслуживании проводки из алюминиевого кабеля времен СССР. Производители современных алюминиевых кабелей легируют алюминий в токопроводящей жиле, добиваясь уменьшения ползучести до значений, сопоставимых с медью, пускай и ценой небольшого снижения электропроводности.

Так как же все-таки соединять провода?

Вопрос сложный тем, что ответ зависит от условий работы соединения и однозначно универсального способа нет.

Но про пару алюминий-медь было сказано столько плохого, что я просто обязан дать ответ на вопрос «как их соединять?».

Первый вариант — классический, при помощи стальной пластинки исключая непосредственный контакт меди и алюминия. Стальная пластинка предотвратит интенсивную электрохимическую коррозию (но не избавит от нее совсем), обеспечит приемлемое усилие на площади контакта проводников. Но такое соединение требует регламентных работ по обслуживанию: 1–2 раза в год необходимо проверять усилие затяжки проводников.

Второй вариант. Специализированные пружинные клеммы для алюминиевого проводника. (например клеммники WAGO серии 2273 с пастой). В такой клемме зачищенный проводник всё время прижимается пружинным контактом, предотвращая его ослабление вследствие ползучести.
Паста внутри клеммника предотвращает доступ влаги и воздуха к поверхности алюминия, препятствуя окислению проводника. (Важно отметить, клеммы должны быть качественные, а сечение проводника номинальным. Самолично наблюдал сгоревшие соединения выполненные клеммами, купленными в ближайшем киоске (вероятно поддельными).)

Третий вариант — Медно-алюминиевые гильзы. Этот вид соединения актуален для силовых линий на большие токи с сечением от 10 кв. мм. Медно-алюминиевые гильзы предназначены под опрессовку специальным инструментом. Соединенные в толще металлы обеспечивают надежный контакт большой площади, влага и электрохимическая коррозия могут лишь повредить нежную поверхность гильзы, не нарушив контакт в толще.

И помните, любое силовое электрическое соединение (тем более из разных металлов) должно быть доступно для обслуживания! Замурованная в стену скрутка — залог того, что вас будет вспоминать ремонтная бригада в различных матерных выражениях.

Заключение

Так как установка при написании данного пособия была на минимум брехни, я писал о том, что сам пощупал, использовал, с чем работал. Некоторые темы я не раскрыл, в силу малого опыта (или малого количества собранного материала) в этих областях, но их стоило бы раскрыть. Переписывать бездумно то, что описано в специализированной литературе я не стал, зачем искажать источник? Поэтому, если вы можете что-то рассказать по теме — я буду рад включить ваш текст в руководство.

Данное руководство распространяется свободно, вы можете скачать самую последнюю вер-
сию у меня в блоге совершенно бесплатно. Если вам понравилась моя работа, я буду рад услышать от вас пожелания и предложения, а также замечания и указания на допущенные ошибки.

Где скачать?

→ Руководство на GitHub вместе с исходником текста и фотографиями. Там же pdf с книгой.

→ Домашняя страничка руководства на моем сайте.

Если вы захотите бумажный экземпляр к себе на полку, то его можно приобрести (технология печати по требованию). Это не реклама — я выставил руководство по себестоимости — не заработаю ни копейки. К сожалению в бумажном виде иллюстрации будут черно-белые.

Благодарности

Выражаю признательность Алексею Gall Галахову за ценные дополнения руководства и помощь в верстке руководства.

Talion_amur за предоставленный образец ртутного счетчика времени наработки.

Спасибо всем кто написал комментарии, они дали ценную обратную связь.

Пользуясь случаем хочу передать привет Meklon DIHALT Milfgard lozga superhimik tnenergy BarsMonster — я с удовольствием читаю ваши посты и старался держать планку не ниже.

Ссылки на части руководства:


1: Проводники: Серебро, Медь, Алюминий.
2: Проводники: Железо, Золото, Никель, Вольфрам, Ртуть.
3: Проводники: Углерод, нихромы, термостабильные сплавы, припои, прозрачные проводники.
4: Неорганические диэлектрики: Фарфор, стекло, слюда, керамики, асбест, элегаз и вода.
5: Органические полусинтетические диэлектрики: Бумага, щелк, парафин, масло и дерево.
6: Синтетические диэлектрики на базе фенолформальдегидных смол: карболит (бакелит), гетинакс, текстолит.
7: Диэлектрики: Стеклотекстолит (FR-4), лакоткань, резина и эбонит.
8: Пластики: полиэтилен, полипропилен и полистирол.
9: Пластики: политетрафторэтилен, поливинилхлорид, полиэтилентерефталат и силиконы.
10: Пластики: полиамиды, полиимиды, полиметилметакрилат и поликарбонат. История использования пластиков.
11: Изоляционные ленты и трубки.

Так получилось, что у меня параллельно собирается материалы по нескольким темам, какая тема интереснее?

Читайте также: