Высшие гидроксиды металлов всегда являются

Обновлено: 20.09.2024

3. Гидроксиды

Среди многоэлементных соединений важную группу составляют гидроксиды. Некоторые из них проявляют свойства оснований (основные гидроксиды) – NaOH , Ba ( OH )2 и т.п.; другие проявляют свойства кислот (кислотные гидроксиды) – HNO 3 , H 3 PO 4 и другие. Существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как свойства оснований, так и свойства кислот – Zn ( OH )2, Al ( OH ) 3 и т.п.

3.1. Классификация, получение и свойства оснований

Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН - .

По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН – гидроксид калия, гидроксид натрия NaOH , гидроксид кальция Ca ( OH )2, гидроксид хрома ( II ) – Cr ( OH )2, гидроксид хрома ( III ) – Cr ( OH )3.

Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li , Na , K , Cs , Rb , Fr , Ca , Sr , Ba и поэтому называемые щелочами) и нерастворимые в воде. Основное различие между ними заключается в том, что концентрация ионов ОН - в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН - даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

По числу гидроксильных групп (кислотность) , способных замещаться на кислотный остаток, различают:

- однокислотные основания – KOH , NaOH ;

- двухкислотные основания – Fe ( OH )2, Ba ( OH )2;

- трехкислотные основания – Al ( OH )3, Fe ( OH )3.

Получение оснований

1. Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих амфотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например,

В подобных случаях для получения гидроксидов используют гидроксид аммония, в котором амфотерные оксиды не растворяются:

Гидроксиды серебра, ртути настолько легко распадаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2. Щелочи в технике обычно получают электролизом водных растворов хлоридов:

(суммарная реакция электролиза)

Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:

2 Li + 2 H 2 O = 2 LiOH + H 2 ↑ ,

Химические свойства оснований

1. Все нерастворимые в воде основания при нагревании разлагаются с образованием оксидов:

2. Наиболее характерной реакцией оснований является их взаимодействие с кислотами – реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

3. Щелочи взаимодействуют с кислотными и с амфотерными оксидами:

4. Основания могут вступать в реакцию с кислыми солями:

5. Необходимо особенно подчеркнуть способность растворов щелочей реагировать с некоторыми неметаллами (галогенами, серой, белым фосфором, кремнием):

2 NaOH + Cl 2 = NaCl + NaOCl + H 2 O (на холоду),

6 KOH + 3 Cl 2 = 5 KCl + KClO 3 + 3 H 2 O (при нагревании),

6. Кроме того, концентрированные растворы щелочей при нагревании способны растворять также и некоторые металлы (те, соединения которых обладают амфотерными свойствами):

Растворы щелочей имеют рН > 7 (щелочная среда), изменяют окраску индикаторов (лакмус – синяя, фенолфталеин – фиолетовая).

Основания (гидроксиды). Свойства, получение, применение

Гидроксид хрома

Ещё со школы нам известно, что основаниями называют соединения, где атомы металла связаны с одной или несколькими гидроксогруппами — KOH, Ca(OH)2 и т. п. Однако понятие «основания» на самом деле шире, и существует две теории оснований — протонная (теория Брёнстеда — Лоури) и электронная (теория Льюиса). Основания и кислоты Льюиса мы рассмотрим в отдельной статье, поэтому возьмём определение из теории Брёнстеда (далее в данной статье — только основания Брёнстеда): Основания (гидроксиды) — это вещества или частицы, способные принимать (отщеплять) протон от кислоты. Согласно такому определению, свойства основания зависят от свойств кислоты — например, вода или уксусная кислота ведут себя как основания в присутствии более сильных кислот:

Номенклатура оснований

Названия оснований образуются весьма просто — сначала идёт слово «гидроксид», а затем название металла, который входит в данное основание. Если металл имеет переменную валентность, это отражают в названии.

KOH — гидроксид калия
Ca(OH)2 — гидроксид кальция
Fe(OH)2 — гидроксид железа (II)
Fe(OH)3 — гидроксид железа (III)

Существует также основание NH4OH (гидроксид аммония), где гидроксогруппа связана не с металлом, а катионом аммония NH4 + .

Классификация оснований

Основания можно классифицировать по следующим признакам:

  1. По растворимости основания делят на растворимые — щёлочи (NaOH, KOH) и нерастворимые основания (Ca(OH)2, Al(OH)3).
  2. По кислотности (количеству гидроксогрупп) основания делят на однокислотные (KOH, LiOH) и многокислотные (Mg(OH2), Al(OH)3).
  3. По химическим свойствам их делят на оснóвные (Ca(OH)2, NaOH) и амфотерные, то есть проявляющие как основные свойства, так и кислотные (Al(OH)3, Zn(OH)2).
  4. По силе (по степени диссоциации) различают:
    а) сильные (α = 100 %) – все растворимые основания NaOH, LiOH, Ba(OH)2, малорастворимый Ca(OH)2.
    б) слабые (α < 100 %) – все нерастворимые основания Cu(OH)2, Fe(OH)3 и растворимое NH4OH.

Сила оснований

Для оснований можно количественно выразить их силу, то есть способность отщеплять протон от кислоты. Для этого используют константу основности Kb — константу равновесия для реакции между основанием и кислотой, причём в качестве кислоты выступает вода. Чем выше значение константы основности, тем выше сила основания и тем сильнее его способность отщеплять протон. Также вместо самой константы часто используют показатель константы основности pKb. Например, для аммиака NH3 имеем:

Щелочи: определение, химические свойства, методы получения

Щелочи – это небольшая группа неорганических веществ, относящихся к основным гидроксидам или основаниям. Для начала разберемся, какие вещества можно называть основаниями. Основания – это вещества, содержащие гидроксо-группу (‒OH), которая в неорганической химии (в случае с основаниями) пишется в конце молекулы, например: NaOH, Fe(OH)2, Ba(OH)2, но это определение не точное, ведь Fe(OH)3 и Zn(OH)2 имеют сходную формулу, однако, основаниями не являются. Точнее будет сказать, что основания – это гидроксиды, в которых металл находится в степени окисления «+1» или «+2» (кроме цинка и бериллия, образующих в степени окисления «+2» амфотерные оксиды и гидроксиды).

Таблица 1. – Основания и амфотерные гидроксиды

Это НЕ основания:

Потому что содержат металл в степени окисления «+1» или «+2»

Так как в этой группе есть гидроксиды, имеющие металл в степени окисления «+3», и два исключения - Zn(OH)2 и Be(OH)2. Все приведенные выше вещества являются амфотерными гидроксидами, а не основаниями

Подробнее об отличиях понятий «гидроксиды» и «основания» можно прочитать в статье «Классификация гидроксидов и оснований»

Кроме отличий в степени окисления, основания и амфотерные гидроксиды отличаются так же по реакционной способности. Так, амфотерные гидроксиды могут реагировать как с кислотами, так и с основаниями, а основания могут реагировать с кислотами, но не могут реагировать с другими основаниями. Подробнее о химических свойствах амфотерных гидроксидов можно прочитать в статье «Амфотерные гидроксиды. Получение, химические свойства, образование средних и комплексных солей»

Чем отличаются щёлочи от остальных оснований?

Основания можно разделить на две группы: растворимые и нерастворимые. Растворимые иначе называют щелочами. То есть щелочи – это растворимые основания (растворимые основные гидроксиды).

Таблица 2. – Основания и щёлочи

Место щелочей в классификации гидроксидов

Как определить, является ли основание растворимым, то есть щелочью, если его нет в таблице растворимости?

В состав щелочей входят металлы IА-группы Периодической Системы Д. И. Менделеева, а также кальций, стронций и барий.

Полный список щелочей:

NaOH – гидроксид натрия, едкий натр, гидроокись натрия, каустическая сода

KOH – гидроксид натрия, едкое кали, гидроокись калия

LiOH – гидроксид лития, гидроокись лития

CsOH – гидроксид цезия, гидроокись цезия

FrOH – гидроксид франция, гидроокись франция

RbOH – гидроксид рубидия, гидроокись рубидия

Ba(OH)2 – гидроксид бария, едкий барий, баритовая вода

Ca(OH)2 – гидроксид кальция, гашеная известь, известковое молоко, известковая вода.

Sr(OH)2 – гидроксид стронция

Остальные основания считаем нерастворимыми (кроме аммиака, образующего гидрат аммония, являющегося хоть и растворимым, но нестойким соединением). Гидроксид аммония, образующийся при пропускании аммиака через воду, можно представить в виде формулы NH4OH (лучше NH3·H2O – гидрат аммония) является растворимым (раствор называют нашатырным спиртом), однако щелочью это вещество не является.

Гидроксид лития и гидроксид кальция растворяются не так хорошо, как другие основания, но все равно считаются щелочами.

Задание в формате ЕГЭ с ответом:

Установите соответствие между формулой вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

  1. щелочь
  2. нерастворимое основание
  3. амфотерный гидроксид

Комментарий к заданию: Галлий, в представленном гидроксиде, имеет степень окисления +3, поэтому он относится к группе амфотерных гидроксидов. Гидроксид рубидия – щелочь, так как рубидий – элемент IА-группы. Гидроксид хрома – нерастворимое основание, так как хром в степени окисления +2 не является амфотерным, и не относится к щелочным или щелочноземельным металлам, поэтому не может образовать щелочь.

Пример задания из КИМ ЕГЭ:

Комментарий к заданию: Стронций является щелочноземельным металлом (металлы IIА-группы, кроме магния и бериллия, образуют растворимые гидроксиды), поэтому образует щелочь. Гидроксид цинка вместе с гидроксидом бериллия входят в группу исключений и, несмотря на вторую валентность, образуют амфотерные гидроксиды. Гидроксид железа нерастворим и не входит в группу амфотерных веществ, он является нерастворимым основанием.

Щёлочи, являясь сильными основаниями, диссоциируют в воде очень быстро, тогда как нерастворимые основания диссоциируют медленно, ступенчато:

Диссоциация щелочей

Диссоциация слабых оснований

Fe(OH)2 = FeOH + + OH ‒ (I ступень)

FeOH + = Fe 2+ + OH ‒ (II ступень)

Диссоциация настолько быстрая, что ступенчатостью процесса можно пренебречь

Диссоциация очень медленная, быстрее идет по первой ступени, по второй ступени практически не идёт

Физические свойства щелочей

Гидроксиды щелочных металлов (металлов IА-группы) – твердые бесцветные кристаллические вещества. Как уже было описано выше, большинство из них очень хорошо растворимы в воде. Гидроксиды щелочноземельных металлов хуже растворяются в воде.

Химические свойства щелочей

Основные свойства гидроксидов в Периодической системе возрастают справа налево и сверху вниз. Поэтому все щелочи, образованные металлами IА-группы сильнее щелочей, образованных металлами IIА-группы.

Щелочи окрашивают фенолфталеин в малиновый цвет.

Твёрдые щелочи и их концентрированные растворы разъедают живые ткани, поэтому работать с ними нужно в перчатках, а при растирании твёрдой щелочи в ступке необходимо надевать очки.

  1. Щелочи реагируют с кислотными оксидами, образуя либо соль и воду, либо кислую соль:

Щелочь + кислотный оксид = соль + вода

Щелочь + кислотный оксид = кислая соль

Рассмотрим эти реакции на примере образования карбонатов и гидрокарбонатов.

Для щелочей, содержащих одновалентный катион (катион в степени окисления «+1») справедлива общая схема реакции:

Для щелочей, содержащих двухвалентный металл (катион в степени окисления «+2») справедлива общая схема реакции:

Классификация гидроксидов и оснований

Для того, чтобы разбираться в классификации, сначала нужно понять, что такое основание и чем оно отличается от других веществ. Перечислим несколько оснований:

NaOH – гидроксид натрия

Ca(OH)2 – гидроксид кальция

Fe(OH)2 – гидроксид железа

Все три примера относятся к основаниям, но в названии значится, что это гидроксиды. В чем разница между этими понятиями?

Гидроксиды – это вещества, в состав которых какой-либо элемент имеет связь с гидроксильной группой (‒ОН). Но не все гидроксиды – это основания: кислоты, например, тоже являются гидроксидами.

Таким образом, все основания – это гидроксиды, но не все гидроксиды – это основания. Ввиду того, что группа гидроксидов очень разнообразна, её принято делить на три подгруппы.

Таб. «Классификация гидроксидов»

Гидроксид

Основный

Амфотерный

Кислотный

В состав входят гидроксогруппа (-ы) и металл в степени окисления «+1» или «+2» за исключением Zn(OH)2, Be(OH)2, Sn(OH)2, Pb(OH)2

В состав входят гидроксогруппы и металл в степени окисления «+3» или «+4», а также Zn(OH)2, Be(OH)2, Sn(OH)2, Pb(OH)2

Э – элемент. К основным гидроксидам так же относят гидроксид аммония – NH4OH, хотя правильнее его записывать как гидрат аммония – NH3·H2O.

Амфотерные гидроксиды имеют промежуточный характер между основными и кислотными, поэтому имеют обе формы написания.

Среди предложенных формул веществ, расположенных в пронумерованных ячейках, выберите формулы: амфотерного гидроксида, двухосновного основания, кислотного гидроксида. Запишите соответствующую последовательность цифр.

1) NaOH 2) NH3*H2O 3) HMnO4
4) Be(OH)2 5) KMnO4 6) Na[Al(OH)4]
7) MnO2 8) Ca(OH)2 9) KOH

Среди перечисленных веществ выберите три формулы, соответствующие амфотерным гидроксидам:

Задание по образцу ФИПИ:

Кислотный гидроксид может образовать следующий элемент:

  1. натрий
  2. мышьяк
  3. алюминий
  4. хлор
  5. молибден
  6. цинк

Кислотные гидроксиды образуют неметаллы в любой степени окисления, поэтому подходит мышьяк и хлор, а также металлы в степени окисления +5 и выше, поэтому подходит молибден – он находится в шестой группе Периодической системы, значит, может образовать ион со степенью окисления +6

Перевод формулы амфотерного гидроксида из основной формы в кислотную.

Возьмём любой амфотерный гидроксид: Al(OH)3;

Поменяем порядок элементов на кислотную форму (водород → элемент → кислород) без учета индексов основной формы: HAlO;

Расставим степени окисления:

H

Al

O

Молекула должна быть электронейтральной (количество положительных и отрицательных зарядов должно быть равным), для этого кислорода должно быть в два раза больше, поэтому после него ставим индекс «2»: HAlO2

Zn

Согласно этой формуле после кислорода придется поставить индекс «1,5», но индексы могут быть выражены только целыми числами, поэтому сначала приведем количество положительных зарядов к четному значению, домножив элемент с нечетной степенью окисления (водород) на 2, получим формулу: H2ZnO, она пока всё равно не является электронейтральной, сумма её зарядов может быть выражена следующим уравнением: +2+2‒2 = +2, а должно быть = 0

H2

Чтобы количество отрицательных зарядов тоже стало равно четырем, количество кислорода нужно умножить вдвое, поставив после него индекс «2». Получается формула H2ZnO2

Таб. «Общие формулы амфотерных гидроксидов в зависимости от степени окисления металла в них»

Классификация основных гидроксидов (оснований) по количеству гидроксо-групп.

Основания

Однокислотные

Двукислотные

Однокислотные основания при диссоциации образуют лишь один гидроксид ион:

Двукислотные основания при диссоциации образуют два гидроксид-иона:

Основные гидроксиды не могут быть трёхкислотными или четырёхкислотными, так как в них металл будет иметь степень окисления «+3» или «+4», а это уже будет не основанием, а амфотерным гидроксидом.

Почему количество гидроксильных групп называется кислотностью? Потому что на нейтрализацию оснований требуется протон водорода из кислоты. Для нейтрализации однокислотных оснований потребуется один протон водорода, а на нейтрализацию двукислотного основания – два протона водорода и так далее. Например:

Молекулярное уравнение (МУ): NaOH + HCl = NaCl + H2O

Полное ионное уравнение (ПИУ): Na + + OH ‒ + H + + Cl ‒ = Na + + Cl ‒ + H2O

Сокращенное ионное уравнение (СИУ): OH ‒ + H + = H2O

На нейтрализацию однокислотного основания потребовался один протон водорода из соляной кислоты.

Классификация оснований по силе

Основания также можно поделить на сильные и слабые. Сильные диссоциируют очень быстро, даже двухосновные распадаются на ионы на столько быстро, что можно не учитывать ступенчатость этого процесса:

Слабые основания диссоциируют очень медленно, ступенчато:

Fe(OH)2 ↔ FeOH + + OH ‒ (первая ступень)

FeOH + ↔ Fe 2+ + OH ‒ (вторая ступень)

Сильные основания растворимы или малорастворимы (исключение: гидроксид аммония будучи растворимым остаётся слабым основанием) и называются щелочами. Слабые основания нерастворимы.

Амфотерные гидроксиды. Получение, химические свойства, образование средних и комплексных солей

Амфотерные гидроксиды проявляют свойства как основных, так и кислотных гидроксидов в зависимости от среды.

Большинство металлов периодической системы могут образовывать амфотерные гидроксиды, чаще всего это гидроксиды металлов в степени окисления «+2» и «+3», а также, теоретически, гидроксиды металлов в степени окисления «+4», хотя большинство из них не выделены (для них существуют только соответствующие соли). Подробнее о классификации гидроксидов можно прочитать в статье «Классификация гидроксидов и оснований»

Химические свойства амфотерных гидроксидов

  1. Как уже было сказано выше, амфотерные гидроксиды ведут себя как типичные основания при реакции с кислотами:
  1. Амфотерные гидроксиды реагируют с твёрдыми щелочами при сплавлении и с растворами концентрированных щелочей:

В растворах щелочей:

О том, какие анионы характерны для амфотерных оксидов и гидроксидов, Вы можете прочитать в статье «Амфотерные оксиды. Получение, химические свойства, образование средних и комплексных»

  1. Амфотерные гидроксиды взаимодействуют с солями, образованными щелочным металлом и анионом, с которым «амфотерный металл» не может образовать существующую или устойчивую соль (для алюминия это сульфиты, сульфиды, карбонаты, нитриты, ацетаты и силикаты). Информация о том, существует ли соль или мгновенно разлагается в водных растворах, можно получить из таблицы растворимости:
  1. Амфотерные гидроксиды разлагаются при нагревании на воду и соответствующих оксид (степень окисления металла в исходном гидроксиде и в полученном оксиде одинаковая):

Получение амфотерных гидроксидов

Напрямую, растворением соответствующего оксида в воде, амфотерный гидроксид получить нельзя из-за низкой растворимости в воде амфотерных оксидов. Поэтому амфотерные гидроксиды получают в основном из солей.

  1. Действием раствора щелочи на растворимую соль, содержащую металл, соединения котного могут проявлять амфотерность:

В этих реакциях не используют концентрированный раствор щелочи и большие избытки растворов щелочи, иначе образуются не амфотерные гидроксиды, а комплексные соединения:

Зависимость продукта от количества взятой щелочи можно выразить следующей схемой:

  1. Амфотерные гидроксиды получают действием на растворы солей, содержащих «амфотерный» металл аммиака:
  1. Амфотерные гидроксиды получают действием на раствор соли, содержащей «амфотерный» металл растворов солей, содержащих анион, с которым амфотерный металл не образует существующих солей или соли гидролизуются в водной среде:
  1. Амфотерные гидроксиды можно получить действием разбавленных кислот на гидроксокомплексы:

Если использовать избыток кислоты, то образуется не амфотерный гидроксид, а соль, так как избыток кислоты растворяет гидроксид:

Читайте также: