Вольфрам редкоземельный металл или нет

Обновлено: 25.06.2024

W, химический элемент VI группы периодической системы Менделеева, порядковый номер 74, атомная масса 183,85; тугоплавкий тяжёлый металл светло-серого цвета. Природный В. состоит из смеси пяти стабильных изотопов с массовыми числами 180, 182, 183, 184 и 186. В. был открыт и выделен в виде вольфрамового ангидрида WO3 в 1781 шведским химиком К. Шееле из минерала тунгстена, позднее назван Шеелитом. В 1783 испанские химики братья д’Элуяр выделили WO3 из минерала вольфрамита и, восстановив WO3 углеродом, впервые получили сам металл, названный ими В. Минерал же вольфрамит был известен ещё Агриколе (16 в.) и назывался у него «Spuma lupi» — волчья пена (нем. Wolf — волк, Rahm — пена) в связи с тем, что В., всегда сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»). В США и некоторых других странах элемент назывался также «тунгстен» (по-шведски — тяжёлый камень). В. долго не находил промышленного применения. Лишь во 2-й половине 19 в. начали изучать влияние добавок В. на свойства стали.

В. мало распространён в природе; его содержание в земной коре 1·10 -4 % по массе. В свободном состоянии не встречается, образует собственные минералы, главным образом вольфраматы (см. Вольфраматы природные), из которых промышленное значение имеют Вольфрамит (Fe, Mn) WO4 и шеелит CaWO4 (см. Вольфрамовые руды).

Физические и химические свойства. В. кристаллизуется в объёмноцентрированной кубической решётке с периодом а = 3,1647Å; плотность 19,3 г/см 3 , tпл 3410 ± 20°С, tkип 5900°С. Теплопроводность (кал/см·сек·°С) 0,31 (20°С); 0,26 (1300°С). Удельное электросопротивление (ом·см·10 -6 ) 5,5 (20°С); 90,4 (2700°С). Работа выхода электронов 7,21·10 -19 дж (4,55 эв), мощность энергии излучения при высоких температурах (вт/см 2 ): 18,0 (1000°С); 64,0 (2200°С); 153,0 (2700°С); 255,0 (3030°С). Механические свойства В. зависят от предшествующей обработки. Предел прочности при растяжении (кгс/мм 2 ) для спечённого слитка 11, для обработанного давлением от 100 до 430; модуль упругости (кгс/мм 2 ) 35 000—38 000 для проволоки и 39 000—41 000 для монокристаллической нити; твёрдость по Бринеллю (кгс/мм 2 ) для спечённого слитка 200—230, для кованого слитка 350—400 (1 кгс/мм 2 ≈ 10 Мн/мм 2 ). При комнатной температуре В. малопластичен (см. Тугоплавкие металлы).

В обычных условиях В. химически стоек. При 400—500°С компактный металл заметно окисляется на воздухе до WO3. Пары воды интенсивно окисляют его выше 600°С до WO2. Галогены, сера, углерод, кремний, бор взаимодействуют с В. при высоких температурах (фтор с порошкообразным В. — при комнатной). С водородом В. не реагирует вплоть до температуры плавления; с азотом выше 1500°С образует нитрид. При обычных условиях В. стоек к соляной, серной, азотной и плавиковой кислотам, а также к царской водке; при 100°С слабо взаимодействует с ними; быстро растворяется в смеси плавиковой и азотной кислот. В растворах щелочей при нагревании В. растворяется слегка, а в расплавленных щелочах при доступе воздуха или в присутствии окислителей — быстро; при этом образуются Вольфраматы. В соединениях В. проявляет валентность от 2 до 6, наиболее устойчивы соединения высшей валентности.

В. образует четыре окисла: высший — трёхокись WO3 (вольфрамовый ангидрид), низший — двуокись WO2 и два промежуточных W10O29 и W4O11. Вольфрамовый ангидрид — кристаллический порошок лимонно-жёлтого цвета, растворяющийся в растворах щелочей с образованием вольфраматов. При его восстановлении водородом последовательно образуются низшие окислы и В. Вольфрамовому ангидриду соответствует вольфрамовая кислота H2WO4 жёлтый порошок, практически не растворимый в воде и в кислотах. При её взаимодействии с растворами щелочей и аммиака образуются растворы вольфраматов. При 188°С H2WO4 отщепляет воду с образованием WO3. С хлором В. образует ряд хлоридов и оксихлоридов. Наиболее важные из них: WCl6 (tпл 275°С, tkип 348°С) и WO2Cl2 (tпл 266°С, выше 300°С сублимирует), получаются при действии хлора на вольфрамовый ангидрид в присутствии угля. С серой В. образует два сульфида WS2 и WS3. Карбиды вольфрама WC (tпл 2900°C) и W2C (tпл 2750°C) — твёрдые тугоплавкие соединения; получаются при взаимодействии В. с углеродом при 1000—1500°С.

Получение и применение. Сырьём для получения В. служат вольфрамитовые и шеелитовые концентраты (50—60% WO3). Из концентратов непосредственно выплавляют ферровольфрам (сплав железа с 65—80% В.), используемый в производстве стали; для получения В., его сплавов и соединений из концентрата выделяют вольфрамовый ангидрид. В промышленности применяют несколько способов получения WO3. Шеелитовые концентраты разлагают в автоклавах раствором соды при 180—200°С (получают технический раствор вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую кислоту):

Вольфрамитовые концентраты разлагают либо спеканием с содой при 800—900°С с последующим выщелачиванием Na2WO4 водой, либо обработкой при нагревании раствором едкого натра. При разложении щелочными агентами (содой или едким натром) образуется раствор Na2WO4, загрязнённый примесями. После их отделения из раствора выделяют H2WO4. (Для получения более грубых, легко фильтруемых и отмываемых осадков вначале из раствора Na2WO4 осаждают CaWO4, который затем разлагают соляной кислотой.) Высушенная H2WO4 содержит 0,2—0,3% примесей. Прокаливанием H2WO4 при 700—800°С получают WO3, а уже из него — твёрдые сплавы. Для производства металлического В. H2WO4 дополнительно очищают аммиачным способом — растворением в аммиаке и кристаллизацией паравольфрамата аммония 5(NH4)2O·12WO3·nH2O. Прокаливание этой соли даёт чистый WO3.

Порошок В. получают восстановлением WO3 водородом (а в производстве твёрдых сплавов — также и углеродом) в трубчатых электрических печах при 700—850°С. Компактный металл получают из порошка металлокерамическим методом (см. Порошковая металлургия), т. е. прессованием в стальных прессформах под давлением 3—5 тс/см 2 и термической обработкой спрессованных заготовок-штабиков. Последнюю стадию термической обработки — нагрев примерно до 3000°С проводят в специальных аппаратах непосредственно пропусканием электрического тока через штабик в атмосфере водорода. В результате получают В., хорошо поддающийся обработке давлением (ковке, волочению, прокатке и т.д.) при нагревании. Из штабиков методом бестигельной электроннолучевой зонной плавки (См. Зонная плавка) получают монокристаллы В.

В. широко применяется в современной технике в виде чистого металла и в ряде сплавов, наиболее важные из которых — легированные стали, твёрдые сплавы на основе карбида В., износоустойчивые и жаропрочные сплавы (см. Вольфрамовые сплавы). В. входит в состав ряда износоустойчивых сплавов, используемых для покрытия поверхностей деталей машин (клапаны авиадвигателей, лопасти турбин и др.). В авиационной и ракетной технике применяют жаропрочные сплавы В. с другими тугоплавкими металлами. Тугоплавкость и низкое давление пара при высоких температурах делают В. незаменимым для нитей накала электроламп, а также для изготовления деталей электровакуумных приборов в радиоэлектронике и рентгенотехнике. В различных областях техники используют некоторые химические соединения В., например, Na2WO4 (в лакокрасочной и текстильной промышленности), WS2 (катализатор в органическом синтезе, эффективная твёрдая смазка для деталей трения).

Лит.: Смителлс Дж., Вольфрам, пер. с англ., М., 1958; Агте К., Вацек И., Вольфрам и молибден, пер. с чеш., М., 1964; Зеликман А. Н., Крейн О. Е., Самсонов Г. В., Металлургия редких металлов, 2 изд., М., 1964; Химия и технология редких и рассеянных элементов, под ред. К. А. Большакова, т. 1, М., 1965; Справочник по редким металлам, пер. с англ., М., 1965; Основы металлургии, т. 4, Редкие металлы, М., 1967.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Редкоземельные металлы

ЧТО ЭТО ТАКОЕ

Редкоземельными металлами, называются те, для производства которых используются оксиды. В чистом виде или как руда, они не встречаются в природе, но некоторые из них присутствуют в значимом количестве как оксиды в других металлах и играют важную роль среди прочих. Как хлам в наших приемных точках можно продать большинство разновидностей материалов из редкоземельной группы.

Такие химические элементы, эксплуатируемые в промышленности, имеют схожие химические и физические свойства, что объясняется похожим строением атомов и молекул. Все они выглядят как серебристого цвета с белым оттенком. Всего в эту группу входит 17 видов материалов, которые имеют названия уникального характера:

  • Скандий – образован от названия региона Скандинавия;
  • Иттрий – обнаружен в шведской деревне Иттербю, назван однокоренным наименованием;
  • Лантан – от греческого слова «скрытый»;
  • Церий – совпадает с названием планеты малого размера, которая названа схожим именем богини древних людей, Цереры;
  • Празеодим – от греческого словосочетания «зелёный близнец»;
  • Неодим – от греческого словосочетания «новый близнец»;
  • Прометий – имя мифического героя Прометея, который подарил человечеству огонь и наименование этому редкоземельному;
  • Самарий – обнаружен в минерале с похожим названием самарскит, назван схожим названием;
  • Европий – как континент «Европа»;
  • Гадолиний – в честь финского химика Юхана Гадолина;
  • Тербий — обнаружен в шведской деревне Иттербю, по образу имени которой и назван;
  • Диспрозий – в переводе с греческого означает «труднодоступный»;
  • Гольмий – по образу Стокгольма, столицы Швеции;
  • Эрбий — обнаружен в шведской деревне Иттербю, в честь которой и был назван как и прочие элементы из этого списка;
  • Тулий – от древнего слова Скандинавского языка;
  • Иттербий — обнаружен в шведской деревне Иттербю, в честь которой и получил свое название;
  • Лютеций – в Древнем Риме так назывался Париж.

Они подразделяются по совместному нахождению в месторождениях, а именно на иттриевые и цериевые подгруппы. Лантаноиды могут быть с разной атомной массой, либо легкими, либо тяжелыми элементами. Их добыча сложный процесс, каждая тонна грунта в месторождении имеет незначительное содержание.

Редкоземельные полезные добываются во многих странах мира, их крупнейшие месторождения в Китае и США, что еще актуально в этом году. Наиболее ценными и редкими являются следующие сорта полезных редкоземельных ископаемых: празеодим, индий, лантан, иттрий, диспрозий, скандий, церий.

ФЕРРОСПЛАВЫ

ТИПЫ

Примечательно, что химические сформированные в роли оксидов, применяются в различных категориях. Чаще всего ископаемые группы редкоземельные эксплуатируют в машиностроении, атомной энергетике, химической и легкой индустрии, при изготовлении электроники, а также в тяжелой металлургии. Из таких как неодим, делают различные жидкости, рабочие составы и полимеры. В Ленинградской области можно передать большинство таких веществ, мы разберемся какой они имеют вес для индустрии и в целом где их еще можно обнаружить.

ОЛОВО

Одним из наиболее интересны, которое широко эксплуатируются в металлургии и пищевой индустрии, остается оловянный. Основное применение как белой жести или лужёного железа. Найти можно как в чистом или в купе с прочими – бронзой, медью, железом, марганцем. Найти его для реализации можно в следующих изделиях:

  • Припой – выполняется с применением токсичного и опасного свинца;
  • Оловянные фигурки и игрушки;
  • Посуда;
  • Луженая проволока и жесть, в том числе консервные банки.

Оловянный можно встретить в кусков, обрезков, слитков. В наших приемных точках установлена хорошая цена – 1500 рублей. Таким образом, это один из самых дорогих редкоземельных, которые можно в металлоприемку.

лом олова

Распространение этого материала широко во всем мире – оно используется как в нержавеющей стали и дающих ей много преимуществ, так и других группах металлов. Но в то же время, его применяют в небольшом количестве, но его можно приобрести как чушку, проволоку, гранулы, слитки. Известны сложные варианты из бронзы, меди, марганца которые включают в себя и олово как второстепенный элемент. Продать нам можно любые составы по редкости – каким бы трудоемким не стало разделение, мы сможем переработать редкоземельный металл всех категорий. Это дает вам опцию помимо зарплаты пойти и получить неплохие средства. С этой необходимостью сталкиваются сотрудники многих предприятий, имеют вариант взять топовые вольфрамовые изделия и отдать их на хороших условиях. Короткая проверка в рамках комиссии и мы говорим о прогнозах и переходу к быстрой оплате по честной цене от компании.

ВК-ТК

Марки цветных «ВК, ТК» можно сдать в наши приемные точки как с наплавками (950 руб/1кг), так и без наплавок (1000 руб/1кг). Эта разновидность встречается в режущих инструментах, военном оборудовании, электродвигателях, советских приборах и электронике. Кроме того, металл популярен в нефтехимической индустрии и на предприятиях в Рязани, Омске, Красноярске, Ижевске, Саратове, Самаре и других крупных городах. На условия получения будет влиять фактор загрязнения от лаков, красок, результатов катализации разных продуктов, остатков продуктов нефти, щелочных остатков оксалатов, раскисления, нихром. Если складская архитектура позволяет сохранять материалы в хорошем виде, то будет удобнее их сбывать.

Кобальт

Твердый редкоземельный металл. В наших приемных точках на кобальт установлена стоимость 1400 рублей за 1 кг. Кобальтовые широко распространены в авиационной и космической индустрии. Также он встречается в двигателях автомобилей, квантовых генераторах, усилителях, радиотехнике, печатных машинках.

Внешне, кобальт выглядит как серебристый металл, с желтоватым оттенком, хорошей плотностью и большой массой. Кобальт применяют в роли легирующего элемента, поэтому зачастую его можно встретить в сплавах на основе других, менее редких, металлов.

Магнит

Проверить работоспособность магнитного изделия можно при помощи чугунных металлоконструкций – поднесите предмет из магнита и если он притягивается, значит это нужный компонент. Это сделать не трудно – ручной инструмент также обычно изготавливают из стали или чугуна, а значит это и может быть выбрано для определения. Это же относится и к строительным изделиям, например, уголок, арматура, металлические трубы изготавливаются также из стальных вариантов и могут служить для определения работоспособности магнитной руды.

МОЛИБДЕН

Молибденовые металлы ценятся на рынке вторсырья, так как легко перерабатывается и не меняет своих свойства даже после повторного. Отходы молибдена могут быть как трубы, проволоки, листовой редкоземельный металл, пластины, фольга, стружка и куски, отслужившие в годы. В быту металл молибден можно встретить как детали различной техники:

  • Как отработанный компонент;
  • Электрод рентгеновской трубки;
  • Кинопроекторах;
  • Электронагревателях;
  • Индукционных печах.

НИКЕЛЬ

В России добывается немало редкоземельных металлов, но несмотря на это, они имеют хорошую оценку на вторичном рынке и дорого оцениваются скупщиками. Это относится и к никелю, который имеет разумную стоимость: катодный и анодный никель – 850 руб/кг, никель – 650 руб/кг, с его содержанием – оцениваются в индивидуальном порядке в этом году, как и неодим и как о. Никелевый материал может быть представлен как:

  • Катализаторов;
  • Закисей никеля и гидратах закисей;
  • Концентратов и агломератов;
  • В отходах;
  • В аккумуляторах ТНЖ;
  • Обмотка струн;
  • В электронике, приборах, различной технике.

Чаще всего никель используется как легирующий для контроля при изготовлении альтернативных легированных сталей. Его поставляют в формате проволоки или гранул. Гранулированный никель надёжен для изготовления рабочих металлургических составов разного объема. Есть возможность подтвердить продолжающуюся необходимость в создании коммерческого литья.

лом никеля фото

Наши заказчики скупают несколько видов металлов из никеля в Петербурге и Ленинградской области по лучшим условиям в России. Мы известны как надёжный скупщик во многих городах СНГ: Петрозаводске, Калининграде, Челябинске, Ульяновске, Иркутске, Воронеже, Архангельске, Краснодаре, Мурманске. Чтобы сотрудничать с нами, не обязательно самостоятельно приходить – можно заказать доставку и получить деньги безналичным способом оплаты в данном году.

ТИТАН

Обладают высокой устойчивостью к внешним воздействиям окружающей среды, в том числе выдерживают механические удары, благодаря повышенной прочности и антикоррозийными свойствами. В ГОСТ 1639-2009 указаны классификации. Сдать этот редкоземельный металл в этом году можно в разном состоянии:

  • Кусковые в нелегированном и легированном состоянии;
  • Новый листовой металл и его обрезки;
  • Остатки от металлургического изготовления из титановых составов;
  • Кусковой брак.

В приемках иногда применяется стандарт, указанный в ГОСТе. Скупщики в Петербурге и Ленинградской области скупают у населения по достойной стоимости: кусковой – 240 руб/кг, мелкодисперсный – 170 руб/кг.

АККУМУЛЯТОРЫ

Металл из АКБ принести к нам можно по выгодной цене. Мы принимаем все категории аккумуляторных батарей, как импортные, так и отечественные модели аккумуляторов.

лом акб фото

Для того чтобы предоставить на утилизацию электронные устройства и передать их на утилизацию, важно избавиться от пластика, рабочих жидкостей, дерева и прочих инородных материалов. Стальные детали также должны быть отделены – их можно сдать для вторичного применения в металлопрокате отдельно.

КАТАЛИЗАТОР МЕТАЛЛИЧЕСКИЙ

Самыми дорогими отходами, которые можно отдать в наши приемки, и их сплавы, являются конструкции импортного производства – анализ рублей за 1 кг. Отечественный металлический можно передать по меньшей цене – анализ руб/кг.

скупка катализаторов

Отдать эту категорию товаров металлургии наши партнеры могут в любой форме – аноды, катоды, переработанное вторсырье. Прайс на сайте нашей организации включает в себя высокие расценки на все металлы, даже неодим.

КАКОЙ ИМЕЕТ БОЛЬШУЮ ЦЕННОСТЬ

Самыми дорогими, которые можно реализовать в наши приемки, являются наименования из таблицы выше. Особенно высокие условия имеют детали зарубежного изготовления из таких редкоземельных металлов.

КАК СДАТЬ РЕДКОЗЕМЕЛЬНЫЙ МЕТАЛЛ

Чтобы выгодно это сделать, важно обратиться к соответствующем скупщику. Правильно организованная утилизация металлов, обеспечивает не только чистоту окружающей среды, но и прибыль. Металлический мусор, отходы, изделия из металлов, в наши приемки могут как физлица, так и представители предприятий.

Если вы нашли серый металл с блеском или серебристым оттенком, который не магнититься – скорее всего это дорогостоящий состав, который мы у вас купим, а также другие аналоги у нас выгодно , продайте остатки строительного материала, детали транспортных средств, технические компоненты, пружины, конденсаторы и прочие изделия металлургической и химической индустрии – мы готовы помочь. Это не бумага, а значит будет выгоднее продать чем макулатуру – учитывайте это и продавайте залежи драгоценного хлама по выгодным расценкам.

КАК ЗАКАЗАТЬ ПЕРЕВОЗКУ С ВЫКУПОМ

Мы работаем с партнерами из всех стран и городов СНГ, но чаще всего к нам обращаются клиенты из Российской Федерации. Для того чтобы продать другие металлы, не нужно самостоятельно доставлять его – мы поможем с организацией перевозок, оценим и купим металл по выгодной стоимости.

Вольфрам

вольфрам

Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm (“волчьи сливки”, “волчий крем”). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

СТРУКТУРА

структура вольфрама

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

кольцо из вольфрама

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

ЗАПАСЫ И ДОБЫЧА

вольфрам

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

вольфрам

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

продукция из вольфрама

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid – быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Редкоземельные элементы и минералы список

Редкоземы — важные и самые дорогие компоненты магнитных, оптических и электронных устройств, которые производят в оборонной и аэрокосмической промышленности: беспилотников, управляемых ракет, приборов лазерного наведения спутниковой связи и т.д.. Их называют «витаминами промышленности». Ведь эти металлы, хоть и в небольшом количестве, используются в важнейших материалах и процессах.

Редкоземельные элементы: что это такое

В Зеленой книге ИЮПАК (Международного союза прикладной и теоретической химии), представлен перечень из 17 редкоземельных металлов. Это:

  • скандий,
  • иттрий,
  • 15 лантаноидов.

В промышленности используют общепринятые аббревиатуры для обозначения редкоземов:

Сокращение

Расшифровка

Где находятся в периодической системе

Обозначение оксидов

Rare earth elements, в переводе редкоземельные элементы

№57-71: от лантана до лютеция, плюс иттрий, №39, скандий, №21

Light rare earth elements, в переводе легкие редкоземельные элементы

№57-62, начиная лантаном и заканчивая самарием

Heavy rare earth elements, в переводе тяжелые редкоземельные элементы

№63-71:, начиная европием и заканчивая лютецием, плюс иттрий

Редкоземельные элементы и минералы перечень, описание и свойства

В одну группу эти элементы объединили из-за похожих признаков. Они образуют простые вещества со следующими свойствами

  • серебристые или серые, с сильным металлическим блеском;
  • пластичные и мягкие;
  • активные, особенно при повышенной температуре или тонком измельчении.

Редкоземельные металлы обладают определенными различиями, поэтому и применяются для разных целей. Вот их краткое описание.

Наименование

Цвет

Ценные свойства металла и его соединений

Тугоплавкий, повышает прочность материалов, усиливает свечение

Повышает жаропрочность и долговечность материалов, улучшает качество свечения

Серебристо-белый, похож на кальций

Ускоряет крекинг нефти, повышает пластичность, жаропрочность и химическую устойчивость материалов

Повышает электропроводность и пластичность металлов, придает розоватый оттенок стеклу, катализатор

Улучшает свойства сверхпроводников и сплавов, придает бледно-зеленый оттенок стеклу, используется в лазерах и для получения пигментов

Улучшает качество стекла и сплавов, растворяет плутоний, повышает контрастность изображения, используется в магнитах, лазерах и излучателях

Способен к люменесценции, используется в атомных батарейках, стержнях реакторов, для ионизации воздуха

Улучшает свойства стержней для ядерных реакторов, магнитов, поглощающего инфракрасные лучи стекла, огнеупорность материалов

Повышает качество микрочипов, карт памяти, сверхпроводников, сплавов и керамики

Сильные парамагнитные свойства для получения сверхнизких температур, используется в полупроводниках и рентгеновских аппаратах

Необходим для сверхмощных магнитов и излучателей ультразвука, катализатор реакций окисления

Повышает пластичность и магнитные свойства материалов, катализатор в нефтехимии, для получения красных люминофоров

Придает сверхпроводящие свойства магнитам, применяется в лазерах, активирует люминофоры

Улучшает качество оптоволокна, магнитных сплавов, стекла, специальной керамики

Применяется в лазерах, магнитных носителях, для дефектоскопии, в диагностических приборах

Улучшает термоэлектрические и магнитные свойства материалов, обеспечивает легкость полупроводников

Повышает мощность магнитов, сверхпроводимость, жаропрочность

Но с точки зрения добычи полезных ископаемых они действительно редкоземельные. Потому что не часто встречаются в концентрированной и экономически выгодной форме.

Чем редкие металлы отличаются от редкоземов

Кроме редкоземельных, выделяют еще группу редких металлов. Их всего 18, в том числе 4 таких металла, которые можно после обогащения получать в виде концентратов: бериллий, ниобий, литий, тантал. Остальные 14 называют попутными микрокомпонентами, или рассеянными редкими металлами.

Редкие металлы значительно различаются между собой по объемам производства и областям применения.

Сколько примерно тонн производится в мире в год

Где используется

Добавка к стали и другим сплавам

В виде карбида для строительства, изготовления абразивов, сплавы в ядерных реакторах

Стекло, литье, керамика, батареи для электромобилей, лекарства

Сплавы со свинцом и другими металлами, для производства лекарств

Стекло, пигменты, фотокопировальные устройства, лекарства, удобрения, солнечные батареи

Пиротехника, сверхпроводники, протезы, зубные имплантаты, посуда, фианиты

конденсаторы для электроники, сплавы для турбин самолетов, медицинские импланты

Жидкокристаллические дисплеи, сенсорные и плоские экраны, смартфоны, компьютеры

Атомные реакторы, системы наведения, спутниковое оборудование, рентгеновские аппараты, формы для выдувания

Сплавы, солнечные батареи, полупроводники

Инфракрасная и волоконная оптика, солнечные батареи, японские ПЭТ-бутылки

Полупроводники, лазеры, светодиоды, микросхемы, безопасный заменитель ртути

Теплоносители, электролиты, измерительная техника

Электромобили и гибридные авто, металлогалогенные лампы

Ядерные реакторы, микропроцессоры

Двигатели для самолетов, ракеты, высокооктановый бензин без свинца, рентгеновские снимки, фотовспышки, лечение опухолей

Батарейки, аккумуляторы, антикоррозионные покрытия

Также к редким металлам относится таллий.

Полезные ископаемые с достаточным для добычи содержанием содержанием редкоземов называют редкоземельными минералами. Первый такой минерал обнаружили в шахте возле шведской деревни Иттерби, Это гадолинит. Он состоит из смеси редкоземельных иттербия, церия, других менее ценных веществ.

Лидирующие по мировой добыче источники РЗЭ - следующих минералы:

  • бастнезит — из него получают лантан, иттрий и церий, местность Маунтин-Пасс в Калифорнии, Байян-Обо в Китае;
  • монацит — источник церия, празеодима, гадолиния, добыча в Австралии, США, Китае, Бразилии, Красноуфимске (Свердловская область);
  • лопарит — в основном цериево-лантановый, в меньшей степени неодим и прометий, найден в Карелии, село Ловозеро, в Прибайкалье, Туве;
  • латеритные ионно-адсорбционные глины — получают иттрий, диспрозий, гадолиний, неодим, месторождения в Китае, на Мадагаскаре, небольшое в Приморье.

Редкоземы есть в ряде ниже перечисленных полезных ископаемых

Минерал

Какие РЗЭ содержит

Месторождения

Празеодим, церий, лантан, неодим, иттрий,

Хибины, Кольский полуостров

Северное Прибайкалье, Монголия

Церий, диспрозий, гольмий

Хабаровский край, Малмыжское месторождение

лютеций, диспрозий, эрбий, гольмий, иттрий, туллий, иттербий

Бразилия, Норвегия, Швеция, Северная Карелия, Южный и Северный Урал, Хабаровский край

Колумбия, Норвегия, Китай, Урал, Северные Саяны

Иттрий, европий, тербий

Южный Урал, Миасс

Кольский полуостров, Тува, Швеция, Норвегия

Эрбий, туллий, иттрий, иттербий

Норвегия, Гренландия, Швеция, Урал, Украина, Зимбабве, США

Дальний Восток, Казахстан

Челябинская область, Монголия, Китай, Кения

Диспризий, гольмий, эрбий

Россия, США, Норвегия, Бразилия, Мадагаскар

Минералы-концентраты с набором разных РЗЭ получают рядом с месторождениями из первичной руды путем ее обогащения. В Мурманской области это лопаритовый концентрат. В мировых масштабах большое всего производится следующих концентрата:

  • насыщенного раствора сорбционно-ионных руд - до 90% РЗЭ в оксидной форме;
  • ксенотимового – 25% оксида иттрия;
  • моноцитового – 55% смеси оксидов РЗЭ;
  • бастнезитового – 60-85% комплекса редкоземельных оксидов.

Чем определяется стоимость редкоземов

Всего по расчетам 2014 года мировые запасы РЗЭ составляют 147 млн тонн:

  • Китай 38% всех разведанных редкоземов,
  • Монголия 21%,
  • Бразилия 15%,
  • США 9%,
  • Япония 5%,
  • Индия 2%,
  • Австралия 1%.

Оставшиеся 9% - все остальные страны.

Но далеко не все обладатели запасов РЗЭ готовы к разработке найденных месторождений. Во-первых, получение редкоземельных металлов связано с сильным загрязнением окружающей среды. При производстве 1 тонны РЗЭ из руды по стандартной китайской технологии образуется:

  • 1 тонна радиоактивных отходов;
  • 12000 кубометров газовой смеси с пылью, фтороводородной и серной кислотой, диоксидом серы;
  • 75 кубометров кислотного раствора.

Это приводит к загрязнению сточных вод, а следом за ними пахотных земель и рек. В том числе Хуанхэ, из которой берут питьевую воду полторы сотни миллионов людей. В нее попадает торий, элемент с высокой радиоактивностью.

Во-вторых, для запуска проектов по добыче редкоземов нужны большие стартовые капиталы. В результате расчетная себестоимость очищенных металлов окажется намного больше, чем у китайских конкурентов.

Например, австралийская компания Nothern Minerals собирается получать окись диспрозия и продавать килограмм по 720$. Китай сейчас продает это же сырье по 400$. Похожие проекты есть у канадских компаний Great Vestern Minerals и Tastan Metals. Последняя предполагает продавать все ту же окись диспрозия за 580$. В США Rare Element Resourse планирует цены на оксид этого же редкозема 655$/кг, а на окись европия 950$/кг.

В ближайшие годы другим странам, желающим производить РЗЭ, будет трудно конкурировать с Китаем. Ведь там дешевая рабочая сила и пренебрежение к требованиям экологии позволяют держать цены на достаточно низком уровне.

Редкоземельные элементы и производство гаджетов
Рост потребности в редкоземах растет параллельно тому, как высокотехнологичная техника становится необходимой для всех и каждого, определяет уровень и качество жизни. Часто цена гаджета в значительной доле определяется наличием и количеством редкоземельных и редких металлов в его электронной начинке.

Почему смартфоны Apple такие дорогие? На это есть ряд причин, и одна из них — использование РЗЭ. Причем не одного-двух, а как минимум девяти:

  • гадолиния — в дисплеях, динамиках и электронных схемах,
  • диспрозия — добавка в магниты электросхем для для сохранения свойств при нагреве и температурных перепадах,
  • европия — для красного светящегося вещества дисплея,
  • иттрия — для дисплеев, светодиодов,
  • лантана — в электронных схемах, дисплее, шлифованном стекле, для оптических линз,
  • неодима — магниты в схемах и динамиках из сплава с железом и бором,
  • празеодима — добавка в неодимовые магниты, дисплей, динамик,
  • тербия — для зеленого люминесцирующего вещества на дисплее, в динамиках, схемах и вибрационном механизме для защиты мини-магнитов от высоких температур,
  • церия — для шлифованного стекла.

Из этих редкоземельных элементов только четыре – церий, лантан, празеодим и неодим –поставляются для Apple американской компанией Molycorp и австралийской Lynas Corp. Остальные пять добывают преимущественно в Китае. Если Китай запретит экспортировать свои РЗЭ, то у Apple могут появиться серьезные проблемы.

В каждом из пяти важнейших узлов iPhone — дисплее, микросхеме, динамиках, механизме вибрации и шлифованном стекле — есть как минимум один редкоземельный металл, который на данный момент можно получить только из Китая.

Можно производить iPhone без европия, неодима, диспрозия и тербия, если заменить их более дешевыми и доступными металлами. Но это ухудшит цветовое отображение на дисплее , увеличит вес гаджета, снизит скорость работы и устойчивость к высоким температурам. То есть качество продукции Apple серьезно пострадает.

Если Apple и другие богатые компании, нуждающиеся в редкоземах, такие как Tesla , Intel , HP , материально поддержат американские проекты по добыче РЗЭ, то это поможет снизить зависимость от Китая. Но пока что цена вопроса слишком большая.

Wolfram evaporated crystals and 1cm3 cube.jpg


Тугоплавкий прочный металл, стального цвета или белый

Вольфра́м/Wolframium (W), 74

[Xe] 4f 14 5d 4 6s 2

2.3 (шкала Полинга)

W ← W 3+ 0,11 В
W ← W 6+ 0,68 В

19300 кг/м³ 19,3 г/см³

191 кДж/кг 35 кДж/моль

4482 кДж/кг 824 кДж/моль

Вольфра́м — химический элемент с атомным номером 74 в периодической системе, обозначается символом W (лат. Wolframium ), твёрдый серый переходный металл.

Вольфрам — самый тугоплавкий металл (элемент) среди природных элементов. При стандартных условиях химически стоек.

Содержание

История и происхождение названия

Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием «волчья пена» — «Spuma lupi» на латыни, или «Wolf Rahm» по-немецки. Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

В настоящее время в США, Великобритании и Франции для вольфрама используют название «tungsten» (швед. tung sten — «тяжелый камень»).

В 1781 знаменитый шведский химик Шееле , обрабатывая азотной кислотой минерал шеелит, получил жёлтый «тяжелый камень». В 1783 испанские химики братья Элюар сообщили о получении из саксонского минерала вольфрамита жёлтой окиси нового металла, растворимой в аммиаке. При этом один из братьев, Фаусто, был в Швеции в 1781 и общался с Шееле. Шееле не претендовал на открытие вольфрама, а братья Элюар не настаивали на своём приоритете.

Нахождение в природе

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т(0.0013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1-2 %.

Месторождения

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России и Южной Корее. Мировое производство вольфрама составляет 49-50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

Получение



Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре ок. 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Физические свойства

Вольфрам — светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало).

Некоторые физические свойства приведены в таблице (см. выше). Другие физические свойства вольфрама:

    488 кг/мм². при 20 °C 55·10 −9 Ом·м, при 2700 °C — 904·10 −9 Ом·м. в отожжённом вольфраме 4290 м/с. 0,32·10 −9 (парамагнетик).

Вольфрам является одним из наиболее тяжелых, твердых и самым тугоплавким металлом. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

Химические свойства

Проявляет валентность от 2 до 6. Наиболее устойчив 6-валентный вольфрам. 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют.

Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама (VI). Вольфрам в ряду напряжений стоит сразу после водорода, и в соляной, разбавленной серной и плавиковой кислотах почти не растворим. В азотной кислоте и царской водке окисляется с поверхности.

Легко растворяется в смеси азотной и плавиковой кислот [2] :

Реагирует с расплавленными щелочами в присутствии окислителей [3] :

Поначалу, данные реакции идут медленно, однако при достижении 400 °C (500 °C для реакции с участием кислорода) вольфрам начинает саморазогреваться и реакция протекает достаточно бурно, с образованием большого количества тепла.

В смеси азотной и плавиковой кислоты растворяется, образуя гексафторвольфрамовую кислоту H2[WF6]. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфраматы, перекисные соединения с общей формулой Me2WOX, а также соединения с галогенами, серой и углеродом. Вольфраматы склонны к образованию полимерных анионов, в том числе гетерополисоединений с включением других переходных металлов.

Главное применение вольфрама — как основа тугоплавких материалов в металлургии.

Металлический вольфрам


  • Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
  • Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).
  • Вольфрам используют в качестве электродов для аргоно-дуговой сварки.
  • Сплавы вольфрама, ввиду его высокой температуры плавления, получают методом порошковой металлургии. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.
  • Карбид вольфрама (зачастую наряду или вместо карбида титана) используют как наполнитель в твёрдых сплавах — керметах (победит), где матрицей служит кобальт (5-16 %).
  • Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Соединения вольфрама

  • Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
  • Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.
  • Некоторые соединения вольфрама применяются как катализаторы и пигменты.
  • Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.
  • Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Другие сферы применения

Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Рынок вольфрама

Цены на металлический вольфрам чистотой около 99 % на конец 2010 года составляли около 40-42 долларов США за килограмм, в мае 2011 года составляли около 53-55 долларов США за килограмм. Полуфабрикаты от 58 USD (прутки) до 168 (тонкая полоса) [4] .

Биологическая роль

Вольфрам не играет значительной биологической роли. У некоторых архебактерий и бактерий имеются ферменты, включающие вольфрам в своем активном центре. Существуют облигатно-зависимые от вольфрама формы архебактерий-гипертермофилов, обитающие вокруг глубоководных гидротермальных источников. Присутствие вольфрама в составе ферментов может рассматриваться как физиологический реликт раннего архея — существуют предположения, что вольфрам играл роль в ранних этапах возникновения жизни [5] .

Пыль вольфрама, как и большинство других видов металлической пыли, раздражает органы дыхания.

Изотопы

Природный вольфрам состоит из пяти изотопов ( 180 W, 182 W, 183 W, 184 W и 186 W). Искусственно созданы и идентифицированы ещё 30 радионуклидов. В 2003 открыта [6] чрезвычайно слабая радиоактивность природного вольфрама (примерно два распада на грамм элемента в год), обусловленная α-активностью 180 W, имеющего период полураспада 1,8·10 18 лет [7] .

Интересные факты

Вольфрам — самый тугоплавкий металл. Температура плавления 3380 °C, кипения 5900 °C. Примерно такую же температуру имеет фотосфера Солнца [8] .

Плотность вольфрама почти равняется плотности золота: 19,30 г/см³ против 19,32 г/см³ соответственно.

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 418. — 623 с. — 100 000 экз.
  2. Рипан Р., Четяну И. Неорганическая химия. Химия металлов. — М .: Мир, 1972. — Т. 2. — С. 347.
  3. Рипан Р., Четяну И. Неорганическая химия. Химия металлов. — М .: Мир, 1972. — Т. 2. — С. 348.
  4. ↑Цены на вольфрам
  5. Федонкин М. А. Сужение геохимического базиса жизни и эвкариотизация биосферы: причинная связь — Палеонтологический журнал — 2003 — № 6 — с. 33-40
  6. ↑ F. A. Danevich et al. (2003). «α activity of natural tungsten isotopes». Phys. Rev. C67. DOI:10.1103/PhysRevC.67.014310.
  7. ↑ C. Cozzini et al. (2004). «Detection of the natural α decay of tungsten». Phys. Rev. C70. DOI:10.1103/PhysRevC.70.064606.
  8. ↑ Справочник химика / Редкол.: Никольский Б.П. и др.. — 3-е изд., испр. — Л. : Химия, 1971. — Т. 2. — 1168 с.

Ссылки

  • Химические элементы
  • Соединения вольфрама
  • Переходные металлы
  • Вольфрам

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Вольфрам" в других словарях:

ВОЛЬФРАМ — Минерал, открытый в 1785 г., темносерого цвета, очень тяжелый, хрупкий и тугоплавкий. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865. ВОЛЬФРАМ металл в виде черного о или… … Словарь иностранных слов русского языка

ВОЛЬФРАМ — (Wolframium), W, химический элемент VI группы периодической системы, атомный номер 74, атомная масса 183,85; самый тугоплавкий металл, температура плавления 3380шC. Вольфрам используют в производстве легированных сталей, твердых сплавов на основе … Современная энциклопедия

Вольфрам — (Wolframium), W, химический элемент VI группы периодической системы, атомный номер 74, атомная масса 183,85; самый тугоплавкий металл, температура плавления 3380°C. Вольфрам используют в производстве легированных сталей, твердых сплавов на основе … Иллюстрированный энциклопедический словарь

ВОЛЬФРАМ — (лат. Wolframium) W, химический элемент VI группы периодической системы, атомный номер 74, атомная масса 183,85. Название от немецкого Wolf волк и Rahm сливки ( волчья пена ). Светло серый металл, наиболее тугоплавкий из металлов, плотность 19,3… … Большой Энциклопедический словарь

ВОЛЬФРАМ — (символ W), светло серый ПЕРЕХОДНОЙ ЭЛЕМЕНТ. Впервые выделен в 1783 г. Основные источники руды ВОЛЬФРАМИТ и ШЕЕЛИТ. Имеет самую высокую температуру плавления из всех металлов. Применяется в лампах накаливания и в специальных сплавах. КАРБИД… … Научно-технический энциклопедический словарь

Вольфрам — W (лат. Wolframium; * a. tungsten; н. Wolfram; ф. tungstene; и. tungsteno), хим. элемент VI группы периодич. системы Mенделеева, ат.н. 74, ат. м. 183,85. Природный B. состоит из смеси пяти стабильных изотопов 180W(0,135%), 182W(26,41 %),… … Геологическая энциклопедия

вольфрам — тунгстен, звездный металл Словарь русских синонимов. вольфрам сущ., кол во синонимов: 4 • звездный металл (1) • … Словарь синонимов

Вольфрам — фон Эшенбах (Wolfram von Eschenbach) знаменитыйминезингер, замечательный по глубине мысли и широте пониманиязатрагиваемых его творчеством явлений. В. ф. Э. является собственноединственным из немецких средневековых эпиков, в основу поэм… … Энциклопедия Брокгауза и Ефрона

Вольфрам — представляет собой металл серо стального цвета с высокими значениями плотности и температуры плавления. Он хрупкий, твердый и обладает высокой коррозионной стойкостью. Вольфрам используется для изготовления нитей накала в электрических… … Официальная терминология

вольфрам — tungsten Wolfram хімічний елемент. Символ W, ат. н. 74, ат. маса 183,85. Сріблясто білий метал. Відкритий і виділений у вигляді вольфрамового ангідриду в 1781 р. швед. хіміком К.Шеєле. Найбільш характерними і стійкими є сполуки В. зі ступенем… … Гірничий енциклопедичний словник

ВОЛЬФРАМ — ВОЛЬФРАМ, вольфрама, муж. (иностр.) (хим.). Название твердого тугоплавкого металла. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Читайте также: