Как делали сталь в древности

Обновлено: 05.05.2024

После угля, цемента, нефти и древесины сталь является самым используемым материалом в мире. Из нее делают детали для автомобилей, самолетов и поездов, ее применяют в производстве бытовой техники, посуды, труб и много где еще. Причина такой востребованности проста. Дело в том, что сталь — материал ковкий и крайне прочный, он легко принимает форму, а при наличии правильного количества примесей практически не поддается коррозии.

О том, как она производится, читайте в этом материале.

Немного истории

Первые изделия из стали были созданы еще до нашей эры. Тогда для производства использовались так называемые сыродутные печи. Механизм их работы был прост: древесный уголь и куски железа слоями закладывали в выкопанную яму. В процессе горения между ними продували холодный воздух, что приводило к соединению кислорода с углеродом, находящимся в руде. В результате образовывался кусок «запеченного» железа с примесями шлаков, который после нагревали и выковывали.

Именно этой технологией несколько сотен лет пользовались люди в разных странах, чаще всего, для создания оружия. Так, например, около 200 лет до нашей эры кельты модернизировали этот способ: они резали кованое железо на тонкие полоски, складывали их в контейнер с обожженными костями, а затем нагревали его 10–12 часов на сильном огне. Позже получившиеся куски сваривали между собой и ковали ножи. Именно такой «кельтский» способ производства в 1050 г. нашей эры скопировали викинги и немцы, которые так делали стальные клинки. Стальное оружие изготавливали в Европе, Японии и других странах.

Проблема заключалась лишь в том, что наши предки не могли разогреть железо до температуры плавления — 1540 градусов по Цельсию. Поэтому им и приходилось спекать куски, что было очень трудоемко. Однако в XVIII веке все изменилось, когда английский металлург Бенджамин Гентсман открыл производство литейной стали. Для этого он переплавлял куски чугуна и сварного железа с примесью флюса, то есть вещества, которое помогало отделять металл от пустой породы. В континентальную Европу этот метод просочился только в начале XIX века благодаря предпринимателю Фридриху Круппу, основавшему первый литейный завод в Германии.

С тех пор сталь получила широкое распространение и применялась, прежде всего, в военной промышленности.

Производственный процесс

Сталь — это сплав железа с углеродом, в котором содержится не менее 45% железа и от 0,02 до 2,14% углерода. Именно от последнего элемента зависят основные свойства стали.

Чтобы производить сталь, нужно для начала добыть руду и каменный уголь, а затем обработать их специальным способом. Железную руду необходимо обогатить. Для этого ее дробят, а затем магнитом отделяют кусочки, в которых присутствует металл. С углем тоже не все так просто, поскольку в природном виде он содержит большое количество примесей, поэтому его также перемалывают, а затем просушивают в специальной «духовке», получая кокс.

Когда обогащенная железная руда и кокс подготовлены, их смешивают с известью и отправляют в печь, где при высокой температуре выплавляется чугун. А уже из чугуна производится сталь.

Чугун обогащен углеродом, который придает сплаву хрупкость. Также в нем все еще много ненужных примесей. Поэтому главные задачи при производстве качественной стали — вывести из состава как можно больше ненужных веществ, а также уменьшить концентрацию углерода до необходимых значений (от 0,02 до 2,14%).

Три основных стадии производства стали

На данном этапе в ванну, расположенную в печи, закладывается шихта — в нашем случае, смесь чугуна с примесями других элементов. Смесь нагревается и расплавляется, а железо окисляется (то есть, забирает кислород), при этом оно окисляет примеси металлов, а именно фосфор, кремний и марганец. Главная задача первой стадии технологического процесса — удаление фосфора.

Итак, ванна нагревается. Под действием температуры часть примесей отделяются и поднимаются на поверхность, превращаясь в шлак. В это время оксид фосфора с оксидом железа создает неустойчивое соединение, которое реагирует с поднявшимся в шлак оксидом кальция. В результате еще одной химической реакции ненужный фосфор остается на поверхности, откуда его можно легко удалить.

Температуру в печи повышают, а внутрь нагнетают чистый кислород. Из-за этого углерод, находящийся в смеси, начинает окисляться — то есть взаимодействовать с кислородом. Соединившись с ним, он превращается в газообразный оксид углерода и с пузырьками покидает смесь. Это создает эффект кипения ванны.

В результате такого взаимодействия количество углерода снижается. А мы с вами помним: чем меньше углерода — тем крепче сплав. Так чугун начинает превращаться в сталь.

Еще один побочный, но полезный эффект процесса заключается в том, что к всплывающим пузырькам «прилипают» неметаллические примеси, что приводит к улучшению качества расплавленного металла. При этом вредная для стали сера также удаляется на этом этапе: когда температура повышается, она в составе сульфида железа реагирует с кальцием и отправляется в шлак. При этом металл остается в смеси.

Итак, количество углерода снизили. Однако в результате химических реакций в смеси теперь достаточно много кислорода, который негативно влияет на свойства стали. Очевидно, что его необходимо удалить. Этот процесс и называется раскислением.

Способов существует несколько, но самых распространенных два. Смысл в том, что в ванну добавляют металлы, которые реагируют с кислородом гораздо активнее, чем железо. В одном случае их примешивают к непосредственно к сплаву, в другом — к шлаку. В результате химической реакции чистое железо отделяется от кислорода и остается в смеси, в то время как кислород с добавленными металлами собирается на поверхности.

В результате концентрация железа увеличивается, кислорода — уменьшается. Так получается сталь. Добавим, что отделившийся шлак не выбрасывают, а пускают в производство. Например, из него делают черепицу и кирпич, добавляют в цемент и так далее.

Разновидности и применение

Сталь можно классифицировать несколькими способами. Прежде всего, она делится по химическому составу с учетом наличия или отсутствия примесей:

Углеродистые стали не содержат примесей. В зависимости от количества углерода в составе, бывают низкоуглеродистые (до 0,25%), среднеуглеродистые (0,3–0,55%) и высокоуглеродистые (0,6–2,14% С). Напоминаем, чем больше углерода в составе, тем более прочной, но менее пластичной она становится.

Легированные содержат различные примеси, в зависимости от их количества делятся на низколегированные — до 4% легирующих элементов, среднелегированные — до 11% и высоколегированные — свыше 11% примесей.

По назначению стали делятся на множество категорий, расскажем об основных.

Конструкционные. Используются для изготовления деталей, механизмов и конструкций в строительстве и машиностроении. Бывают легированными и углеродистыми, в зависимости от необходимых свойств сплава.

Что делают: проволоку, гвозди, крепежные детали, пружины, железнодорожные и трамвайные вагоны, детали автомобилей.

Нержавеющие. Легированная сталь, которая устойчива к коррозии в атмосфере и агрессивных средах. Ее получают путем добавления в сплав азота, алюминия, серы, кремния, хрома, никеля, меди, титана и других элементов.

Что делают: кухонную технику (плиты, холодильники, микроволновки), сантехнику, посуду, части мебели и окон, ограждения и водостоки, ключевые узлы в автомобилях (двигатели, коробки передач), трубы в химической промышленности, элементы фильтров и так далее.

Инструментальные. Сталь с содержанием углерода от 0,7% и выше. Отличается твердостью и плотностью и, как не трудно догадаться, из нее изготавливают инструменты.

Что делают : колуны, молотки, кусачки, плоскогубцы, пилы, стамески, напильники, бритвенные лезвия и ножи, хирургические инструменты, отвертки, заклепки и многое другое.

Жаропрочные. Легированная сталь, которая отличается способностью работать под напряжением в условиях повышенных температур без заметной остаточной деформации и разрушения.

Что делают : детали конструкций двигателей внутреннего сгорания, клапаны авиационных поршневых моторов, элементы газовых турбин, части реактивных двигателей и так далее.

Криогенные. Легированные стали, которые могут выдерживать температуру ниже точки кипения кислорода, то есть ниже -183 градусов по Цельсию. Для получения этих свойств в сплав добавляются никель, хром и марганец.

Что делают: детали арматуры, части авиакосмической техники, детали сверхпроводящих магнитов и установок термоядерного синтеза.

Сталь сегодня. Крупнейшие российские производители

В 2021 г. мировое производство стали достигло рекордного значения — 1950,5 млн тонн. Лидером, несмотря на снижение выпуска, остается Китай. На втором месте находится Индия, на третьем — Япония. Четвертую строчку в рейтинге занимает США. Россия в этом списке располагается на пятой позиции.

Крупнейшие российские производители стали — НЛМК, ММК, Северсталь и Евраз.

Это международная сталелитейная компания с активами в России, США и странах Европы. Основное предприятие — Новолипецкий металлургический комбинат, построенный в 1930-ых гг. В группу входят площадки, на которых происходит полный производственный цикл — от добычи сырья до выпуска готовой продукции.

Металлопродукция НЛМК применяется в стратегических отраслях экономики: от машиностроения и строительства до производства труб большого диаметра и энергетического оборудования.

На 2021 г. компания — крупнейший производитель стали в России.

Магнитогорский металлургический комбинат — одно из крупнейших предприятий отрасли в СНГ. Его строительство началось в 1929 г. ММК входит в число крупнейших мировых производителей стали, имеет сталеплавильное производство в Турции.

ММК производит различную металлопродукцию, которая используется в автопроме, судо- и мостостроении, в производстве бытовой техники, трубной промышленности, а также в производстве товаров народного потребления.

В 2021 г. выручка ММК выросла на 86,6% относительно предыдущего года. Компания поставляет продукцию в регионы РФ и страны ближнего зарубежья.

Череповецкий металлургический комбинат должны были построить в 1940-х гг., однако этого не произошло из-за начала Великой отечественной войны. Поэтому свою историю компания отчитывает с 1955 г., когда было запущено производство. Комбинат является одним из ведущих производителей стали в России на листовом прокате. Также занимается производством труб, добычей и обогащением железной руды

По итогам 2021 г. компания представила сильные результаты. Ее выручка увеличилась, несмотря на снижение цены на стальную продукцию.

В феврале 1992 г. была основана компания Евразметалл, которая занималась продажей металлопродукции. В 1995 г. ее в состав вошел Нижнетагильский металлургический комбинат (НТМК), в 2002 г. — Западно-Сибирский металлургический комбинат (ЗСМК).

Evraz Group имеет активы в России, Канаде, США, Италии, Казахстане и Чехии. Штаб-квартира находится в Лондоне.

НТМК занимается доменным, коксохимическим, прокатным, сталеплавильным и кислородным производствами. Комбинат выпускает чугун, шлак, сталь для железнодорожного транспорта, в том числе, профили для вагоностроения, рельсы и колеса. Также из стали на предприятии делают трубы большого диаметра для магистральных газопроводов. НТМК производит более 1200 марок стали.

В ЗСМК занимаются доменным, сталепрокатным, коксохимическим и другими видами производств. Выпускаются проволока, стальные трубы, рельсы, товары народного потребления, металлургическая продукция для строительной отрасли.

Интересные факты

• Сталь — один из самых перерабатываемых металлов в мире, потому что его легко переплавить. По статистике, более 60% сплава перерабатывается. Это значит, что больше половины всей стали используется повторно.

• Нержавеющую сталь изобрели случайно. Английский металлург Гарри Брирли пытался создать сплав, который бы защитил жерла пушек от эрозии, то есть от износа, связанного с высокими температурами. Однако в процессе исследования выяснилось, что если сталь содержит от 12 до 20% хрома, то она сопротивляется кислотной коррозии.

• Существует мыло из нержавеющей стали. Если подержать его в руках какое-то время, оно удалит любой, даже самый неприятный запах.

• Высота Эйфелевой башни в зависимости от времени года может меняться на 15 сантиметров. Это связано с тем, что стальные элементы конструкции имеют свойство сжиматься при охлаждении и расширяться при нагреве.

• Для постройки некоторых спутников, измеряющих радиацию в космосе, в 1950-ых гг. американцы подняли со дна стальные части затонувшего в 1919 г. корабля «Кронпринц Вильгельм».

БКС Мир инвестиций

3 обучающих курса

Комментарии

Покупайте ценные бумаги любимых брендов в один клик

Copyright © 2008– 2022 . ООО «Компания БКС» . г. Москва, Проспект Мира, д. 69, стр. 1
Все права защищены. Любое использование материалов сайта без разрешения запрещено.
Лицензия на осуществление брокерской деятельности № 154-04434-100000 , выдана ФКЦБ РФ 10.01.2001 г.

Данные являются биржевой информацией, обладателем (собственником) которой является ПАО Московская Биржа. Распространение, трансляция или иное предоставление биржевой информации третьим лицам возможно исключительно в порядке и на условиях, предусмотренных порядком использования биржевой информации, предоставляемой ОАО Московская Биржа. ООО «Компания Брокеркредитсервис» , лицензия № 154-04434-100000 от 10.01.2001 на осуществление брокерской деятельности. Выдана ФСФР. Без ограничения срока действия.

* Материалы, представленные в данном разделе, не являются индивидуальными инвестиционными рекомендациями. Финансовые инструменты либо операции, упомянутые в данном разделе, могут не подходить Вам, не соответствовать Вашему инвестиционному профилю, финансовому положению, опыту инвестиций, знаниям, инвестиционным целям, отношению к риску и доходности. Определение соответствия финансового инструмента либо операции инвестиционным целям, инвестиционному горизонту и толерантности к риску является задачей инвестора. ООО «Компания БКС» не несет ответственности за возможные убытки инвестора в случае совершения операций, либо инвестирования в финансовые инструменты, упомянутые в данном разделе.

Информация не может рассматриваться как публичная оферта, предложение или приглашение приобрести, или продать какие-либо ценные бумаги, иные финансовые инструменты, совершить с ними сделки. Информация не может рассматриваться в качестве гарантий или обещаний в будущем доходности вложений, уровня риска, размера издержек, безубыточности инвестиций. Результат инвестирования в прошлом не определяет дохода в будущем. Не является рекламой ценных бумаг. Перед принятием инвестиционного решения Инвестору необходимо самостоятельно оценить экономические риски и выгоды, налоговые, юридические, бухгалтерские последствия заключения сделки, свою готовность и возможность принять такие риски. Клиент также несет расходы на оплату брокерских и депозитарных услуг, подачи поручений по телефону, иные расходы, подлежащие оплате клиентом. Полный список тарифов ООО «Компания БКС» приведен в приложении № 11 к Регламенту оказания услуг на рынке ценных бумаг ООО «Компания БКС». Перед совершением сделок вам также необходимо ознакомиться с: уведомлением о рисках, связанных с осуществлением операций на рынке ценных бумаг; информацией о рисках клиента, связанных с совершением сделок с неполным покрытием, возникновением непокрытых позиций, временно непокрытых позиций; заявлением, раскрывающим риски, связанные с проведением операций на рынке фьючерсных контрактов, форвардных контрактов и опционов; декларацией о рисках, связанных с приобретением иностранных ценных бумаг.

Приведенная информация и мнения составлены на основе публичных источников, которые признаны надежными, однако за достоверность предоставленной информации ООО «Компания БКС» ответственности не несёт. Приведенная информация и мнения формируются различными экспертами, в том числе независимыми, и мнение по одной и той же ситуации может кардинально различаться даже среди экспертов БКС. Принимая во внимание вышесказанное, не следует полагаться исключительно на представленные материалы в ущерб проведению независимого анализа. ООО «Компания БКС» и её аффилированные лица и сотрудники не несут ответственности за использование данной информации, за прямой или косвенный ущерб, наступивший вследствие использования данной информации, а также за ее достоверность.

Бронзовый век, олово и ниспровергатели истории

Как известно, олово является компонентом бронзы. Существуют, правда, бронзы мышьяковистые, где вместо олова, легирующей добавкой, повышающей прочность меди, является мышьяк. Существуют бронзы, в которых для этих же целей вместо олова используется свинец. Однако, как в древности, так и в настоящее время, в основном, используются бронзы оловянистые, о которых и пойдет речь в последующем изложении.. Таким образом, чтобы выплавить бронзу, кроме меди, нужно олово.

Основным минералом для получения олова является оловянный камень - касситерит, который химически представляет собой двуокись олова. Олово из касситерита легко получить при помощи восстановления в печи при недостатке кислорода, что легко достигается добавлением в шихту древесного угля. Эта технология, несомненно, была доступна древним металлургам. Аналогичным способом получали и получают железо из широко распространенных в природе оксидов железа.

Основные месторождения касситерита в настоящее время находятся в Малайзии, Таиланде, Боливии, Индонезии, КНР, Нигерии, Якутии и Забайкалье. С точки зрения древних металлургов Малой Азии, Кавказа и Европы эти месторождения касситерита находятся у «черта на куличиках» и, конечно, были им недоступны. Правда существуют в настоящее время месторождения олова и в Европе — в Богемии и в Корнуолле. Однако, самым первым изобретателям бронзы они тоже, вряд ли, были доступны. В Богемии касситерит в настоящее время добывают из достаточно глубоко залегающих гранитов и древним рудокопам он был недоступен. Корнуолл находится на острове и тоже далеко от первых центров металлургии Бронзового века - Малой Азии, Кавказа, Центральной и Южной Европы. Возникает вопрос — а откуда же древние могли получать олово для выплавки бронзы, если в Старом Свете оно отсутствует или присутствует, но в недоступных для древних людей местах? Загадка!

Ниспровергатели истории дают такой ответ на эту загадку— Бронзового века не было. Это все выдумки официальной истории. По их мнению бронзу научились делать только в XVII веке, когда касситерит стали добывать, взрывая горную породу или доставлять морем из дальних стран. До того времени, когда порох начали применять в горном деле, или до развития мореплавания , когда касситерит стало возможно доставлять в Европу морем, ни о каком использовании в Европе касситерита-оловянного камня говорить не приходится. В общем дурит нашего брата официальная история. Не было никакого Древнего Мира (см. Новая Хронология) и никакого Бронзового века.

Попробую дать свой ответ на эту Загадку.

Таким образом, геологи нам говорят, что касситерит и в настоящее время добывается, в основном, из россыпей — из речных наносов, а не из коренных пород. Речные наносы и россыпи, так сложилось в геологии, называются аллювиальными. Они являются результатом выноса реками горных пород, которые были разрушены в результате эрозии. В аллювиальных россыпях находят многие ценные минералы и драгоценные металлы, в то числе золото. В том числе и оловянный камень - касситерит. Чем древнее горы, тем больше они подвержены эрозии и тем толще аллювиальные отложения. Древние горы — Урал, Карпаты, Татры, Рудные горы в Центральной Европе всегда были источником ценных минералов и драгоценных металлов — золота и серебра. И, если золота, серебра, оловянного камня там сейчас осталось мало, то это не означает, что их никогда там и не было. Они там были, но их не стало в результате интенсивной добычи. Во времена Бронзового века касситерит, медные руды и леса были стратегическими материалами, примерно такими же, как и в средние века алюмокалиевые квасцы, необходимые для получения пороха или сейчас, например, уран, необходимый для ядерного оружия.
Отсутствие касситерита в россыпях в тех местах, где процветали цивилизации Бронзового века означает лишь то, что его вымели там подчистую. И, если оловянный камень и сохранился на поверхности в настоящее время, это означает лишь то, что в древности эти места были захолустьем мировой цивилизации.
Ситуация с касситеритом в современности аналогична с ситуацией с лесами. В центрах цивилизаций Бронзового века, например, на Кипре и в Греции лесов в настоящее время нет. Леса там были уничтожены в результате использования в металлургии, поскольку для восстановления металлов из оксидов необходим древесный уголь.
В той же работе Эдварда Эрлиха "Минеральные месторождения в истории человечества" читаем:
«Важнейшим элементом производства металла было топливо, в частности, древесный уголь. Массовая дефорестация (уничтожение лесов) восточного Средиземноморья началась к 1200 году до н. э., по-видимому, сначала в сухих районах. Во всяком случае, уже законы Хаммурапи (1750 лет до н. э) налагали высокий штраф за вырубку лесов. По реконструкции современных археологов, производство рудниками Лавриона в Аттике трех с половиной тысяч тонн серебра и 1.4 миллиона тонн свинца на протяжении 300 лет сопровождалось уничтожением 2.5 миллиона акров леса. Разработка рудников Лавриона была приостановлена не из-за исчерпания запасов руды и не потому, что выработка опустилась ниже уровня подземных вод, а из-за того, что стоимость «горючего» для производствам металла - леса -делала рудники убыточными. По словам Платона, район вокруг Афин когда-то он был покрыт густым лесом. Ныне же это - кожа и кости прежней Аттики. Именно металлургия привела и к полному уничтожению растительности Кипра, также некогда покрытого густыми лесами. По свидетельству Эратосфена, до начала интенсивной разработки меди леса на Кипре были так густы, что их вырубка поощрялась. »

Таким образом, мне представляется, что очередной «открытие» ниспровергателей истории можно смело считать закрытым. Бронзовый век был и, именно, деятельность человека в это время и привела, как к уничтожению лесов в Восточном Средиземноморье, так и к полному исчезновению оловянного камня из россыпей в Южной и Центральной Европе и на Ближнем Востоке.

P.S. Интересно, что такую же судьбу имеют и месторождения малахита, который являлся одним из основных минералов для выплавки меди. В настоящее время малахит остался в Конго и в небольшом количестве на Урале. На Ближнем Востоке и в Южной Европе, где в свое время процветали цивилизации Бронзового века, малахита нет. Однако, так было не всегда. Археологи раскопали в древних неолитических слоях в поселениях Малой Азии (VI-VII тысячелетия до н.э.) куски малахита вместе с кусками меди и древесного угля, что говорит о существовании там металлургии меди.
см. Вяч.Вс. Иванов "История славянских и балканских названий металлов"

Правда, последующие исследования не подтвердили наличия металлургии меди в древнейших слоях 8500 лет до н.э. Медные минералы оказались в золе случайно, но тем не менее они там были в древности, а теперь их там нет.

Вероятнее всего, месторождения малахита в этих местах были также выработаны для получения меди еще в древности.

P.P.S. В работе Эдварда Эрлиха "Минеральные месторождения в истории человечества" про добычу олова на Ближнем Востоке на заре Бронзового века сказано следующее:
"Олово было редким металлом, как правило, его надо было завозить. Пожалуй, первыми оловянными бронзами были бронзы Анатолии, связанные с добычей олова из месторождений Киликии и Тавроса. . здесь разрабатывалось около 40 месторождений олова. При этом главным минералом - источником олова здесь был, скорее всего, сульфид меди, железа и олова - станнин (Сu2FeSnS4). Большое поселение Кёльтепе производило олово в период с 3290 до 1840 года до н. э. (2) Караваны ослов доставляли металл к потребителю. Около 2350 года до н. э. аккадский царь Саргон пишет о том, что один караван нес около 12 тонн олова. Этого было достаточно, чтобы выплавить 125 тонн бронзы и вооружить значительную армию изделиями из нее. После падения Аккада грузы доставлялись ассирийскими купцами из Ашшура, в нынешнем северном Ираке, в район медных месторождений Кёльтепе в сегодняшней Турции к располагавшимся там металлургическим центрам. Общий вес доставляемого за год олова был существенно выше тонны, а этого хватало для изготовления 10-15 тонн бронзы в год. Имперские государства, такие, как Ассирия и Минойская империя, делали все от них зависящее, чтобы охранять торговлю оловом.
Производство бронзы на душу населения было невелико и зависело от наличия добываемых или закупаемых сырьевых ресурсов. В Вавилонии оно достигло 300 граммов, а в Египте - 50 граммов в год на душу населения."

Некоторые мои мысли по Вашей статье:

"Во времена Бронзового века касситерит, медные руды и леса были стратегическими материалами" - на фоне приведенного выше сомнения с существования оного было бы неплохо предложение переформулировать с начало: "Если существование Бронзового века все-так предположить. "

"В центрах цивилизаций Бронзового века, например, на Кипре и в Греции . "
Идеальный вариант: "в центре ПРЕДПОЛАГАЕМЫХ цивилизаций .."

"По реконструкции современных археологов, производство рудниками Лавриона в Аттике трех с половиной тысяч тонн серебра и 1.4 миллиона тонн свинца на протяжении 300 лет сопровождалось уничтожением 2.5 миллиона акров леса "
Акр - что за единица? Как он идет к м**2 ?

Эрлих: "Важнейшим элементом производства металла было топливо, в частности, древесный уголь. Массовая дефорестация (уничтожение лесов) восточного Средиземноморья началась к 1200 году до н. э., по-видимому, сначала в сухих районах. Во всяком случае, уже законы Хаммурапи (1750 лет до н. э) налагали высокий штраф за вырубку лесов".
Очень неловко, он на кого-то ссылается? Рубеж хронологической достоверности - XIV век, на всякий случай. См. мое творение "Как возникла глобальная хронология".

"Таким образом, мне представляется, что очередной «открытие» ниспровергателей истории можно смело считать закрытым. Бронзовый век был и, именно, деятельность человека в это время и привела, как к уничтожению лесов в Восточном Средиземноморье, так и к полному исчезновению оловянного камня из россыпей в Южной и Центральной Европе и на Ближнем Востоке".

На всякий случай: в предположении, если температуры восстановления меди из руд и олова из кассиорита были меньше температуры восстановления железа.

Выглядит убедительно. Заинтересовало Ваше замечание о том, что квасцы были стратегически важны для производства пороха. Не могли бы Вы пояснить, какую роль они играли в этом процессе? Я полагал, что квасцы были важны только при крашении тканей и выделке кож.
Спасибо.

Портал Проза.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и законодательства Российской Федерации. Данные пользователей обрабатываются на основании Политики обработки персональных данных. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

© Все права принадлежат авторам, 2000-2022. Портал работает под эгидой Российского союза писателей. 18+

Сталь

Сталь

Сталь — важнейший продукт металлургии железа, представляющий собой сплав железа с углеродом. Уже в VII веке до нашей эры кельты научились получать железо из железной руды. Руду нагревали в открытой печи, используя пламя древесного угля. В результате получался твердый чугун. Однако из-за высокого содержания углерода чугун был хрупкий и непригодный для ковки. Если уменьшить процентное содержание углерода до 2,14%, то получится твердый и крепкий сплав, которому можно придавать различные формы путем ковки и штамповки. Это и была сталь, из которой стали производить инструменты, все виды оружия и различные детали машин. Для снижения содержания углерода и прочих ненужных примесей чугун вновь нагревается до жидкого состояния и подвергается фришеванию. Качества стали улучшаются с добавлением легирующих элементов. Сплав железа (не менее 45%), углерода и легирующих элементов называют легированной сталью.

Но прежде, чем получить стальные изделия, следовало совершить множество трудоемких операций. Вначале из железной руды выплавляли чугун, который превращали в мягкое железо. Полученную железную крицу подвергали длительной проковке, в результате получали нужную стальную деталь, либо только заготовку, которую окончательно обрабатывали на металлорежущих станках. Изначально избыточное количество углерода удаляли из чугуна путем кричного передела. Процесс происходил в открытой печи (кричном горне). На горящий древесный уголь помещали чушки чугуна. Путем вдувания горячего воздуха очищали расплавленный чугун от излишнего углерода. Расплавленный металл собирался на поду горна. Происходило дополнительное удаление углерода путем окисления железистого шлака. Образовавшуюся кашицу (крицу) подвергали ковке для удаления шлака.

Кричный передел существовал с XIV века, в 1784 году английским металлургом Г. Кортом была предложена новая технология получения стали — пудлингование. Согласно этой технологии, чугун плавился в специальной пудлинговой печи без контакта с топливом. Пудлинговая печь позволила заменить дорогостоящий древесный уголь на менее дорогой — каменный. Расплавленный чугун доводили до тестообразного состояния. С целью увеличения доступа кислорода расплавленную массу перемешивали металлическими штангами. Дальше тестообразную крицу проковывали. Правда, процесс получения стали таким методом был трудоемким, медленным и дорогим.

 Бессемеровский способ производства стали

Бессемеровский способ производства стали

Бессемер усовершенствовал этот процесс и в 1856 году продемонстрировал конвертер, предназначенный для получения жидкой стали. Выходящий из доменной печи чугун поступал в конвертер — резервуар, на дне которого имелись отверстия для подачи воздуха. Благодаря подвижным опорам конвертер можно было свободно перемещать из горизонтального положения в вертикальное, когда он будет наполнен. Кислород воздуха, вдуваемый через нижние отверстия, соединяется с углеродом, выделяемым при нагревании из чугуна. Когда процесс закончен, конвертер занимает горизонтальное положение и в нем образуется железо, в которое добавляют примеси. Получается сталь, содержащая низкий процент кислорода. Весь процесс занимал мало времени, за 20 минут получалось столько же стали, сколько бы пудлинговая печь выдала за целый день.

Мартеновский способ производства стали

Мартеновский способ производства стали

В 1864 году был изобретен мартеновский способ выплавки стали, основанный на сходном принципе. Оба способа получили широкое распространение и позволили получать сталь в неограниченных количествах. Однако они не позволяли получить руду высокого качества из руды, которая содержала фосфор и серу. В 1878 году С. Томас решил эту проблему, добавив в конвертер 10-15% извести. Образовывающиеся шлаки удерживали фосфор и он выгорал с другими ненужными примесями. Полученная сталь была очень высокого качества. Уже в первые несколько лет после применения бессемеровского и мартеновского способов получения высококачественной стали ее выпуск вырос во всем мире на 60%.

Технология изготовления мечей ⁠ ⁠

Технология изготовления мечей Меч, Оружие, Технология изготовления, История, Железо, Сталь, Катана, Мечи викингов, Видео, Длиннопост

Во время Троянской войны (примерно 1250 год до н. э.) оружие было в основном из меди и бронзы, но железо уже было хорошо известно как драгоценный металл. Железные изделия получили широкое распространение только после Троянской войны и падения державы хеттов, греческие торговцы распространили технологию железа довольно широко, были открыты новые месторождения железа и рудники.

Технология изготовления мечей Меч, Оружие, Технология изготовления, История, Железо, Сталь, Катана, Мечи викингов, Видео, Длиннопост

Стальному инструменту, а прежде всего мечам требуется не только твёрдость, но и пластичность, упругость и многие другие взаимоисключающие свойства. Чистое железо мягкое, гнется от ударов, римским легионерам приходилось прыгать по мечам после боя, чтобы их выпрямить. Кельты нашли решение: их клинок состоял из железной или из железно-стальной основы с наваренными к нему кузнечной сваркой закалёнными лезвиями, затем железную основу научились сверху закрывать стальными пластинами, а позже научились делать цельный клинок. Железную основу делали кручёной или рубленной и заново многократно прокованной, чтобы создать так называемый сварочный дамаск, известный с II-III в. Это придавало клинку с твёрдыми и острыми, но не гибкими и хрупкими лезвиями необходимую пластичность и возможность изгибаться при нагрузках снова приходя в исходную форму.

Технология изготовления мечей Меч, Оружие, Технология изготовления, История, Железо, Сталь, Катана, Мечи викингов, Видео, Длиннопост

Как обычно представляется в кинофильмах, некий мастер куёт денно и нощно под героическую музыку меч и передаёт его главному герою, что совершенно не так. Возможно где-то в глухой деревне, вознёсшийся над собой кузнец, обычно кующий серпы, косы и гвозди, выковал бы меч, если бы добыл где-то много железа, но качество этого меча было бы низким. Другое дело оружейные корпорации, занимавшиеся изготовлением оружия и в частности меровингов каролингских мечей в промышленных масштабах. Отчего-то мало кому известно, что ещё в каменном веке и уж точно в бронзовом во всех регионах Европы, имелись крупные даже по сегодняшним меркам, по другому не назвать корпорации, производящие оружие. Разделение труда было характерно и для производства меча, поэтому мечи делали несколько мастеров, а корпорация ставила товарный знак. Он со временем изменялся, менялся тип надписи, менялись шрифты, происходил ребрендинг, от безграмотности или других причин переворачивали буквы в надписях. Например, на Руси было две таких корпорации ЛЮДОТА КОВАЛЬ и СЛАВ, о чём красноречиво свидетельствуют подписные мечи в музеях. В Германии работала огромная оружейная корпорация ULFBERHT, чьими мечами просто усеяны скандинавские страны и славянские земли, были и другие массовые подписные мечи, то есть работали и другие корпорации, такие как CEROLT, ULEN, BENNO, LEUTLRIT, INGELRED. Так называемые подписные мечи обнаружены на всей территории Европы, видно, что производство мечей было поставлено на поток и торговля оружием осуществлялась повсеместно.

Технология изготовления мечей Меч, Оружие, Технология изготовления, История, Железо, Сталь, Катана, Мечи викингов, Видео, Длиннопост

Современные реплики каролингов из сплошной стали, как правило, из пружинной вроде 60Г, рессорной 65Г или 65Х13, на порядок превосходят лучшие образцы IX-XII веков. Современные реплики не гнутся (в смысле у них не остаётся остаточной деформации даже при сгибании в кольцо), не ломаются от зазубрин, ими легко, без урона можно фехтовать с другим клинком. Для викингов развитое фехтование не было характерно: принимаем на щит-рубим, закончили упражнение, любое столкновение с другим клинком или металлом, могло, не приведи Один, повредить или сломать низкокачественный и дорогой меч. Каролинги, как до этого меровинги и как японские катаны заложники низкого качества стали, поэтому они были составными, так дорого и долго изготавливались и потому их так берегли.

Технология изготовления мечей Меч, Оружие, Технология изготовления, История, Железо, Сталь, Катана, Мечи викингов, Видео, Длиннопост

Технология изготовления мечей Меч, Оружие, Технология изготовления, История, Железо, Сталь, Катана, Мечи викингов, Видео, Длиннопост

В процессе закалки, при соблюдении технологического процесса, между якибой (твёрдой частью с режущей кромкой) и хирадзи (более мягкой и гибкой частью) формируется хамон. Как во всех европейских клинках из-за низкого качества стали, клинок составной: сочетание жёсткого лезвия и эластичной основы придаёт металлу катаны чрезвычайную вязкость и одновременно долговременную остроту. В традиционной технике внутренний слой изготавливается из низкоуглеродистой стали и покрывается твёрдой высокоуглеродистой сталью, которая образует верхний слой: кузнец складывает U-образно длинный узкий брусок твёрдой стали и вваривает в него брусок из мягкой стали. Из полученного комбинированного бруска выковывается заготовка меча, причём закрытая сторона «U» впоследствии станет лезвием. Такая комбинированная заготовка больше не подвергается складыванию. Так же как и западные кузнецы Средневековья, применявшие зонную закалку, японские мастера закаляют клинки не равномерно, а зонально, за закалкой (нагревом и охлаждением) следует отпуск — нагрев закалённого изделия в печи с последующим медленным охлаждением. При температуре около 200 C происходит снятие внутренних напряжений в металле, благодаря чему достигается необходимый баланс твёрдости и вязкости.

История производства стали

Всем известно, что почти три четверти периодической системы химических элементов Д.И. Менделеева, составляют металлы. Место металлов в современном мире – одно из центральных, а значение их для современного человека трудно переоценить. Казалось бы, человек знает о металлах все, для него в этой области не осталось никаких тайн, но позвольте нам, сотрудникам компании «Металл-СК», давно и успешно занимающейся металлопрокатом, в этом усомниться и познакомить вас с некоторыми тайнами из истории использования человеком металлов. Давайте заглянем в загадочные глубины истории человечества, ведь именно там еще молодое племя людей познакомилось с металлами, открыло некоторые волшебные их свойства, узнало, как можно заставить его приносить пользу. Однако когда именно это случилось и как именно – это самый большой секрет и самая главная тайна металлов, которые тщетно пытается разгадать.

По преданиям, первое железо досталось людям с неба. Оно содержалось в метеоритах. Это подтверждается словами, обозначающими в разных языках железо – в древнеегипетском железо именуется «вааепере», в переводе «родившееся на небе», а в древнекоптском его называют «камнем неба». Однако смущает редкость железных метеоритов в природе, что значительно снижает вероятность их находок древним человеком. Ученые склоняются к земному происхождению железа, которое подтверждает, крайне редкое, нахождение в природе самородков.

Древнейшие изделия из металлов были найдены на месте поселений, существовавших около восьми тысяч лет назад! Сначала человек просто нашел некоторые металлы, которые встречаются в природе в естественном, или самородном состоянии, - золото, серебро, медь. Они загадочно блестели, радовали глаз, и потому их использовали для изготовления украшений. Однако вскоре самородную медь человек применять и как материал для различных орудий: рыболовных крючков, наконечников стрел и копий.

А как же человек начал добывать металл из камня? Как впервые возникла добыча руды? О, это случилось не сразу, и не без помощи божественных сил, которые в данном случае представлял огонь. Древние божества защищали людей, но и сами нуждались в защите. Чтобы огонь не погас, его обставляли камнями, а среди этих камней попадались и куски медной руды. Под воздействием магических сил огня руда расплавлялась и превращалась в медь. Долго не замечал этих волшебных превращений древний человек, но наконец заметил и стал специально загружать медную руду в костер, чтобы получить металл. Медь, выплавленная из руды, оказалась более крепкой, чем самородная, правда, все еще уступала по крепости камню – слишком она была мягкая. Гораздо прочнее оказался сплав меди с оловом – бронза. Орудия из бронзы постепенно вытеснили аналогичные медные.

Долгое время железо ценилось наравне с золотом, потому что его было так же мало. Но в конце концов человек открыл относительно дешевое производство железа – выплавку его из руды в металлургических печах. На земле наступил железный век, который продолжается до сих пор.

А теперь обратимся к другой тайне: когда человек узнал, почему получаются металлы. Да, человек сначала узнал, как получаются металлы, но еще долго после этого не мог понять, почему. Человек не мог понять всех трансформаций железа: иногда оно получалось твердым, но хрупким, а иногда, напротив, слишком мягким, но орудия из него гнутся, сплющиваются и быстро тупятся. Таким образом, история добычи руды – это история различных опытов, которые проводились с металлами и продолжались до последней четверти XIX века. Именно тогда русский ученый П.П. Аносов научно обосновал производство стали. Ему на это потребовалось 10 лет.

В нашем XXI веке сталь получают на специально оборудованных металлургических заводах. Где сначала железную руду расплавляют в огромных доменных печах, в которых она превращается в чугун. Чугун, в свою очередь, расплавляют, но уже в мартенах, конвекторах или электропечах, и тогда он превращается в сталь. Над этим волшебным превращением «колдуют» специалисты различного профиля: агломератчики, инженеры-металлурги, конверторщики, обжиговщики, плавильщики, разливщики, стропальщики, которые легко управляют различными металлургическими агрегатами.

А как получали сталь тогда, когда не было всего этого арсенала умных машин? На Востоке, как, впрочем, и в Египте, и на Британских островах, и в Древней Элладе, и в Древней Руси , выплавляли сталь из тщательно подготовленной железной руды в небольших сосудах из глины (тиглях). Железную руду предварительно дробили на мелкие кусочки, потом обжигали эти кусочки на костре. В процессе выгорали сера, фосфор и другие вещества, которые, встречаясь в руде, ухудшают свойства металла. Древние мастера об существовании всех этих веществ и их воздействии на металл, конечно, не догадывались, просто, на основании опыта они знали, что из измельченной и обожженной руды получается сталь лучше.

После завершения обжига руду засыпали в тигель, причем, засыпали послойно с порошком из древесного угля; слоев, как правило, делали 10-12 (слой угля - слой руды – слой угля). Уголь в том случае играл роль теплового носителя, так как он горел и расплавлял руду. Для того чтобы горение было более интенсивным, в основании тигля существовало отверстие, куда нагнетали воздух посредством больших кожаных мехов. Таким образом в тигле создавалась высочайшая температура, под воздействием которой расплавлялась руда, а углерод, который и составляет уголь, изымал из руды кислород, и она превращалась в железо. Металл-СК и этим занимается.

В дальнейшем глиняные тигли сменились небольшими печами-домницами, которые давали уже больше металла. Однако на Востоке хранили очень долго верность именно тому способу создания стали, который нуждался в использовании тигля. Может быть, потому для восточного мастера получение железа – еще не конечный результат. Конечным результатом была булатная сталь, известная и почитаемая во всем мире, ибо никакая другая не могла сравниться с ней в твердости и вместе с тем гибкости. Секрет изготовления булатной стали передавался от отца к сыну и доподлинно не сохранился. Но известно, что после получения железа мастер доставал из укромных уголков чудодейственные растения (древние мастера были уверены, что соки растений, обладая прочностью, гибкостью, вязкостью, передают эти свойства металлу) и бросал из в отверстие тигля, но главное – в той пропорции, которая была известна только ему. И вот, растения сгорали, действительно передавая свою волшебные свойства железу, превращая его в сталь. Наверняка удалось установить, что вместе с корешками и листьями мастера добавляли в металл графитовый порошок, конечно, только в определенных пропорциях. И не знали мудрые мастера, что именно графит, который они считали материалом скорее вспомогательным, превращал железо в сталь. Дело в том, что графит – это чистый углерод, играющий одну из основных ролей в производстве металла. Первое важнейшее правило металлургии – только тот сплав считается сталью, в котором количество углеродов не превышает двух процентов. Второе важнейшее правило - чем больше углерода, тем сталь более крепка, но менее пластична, и наоборот.

Вот так, вплоть до середины прошлого столетия, путем подбора точного количества углерода и решалась сложнейшая задача совмещения в металле двух противоположностей – крепости и пластичности. Итак, решающая польза графита доказана. А как же быть с цветочками, корешочками? Их-то польза в чем? В том, что они содержат огромное количество разных неорганических веществ: железо, молибден, ванадий. Вот эти вещества по-разному и влияли на сталь, придавая ей особые уникальные свойства. Говоря о древнем производстве стали, нельзя не коснуться такого важного момента, как ее закалка. Это самый таинственный, самый волнующий момент изготовления особого рода стали. Закалка была изобретена в Древнем Египте, где мастера, желая быстро охладить откованное изделие, погружали его в очень холодную воду, и в результате отметили, что после этой процедуры металл становится много крепче.

Ошибочно полагали древние люди, что закалка напрямую зависит от качеств жидкости, в которые погружали раскаленный металл. Но эта ошибочность породила множество фантастических, изощереннейших экспериментов. Так, в Багдаде охлаждали металл, вонзая его в мускулистое тело раба, который должен был передать свою силу оружию. В Средневековье был известен рецепт закалки стали, главным ингредиентом в котором была моча рыжего мальчика. Скажите, темные суеверия? И будете правы. Просто, клинки действительно лучше закаляются в крови или моче, чем в простой колодезной воде, ибо этот процесс в идеале должен проходить медленно, что и получается в растворах солей. Или если клинок охлаждается на ветру, как закаляли сталь в древнем Дамаске.

А как же тогда быть с современными методами? В чем их привлекательность? В приватности научного знания над мифопоэтическим, который отличает современную металлургию от древней, но отнюдь не исключает ее красоты. Это подтверждает и слаженная четкая работа компании «Металл-СК», где каждая деталь, изготовленная из металла, рассчитана до мелочей и прекрасна в своей безупречности. Да, в современном мире многое решают математические формулы, числовые зависимости, точные вычисления. Так, еще на бумаге, можно заранее предугадать свойства, которые будет иметь сталь в результате, предварительно рассчитав всю технологию ее изготовления. Оттого-то современная металлопромышленность поражает огромным ассортиментом сталей: сверхпрочные, износостойкие, жаропрочные, кислотоупорные. Такой подход получил название композиционного, а ученые-металлурги – композиторов. А ведь и правда, если знаменитый афоризм называет архитектуру «музыкой, застывшей в камне», то многие металлические изделия иначе, как музыкой, застывшей в металле, и не назовешь.

Читайте также: